
This article was downloaded by: [Michigan State University]
On: 01 April 2015, At: 09:57
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

Journal of Nonlinear Mathematical Physics
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tnmp20

Integration of some examples of geodesic flows via
solvable structures
Diego Catalano Ferraiolia & Paola Morandob

a Department of Mathematics, UFBA, Av Ademar de Barros s/n Salvador, BA CEP
40170-110, Brazil
b DISAA, Università degli Studi di Milano, Via Celoria, 2 Milano, 20133, Italy
Published online: 14 Oct 2014.

To cite this article: Diego Catalano Ferraioli & Paola Morando (2014) Integration of some examples of geodesic flows via
solvable structures, Journal of Nonlinear Mathematical Physics, 21:4, 521-532, DOI: 10.1080/14029251.2014.975525

To link to this article:  http://dx.doi.org/10.1080/14029251.2014.975525

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/14029251.2014.975525&domain=pdf&date_stamp=2014-10-14
http://www.tandfonline.com/loi/tnmp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14029251.2014.975525
http://dx.doi.org/10.1080/14029251.2014.975525
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Received 17 March 2014

Accepted 16 June 2014

Integration of some examples of geodesic flows via solvable structures

Diego Catalano Ferraioli

Department of Mathematics, UFBA, Av Ademar de Barros s/n
Salvador, BA CEP 40170-110 , Brazil

diego.catalano@ufba.br

Paola Morando
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Solvable structures are particularly useful in the integration by quadratures of ordinary differential equations.
Nevertheless, for a given equation, it is not always possible to compute a solvable structure. In practice, the
simplest solvable structures are those adapted to an already known system of symmetries. In this paper we
propose a method of integration which uses solvable structures suitably adapted to both symmetries and first
integrals. In the variational case, due to Noether theorem, this method is particularly effective as illustrated by
some examples of integration of the geodesic flows.
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1. Introduction

In recent years a great interest has been devoted to symmetry reduction methods for both ordinary
and partial differential equations. This led to the development of new techniques which have given
a significant improvement to the subject. It is well known that if an ordinary differential equation
(ODE) E admits a Lie algebra of symmetries, this can be used to reduce the order of E . This
procedure, usually called Lie reduction method, is particularly useful when the symmetry algebra
Sym(E ) of a scalar kth order equation E admits a (non–trivial) solvable k–dimensional sub–algebra
S . Indeed, in view of Bianchi–Lie theorem for completely integrable distributions [9, 17, 20], in
such a case E can be completely integrated by quadratures. This means that one can explicitly
determine, at least locally, a complete set of first integrals through the integration of a system of
closed 1–forms. Unfortunately, it is not possible, in general, to compute the entire symmetry algebra
Sym(E ) and equations solvable by quadratures often lack local symmetries (see, e.g., [5–7, 15]).
This fact raised the question of whether a generalisation of the notion of symmetry would lead to
a more effective reduction method. For this reason, in recent decades, the Lie reduction method for
ODEs has been extended by new techniques, which involve new kinds of symmetries such as λ–
symmetries, non–local symmetries and new tools like solvable structures (see, e.g., [1,2,5,6,11–13,
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15, 16, 18, 19]). In particular, solvable structures allowed a generalization of Bianchi–Lie theorem,
with effective applications to the integration by quadratures of ODEs (see e.g. [7, 8]).

A particularly important case of symmetry reduction method is provided by second order varia-
tional ODEs, with n–dependent variables. The reason is that variational ODEs often admit a special
kind of symmetries, called variational symmetries, which are deeply connected with the existence of
first integrals. Indeed, Noether theorem associates with any variational symmetry Y a differentiable
function F which is a joint first integral for both Y and the given variational equations. It follows
that, on each level manifold ϒc := {F = c}, the restricted variational equations are still invariant
under the restriction of Y to ϒc. Hence, the knowledge of a variational symmetry allows one to
reduce by two the dimension of the given variational equations, whereas a purely dynamical sym-
metry would only lead to a one-step reduction. However, in the general case of an h–dimensional
algebra of (non–trivial) variational symmetries G = 〈Yi : i = 1, ...,h〉, one can only reduce by h the
dimension of the equations. In fact, the first integral Fi associated with the generator Yi may not be a
first integral also for the other generators of the algebra. Only when G is an n–dimensional Abelian
algebra of Noether symmetries it is possible to ensure that Yi(Fj) = 0, ∀i, j ∈ {1, ..,n}, and then use
Bianchi–Lie theorem on each ϒc to completely integrate by quadratures the given equations. How-
ever, in some cases it may be difficult to compute all necessary symmetries to apply the Bianchi–Lie
or Liouville theorems.

In this paper we propose an alternative integration method for variational ODEs based on the
computation of solvable structures which are suitably adapted to some variational symmetries and
tangent to the level manifolds of some associated first integrals. Once such a solvable structure is
found, we can get the solution to the variational ODEs by quadratures. It is worth remarking that
under the hypothesis of Lie–Bianchi or Liouville theorems, our method may lead to the same inte-
gration procedure given by these theorems. However, the proposed method can be applied to more
general situations exploiting the knowledge of non–Abelian algebras of variational symmetries. In
such cases, the freedom one has in the search of a solvable structure adapted to certain variational
symmetries and level manifolds of first integrals, makes computations more feasible and may lead
to a more general integration procedure. Although the proposed method is not algorithmic, the anal-
ysis of the differential equations which determine the solvable structures for a given system of ODE
is quite feasible, especially by using packages for symbolic manipulation.

The paper is organized as follows. In Section 2, for the convenience of the reader, we collect
some notations and basic facts on the geometry of differential equations and solvable structures. In
Section 3 we give a description of the proposed method together with explicit applications to some
examples of variational ODEs.

2. Preliminaries

Throughout the paper we assume that the reader is familiar with the geometry of differential equa-
tions. Further details can be found in [4, 10, 17, 20]. We routinely use Einstein convention and
understand summation over repeated indices unless otherwise specified.

2.1. ODEs as sub–manifolds of jet spaces

Let M be an n–dimensional manifold, with local coordinates {xi}. Given a trivial fiber bundle π :
R×M→ R, we denote by πk : Jk(π)→M the kth order jet bundle associated with π , and by jk(s)
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Integration of geodesic flows via solvable structures

the kth order jet prolongation of a section s of π . The kth order jet space Jk(π) is a (1+ n+ kn)–
dimensional manifold which is naturally equipped with the contact (or Cartan) distribution C k of
tangent planes to graphs of kth order jet prolongations jk(s). In this framework, a kth order system
of ordinary differential equations can be regarded as a sub–manifold E ⊂ Jk(π) and its solutions
are sections of π whose kth order prolongations are integral manifolds of C k

∣∣
E

, the restriction to E
of C k.

In this paper we only deal with systems of second order Euler–Lagrange equations, which are
associated with a first order Lagrangian L ∈C∞(J1(π)). We suppose that L is a regular Lagrangian,
i.e., the corresponding Legendre transformation is non degenerate. We denote by {t,xi,vi} the
canonical local coordinates on J1(π) and we assume that E is a determined second order system in
normal form. In this case, the solutions to E are integral lines of the following vector field on E

Dt =
∂

∂ t
+ vi

∂

∂xi
+ . . .+ fi(t,x j,v j)

∂

∂vi
, (2.1)

where fi(t,x j,v j) are exactly the right–hand sides of the equations defining E in normal form. A
function F ∈C∞(E ) is said to be a first integral of E iff Dt(F) = 0. The Euler–Lagrange equations
for a first order Lagrangian L can be written in the following form:

Dt

(
∂L
∂vi

)
− ∂L

∂xi
= 0, i = 1, . . . ,n, (2.2)

where Dt is the total derivative operator. If L is regular, (2.2) is a determined system which can be
put in normal form.

2.2. Symmetries and variational symmetries

A vector field Y on Jk(π) is called a Lie symmetry if Y is an infinitesimal symmetry of C k. Lie
symmetries can be divided in two classes (see [17, 20]): Lie point symmetries and contact sym-
metries, obtained by prolonging vector fields X on J0(π) := R×M and J1(π), respectively. In
particular, the first prolongation of a vector field X = ξ ∂t + ηi∂xi on J0(π), is the vector field
X (1) = X +(Dtηi− viDtξ )∂vi on J1(π).

Given a kth order ODEs E , the symmetries of C k which are tangent to E are called (external)
classical symmetries of E . Hence, by restricting to E a classical symmetry Y of E , one gets a vector
field Y such that [Y ,Dt ] = hDt , where h is a suitable function on E . More in general, a vector field
Z on E satisfying [Z,Dt ] = hDt is called a dynamical symmetry. Notice that in general there may
exist dynamical symmetries which cannot be obtained by restricting to E a symmetry of C k.

Given a regular first order Lagrangian L ∈C∞(J1(π)), the corresponding Poincaré–Cartan form
is the 1–form locally written as

Θ :=
∂L
∂vi

(dxi− vidt) +Ldt, i = 1, . . . ,n (2.3)

(see [14] for an intrinsic definition of Θ and its general properties). If L is regular, it is easy to show
that the 2–form dΘ has a 1-dimensional annihilator generated by the vector field Dt .

Definition 2.1. Let Θ be the Poincaré–Cartan form (2.3) for a first order regular Lagrangian L ∈
C∞(J1(π)). A vector field Y on J1(π) is a variational Cartan symmetry for L iff LY Θ= d f , for some
f ∈C∞(J1(π)). When LY Θ = 0 and Y is a point symmetry, then Y is called a Noether symmetry. In
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D. Catalano Ferraioli and P. Morando

the following, for ease of discussion, we will call variational symmetries both Cartan and Noether
symmetries.

Any variational symmetry Y for a regular Lagrangian L is also a symmetry for the corresponding
Euler–Lagrange equations. Moreover Noether theorem associates with any variational symmetry Y
the first integral F = f −YyΘ of the Euler–Lagrange equations.

2.3. Distributions and solvable structures

Given a set of vector fields {Y1, . . . ,Yn−k} on a n–dimensional manifold N we denote by D :=
〈Y1, . . . ,Yn−k〉 the distribution of vector fields generated by Y1, . . . ,Yn−k. The distribution D is com-
pletely integrable (in Frobenious sense) iff [X ,Y ] ∈ D , ∀X ,Y ∈ D . Let U be an open domain
of N where the vector fields {Y1, . . . ,Yn−k} are pointwise linearly independent. Then D is a
(n− k)–dimensional distribution on U and, if D is completely integrable, D determines a (n− k)–
dimensional foliation of U ⊆ N. Given a distribution D , a vector field X is a symmetry of D iff
[X ,Y ] ∈ D , for all Y ∈ D . Let D and Y be two distributions on N. We say that D and Y are
transversal at p∈N iff they do not vanish at p and D(p)∩Y (p) = {0}. Analogously, D and Y are
called transversal iff they are transversal at any point. An algebra of symmetries for a distribution
D will be called nontrivial if it generates a distribution which is transversal to D .

It is well known that, given a 1–dimensional distribution D on an n–dimensional manifold N, the
knowledge of a solvable (n−1)–dimensional algebra G of nontrivial symmetries for D guarantees
that D can be integrated by quadratures. The notion of solvable structure provides a generalization
of this classical integrability result ( [1, 2, 13]).

Definition 2.2. Let D be a 1–dimensional distribution on an n–dimensional manifold N. A set
of vector fields Z := {Z1,Z2, . . . ,Zr}, with r ≤ n− 1, is a solvable structure for D in an open
neighborhood U ⊆N iff, by denoting D0 :=D and Dh :=D⊕〈Z1, . . . ,Zh〉, with h≤ r, the following
conditions are satisfied:

(1) 〈Z1,Z2, . . . ,Zh〉 is h–dimensional and transversal to D in U , for any h≤ r;
(2) Dr is an (r+1)–dimensional distribution on U ;
(3) LZhDh−1 ⊂Dh−1, ∀h ∈ {1, . . . ,r}.

A solvable structure for D is called maximal iff r = n−1, in which case Dn−1 = TU .

Remark 2.1. It is clear from Definition 2.2, that in principle a maximal solvable structure for
D always exists, in a neighborhood of every non–singular point for D . Nevertheless, for a given
distribution D , it may be difficult to find such a structure explicitly.

3. Adapted Solvable Structures for the Integration of Variational ODEs

Let M be a smooth manifold of dimension (2n+ 1), equipped with a 1–dimensional distribution
D = 〈X〉. For any h–tuple F := (F1, . . . ,Fh) ∈C∞(M)h of smooth functions, let

UF :=

{
p ∈M |

h∧
i=1

dpFi 6= 0

}
⊆M (3.1)

and consider the (2n−h+1)–dimensional foliation of UF whose leaves are the level sets

ϒc := {p ∈UF |F(p) = c}, (3.2)
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Integration of geodesic flows via solvable structures

parameterized by c ∈ Rh.

Lemma 3.1. Let Z := {Z1, . . . ,Z2n−h} be a solvable structure for D in M. If F is made of first
integrals of D and Za(Fi) = 0 ∀a = 1, . . . ,2n−h and i = 1, . . . ,h, then Zc := {Z1|ϒc , . . . ,Z2n−h|ϒc}
is a maximal solvable structure for Dc := 〈X |ϒc〉 in ϒc for all c ∈ Rh.

Proof. The proof is an immediate consequence of the fact that ϒc is a (2n− h+ 1)–dimensional
manifold and Z|ϒc is tangent to ϒc.

Definition 3.1. A solvable structure Z = {Z1, . . . ,Z2n−h} fulfilling hypothesis of Lemma 3.1 is
called adapted to F.

Theorem 3.1. Let Ω ∈ Λ2n−h+1(M) be a form such that Ωc := Ω|ϒc is a volume form on ϒc, for all
c ∈ Rh, and let Z be a solvable structure for D = 〈X〉 adapted to F. Then the 1–forms

Ωi :=
Z1y . . .yẐiy . . .yZ2n−hyXyΩ

Z1y . . .yZ2n−hyXyΩ
, i = 1,2, . . .2n−h (3.3)

fulfill the following properties:

• Ω2n−h|ϒc = dIc
2n−h, for some Ic

2n−h ∈C∞(ϒc);
• Ω2n−h−1|ϒc∩{Ic

2n−h=c2n−h} = dIc
2n−h−1, for some Ic

2n−h−1 ∈C∞(ϒc∩{Ic
2n−h = c2n−h});

• . . .
• Ω1|ϒc∩{I2=c2,...,Ic

2n−h=c2n−h} = dIc
1 , for some Ic

1 ∈C∞(ϒc∩{Ic
2 = c2, . . . , Ic

2n−h = c2n−h}).

Proof. Being Z a solvable structure adapted to F, Zc is a maximal solvable structure for Dc on ϒc

for all c ∈ Rh (see Lemma 3.1 above). Therefore we can apply the results of [1, 2, 8] to Zc and the
conclusion follows immediately.

Corollary 3.1. Let Z be a solvable structure adapted to F. Then, for any c∈Rh, one can explicitly
compute 2n−h first integrals for the 1–dimensional distribution Dc on the (2n+h−1)–dimensional
level set ϒc.

Proof. The proof is an immediate consequence of Theorem 3.1.

In the following we apply Theorem 3.1 to the special case of variational ODEs for a regular
Lagrangian L, exploiting both variational symmetries Yi and their associated first integrals F = {Fi}.
The method is not algorithmic, but the freedom we have in the choice of the first integrals F may
help in finding an adapted solvable structure in a suitable open neighborhood of UF. In fact, in
general, the first integral Fi associated with the generator Yi is not a first integral for all the other
generators of the algebra and this is the moment when the method begins to branch into several
possibilities. If we opt for small dimensional leaves ϒc (by using a large number of first integrals
Fi), then we have to find a small dimensional solvable structure, but we also have fewer symmetries
still available to be included in it. On the other hand, if we choose ϒc of higher dimension, we may
have a bigger number of residual symmetries to be used in the construction of the adapted solvable
structure, but the number of the vector fields to be found in order to complete the solvable structure
increases as well.

It is worth remarking that, even if there is no evidence that this integration method is more
effective than the other ones, the analysis of the differential equations which determine the solvable
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D. Catalano Ferraioli and P. Morando

structures for a system of ODE is often feasible, in particular by using a package for symbolic
manipulation like those written for Maple. Among the several useful packages for the geometric
study of differential equations, we suggest the packages “DifferentialGeometry” and “Jets” by I.
Anderson (and coworkers) and M. Marvan, respectively. The first package, which is included in the
current versions of Maple, is recommended for various computations involved in the determination
of solvable structures. The second package, which can be downloaded from the official web page
http://jets.math.slu.cz, is very helpful, for example, in the computation of symmetries.

The following three examples provide an explicit application of the method of adapted solv-
able structures in the integration of variational ODEs. In particular, Example 1 shows that, when a
n–dimensional Abelian algebra of variational symmetries for a system of n Euler–Lagrange equa-
tions is known, our procedure reduces to the Liouville theorem. On the other hand, Example 2 and
Example 3 provide an application of the proposed method to the integration of systems of n varia-
tional ODEs by using a solvable structure which is not an n-dimensional Abelian symmetry algebra.
Moreover, since the first two examples deal with purely kinetic Lagrangians L = 1

2 gi jviv j (no sum-
mation over repeated indices), with g = gi jdxidx j being one of the Riemannian metrics classified
by Bianchi in [3], these examples also provide applications of our method to the integration by
quadratures of geodesic flows.

In all the examples we consider M = R3 and hence J1(π) is the 7–dimensional manifold with
local coordinates (t,x1,x2,x3,v1,v2,v3). We consider the distribution D = 〈Dt〉, where Dt is given
by (2.1) so that the solutions to the Euler–Lagrange equations correspond to the trajectories of Dt .
We note that the proposed method is mainly of local nature as, in general, we may be able to find
an adapted solvable structure for D only on some open neighborhood of UF.

Example 1. Consider the regular Lagrangian

L =
1
2

v2
1 +

1
2

v2
2 + x1v2v3 +

1+ x2
1

2
v2

3, (3.4)

describing the geodesic flow of the Riemannian metric g = dx2
1 + dx2

2 + 2x1dx2dx3 +(1+ x2
1)dx2

3
(see Category E metric, in the English translation of [3], which is of Bianchi type II with a transitive
group G4). The Lagrangian admits the Abelian symmetries algebra generated by the vector fields
Y0 := ∂t , Y1 := ∂x2 , Y2 := ∂x3 , with associated first integrals F0 := L, F1 :=−v2−x1v3, F2 :=−x1v2−
(1+ x2

1)v3.
In this case

Dt = ∂t + v1∂x1 + v2∂x2 + v3∂x3 +
(
v2v3 + x1v2

3
)

∂v1+(
−v3v1 + x1v1v2 + x2

1v1v3
)

∂v2− (v1v2 + x1v1v3)∂v3 .

We consider the 4–dimensional level manifolds ϒc := {F0 = c0,F1 = c1,F2 = c2} which can be
equivalently presented as

ϒc =


v1 = ε1

√
−c2

1x2
1 +2c1c2x1− c2

1− c2
2 +2c0, ε1 =±1,

v2 =−c1x2
1 + c2x1− c1,

v3 = c1x1− c2,

(3.5)

so that {t,x1,x2,x3} can be taken as internal coordinates on ϒc, and Ωc = dt∧dx1∧dx2∧dx3 as the
corresponding volume form.
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Integration of geodesic flows via solvable structures

Obviously, the vector fields Dt ,Y0,Y1 and Y2 are tangent to ϒc and {Y0,Y1,Y2} form a maximal
Abelian solvable structure for D on ϒc, whenever

∆ := Y0yY1yY2yDtyΩc = ε1

√
−c2

1x2
1 +2c1c2x1− c2

1− c2
2 +2c0 6= 0.

Therefore Corollary 3.1 allows us to integrate the Euler–Lagrange equations corresponding to the
Lagrangian (3.4), on UF := {∆ 6= 0}. Indeed, Theorem 3.1, with n = h = 3, guarantees that on UF
the restricted 1–forms Ωi|ϒc (i = 0,1,2) are closed and can be written as Ωi|ϒc = dIi, with

I0 = ε1 arcsin

 c2− c1x1√
2c0− c2

1

− t,

I1 =
ε1 (x1c1 + c2)

√
c2

1x2
1 +2c2c1x1− c2

1− c2
2 +2c0

2c2
1

−
ε2(2c0 + c2

1)arctan
(

(ε2c1x1−ε2c2)

ε1
√
−c2

1x2
1+2c2c1x1−c2

1−c2
2+2c0

)
2c2

1
− x2,

I2 = x3 + ε1

√
−c2

1x2
1 +2c2c1x1− c2

1− c2
2 +2c0

c1
,

where ε2 = sgn(c1) = ±1. Hence, on UF, the solution to the Euler–Lagrange equations is given
implicitly by {Fi = ci, Ii = hi, i = 0,1,2} .

Example 2. Given a smooth non constant function φ(x1), let us consider the regular Lagrangian

L =
1
2

v2
1 +

1
2

φ(x1)
2 (v2

2 + e2x2v2
3
)

(3.6)

describing the geodesic flow of the Riemannian metric g = dx2
1 +φ(x1)

2
(
dx2

2 + e2x2dx2
3
)

(see Cat-
egory C metrics, in the English translation of [3], which correspond to the case of an intransitive
group G3). In this case the full symmetry algebra is generated by the vector fields

X0 := ∂t , X1 := ∂x3 , X2 := ∂x2− x3∂x3 , X3 := x3∂x2 +
1
2

(
e−2x2− x2

3
)

∂x3 ,

with associated first integrals

F0 := L, F1 =−φ(x1)
2e2x2v3,

F2 := φ(x1)
2
(
x3e2x2v3− v2

)
, F3 := 1

2 φ(x1)
2
(
−v3 + e2x2x2

3v3−2x3v2
)
.

In this case we have

Dt = ∂t + v1∂x1 + v2∂x2 + v3∂x3 +φ(x1)φ
′(x1)

(
v2

2 + e2x2v2
3
)

∂v1

+

(
e2x2v2

3φ(x1)−2v1v2φ ′(x1)
)

φ(x1)
∂v2−

2v3 (v1φ ′(x1)+ v2φ(x1))

φ(x1)
∂v3 .

Contrary to the previous case, the vector fields {X0,X1,X2,X3} are not tangent to the level manifolds
of the first integrals F0,F1,F2,F3. This is a consequence of the fact that, in this case, the symmetry

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

527

D
ow

nl
oa

de
d 

by
 [

M
ic

hi
ga

n 
St

at
e 

U
ni

ve
rs

ity
] 

at
 0

9:
57

 0
1 

A
pr

il 
20

15
 



D. Catalano Ferraioli and P. Morando

algebra is not Abelian, being

[X0,X1] = 0, [X0,X2] = 0, [X0,X3] = 0,
[X1,X2] =−X1, [X1,X3] = X2, [X2,X3] =−X3.

To give an idea of the choices one is required to make when applying the proposed method, we
show here two different approaches to the integration of the distribution D .

Approach 1. If we consider the 4–dimensional level manifolds ϒc := {Fi = ci, i = 0,1,2}, we
have to look for a solvable structure {Y0,Y1,Y2} for D adapted to F := (F0,F1,F2).
This solvable structure can be easily computed by making some simple ansatz. For example, choos-
ing Y0 := X0, in general we have to look for a vector field Y1 which is a symmetry of 〈Dt ,Y0〉. To
this end, we impose the conditions[

Y1,Dt
]
= 0, Y1(F3) = 0, [Y1,Y0] = 0,

on Y1 and immediately find the Cartan symmetry

Y1 = φ(x1)
2 (v2∂x2 + v3∂x3 + e2x2v2

3∂v2−2v2v3∂v3

)
.

Then we have to find a symmetry Y2 of 〈Dt ,Y0,Y1〉, but assuming that Y2 is a symmetry of 〈Y1〉, it is
not difficult to find, for example,

Y2 =−e2x2v3
φ(x1)

3

φ ′(x1)
∂x1 +φ(x1)

2e2x2v3∂x2−φ(x1)
2v2∂x3 +φ(x1)

2e2x2v2v3∂v2 .

Now, since

ϒc =



v1 =
ε1

φ(x1)

√
2c0φ(x1)2−

(
c2

1e−2x2 +(c2 + c1x3)
2
)
, ε1 =±1,

v2 =−
c1x3 + c2

φ(x1)2 ,

v3 =−
c1

φ(x1)2e2x2
,

it is possible to choose {t,x1,x2,x3} as internal coordinates on ϒc, and Ωc = dt ∧dx1∧dx2∧dx3 as
the corresponding volume form. Then, on UF = {∆ 6= 0}, where

∆ = Y0yY1yY2yDtyΩc

= ε1
φ(x1)

(
c2

1e−2x2 +(c2 + c1x3)
2
)√

2c0φ(x1)2−
(

c2
1e−2x2 +(c2 + c1x3)

2
)
,

we can use the solvable structure {Y0,Y1,Y2} to find three independent first integrals for the Euler–
Lagrange equations associated with (3.6) according to the general method described in Corollary
3.1. Indeed, by Theoren 3.1, with n = h = 3, on UF the restricted 1–form Ω2|ϒc is closed and can be
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written as Ω2|ϒc = dI2, where

I2 = c2
1e−2x2 +(c2 + c1x3)

2 .

The next step is considering the restriction Ωi|ϒc∩{I2=c2} (i = 0,1): we get Ωi|ϒc∩{I2=c2} = dIi, where

I0 = t− ε1
∫ φ(x1)√

2c0φ(x1)2−h2
dx1,

I1 =−
arctanh

(
c1x3+c2√

h2

)
√

h2
− ε1

∫ 1
φ(x1)
√

2c0φ(x1)2−h2
dx1.

Hence, on UF, the solutions to the Euler–Lagrange equations can be implicitly described as
{Fi = ci, Ii = hi, i = 0,1,2}.

Approach 2. Here we apply Corollary 3.1 with n = 3 and h = 4. More precisely, we look for
a solvable structure adapted to F := (F0,F1,F2,F3) i.e., which is tangent to the 3–dimensional level
manifolds ϒc := {Fi = ci, i = 0,1,2,3}. Obviously the vector fields Dt and Y0 are tangent to ϒc, and
we have to find a single vector field Y1 which is tangent to ϒc and is also a symmetry for 〈Dt ,Y0〉.
An example of such a vector field is the Cartan symmetry Y1 found in Approach 1.

Now, since

ϒc =



v1 =
ε1

√
2c0φ(x1)2− c2

2−2c1c3

φ(x1)
, ε1 =±1

v2 =−
c1x3 + c2

φ(x1)2 ,

v3 =
c1x2

3 +2x3c2−2c3

φ(x1)2 ,

x2 =
1
2

ln
(
− c1

c1x2
3 +2c2x3−2c3

)
,

we can choose {t,x1,x3} as internal coordinates in ϒc and Ωc = dt∧dx1∧dx3 as the corresponding
volume form. Hence, {Y0,Y1} is a solvable structure for D on ϒc, whenever

∆ = Y0yY1yDtyΩc =
ε1
(
c1x2

3 +2x3c2−2c3
)√

2c0φ(x1)2− c2
2−2c1c3

φ(x1)
6= 0.

Moreover, in UF = {∆ 6= 0}, the restricted 1–forms Ωi|ϒc
(i = 0,1) are closed and can be written as

Ωi|ϒc
= dIi, where

I0 = t− ε1
∫ φ(x1)√

2c0φ(x1)2−c2
2−2c1c3

dx1,

I1 =−
arctanh

(
c1x3+c2√

c2
2+2c1c3

)
√

c2
2+2c1c3

− ε1
∫ 1

φ(x1)
√

2c0φ(x1)2−c2
2−2c1c3

dx1,
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in view of Theorem 3.1, with n = 3 and h = 4. This means that, on the considered
domains, the solutions to the Euler–Lagrange equations can be implicitly described as
{F0 = c0, F1 = c1, F2 = c2, F3 = c3, I0 = h0, I1 = h1} .

Remark 3.1. Despite the fact that Y1 is a Cartan symmetry, the associated first integral cannot be
used for the complete integration of the geodesic flow. In fact LY1(Θ) = d

(1
2 φ 2

(
v2

2 + e2x2v2
3
))

, and
the first integral associated with Y1 is

F4 =
1
2

φ
2 (v2

2 + e2x2v2
3
)
−Y1yΘ =−1

2
φ

2 (v2
2 + e2x2v2

3
)
.

which is functionally dependent on {E,F1,F2,F3}.

Example 3. Consider the regular Lagrangian

L =
1
2

v2
1 +

1
2

x2
1
(
v2

2 + v2
3
)
+αx2v3, (3.7)

where α ∈ R and αx1 6= 0. The Lagrangian (3.7) is of mechanical type, where the kinetic part is
defined by the metric g = dx2

1 + x2
1(dx2

2 + dx2
3) (see Category C metrics, in the English translation

of [3], which correspond to the case of an intransitive group G3). A straightforward computation
shows that

Dt = ∂t + v1∂x1 + v2∂x2 + v3∂x3 + x1
(
v2

2 + v2
3
)

∂v1 +

(
αv3−2x1v1v2

x2
1

)
∂v2

−
(

αv2 +2x1v1v3

x2
1

)
∂v3 .

In this case, three simple variational symmetries are X0 := ∂t ,X1 := ∂x2 and X2 := ∂x3 , with associ-
ated first integrals F0 := v2

1 + x2
1(v

2
2 + v2

3), F1 := αx3− x2
1v2, F2 := αx2 + x2

1v3. As X1 and X2 are not
tangent to the 4-dimensional level manifolds {Fi = ci, i = 0,1,2}, they cannot be used to completely
integrate the restriction of Dt to these manifolds. However, it is easy to determine the variational
symmetry

Y1 = x2
1 (v2∂x2 + v3∂x3)+α (v3∂v2− v2∂v3) ,

which is tangent to {Fi = ci, i = 0,1,2} and is linearly independent from Dt , X0, X1 and X2. We
denote by F3 the first integral associated with Y1, and since

LY1 (Θ) = d
(

1
2
(
v2

2 + v2
3
)

x4
1 +αx2

1x2v3

)
,

it can be readily seen that F3 = x4
1
(
v2

2 + v2
3
)
. Now, since F0, F1, F2 and F3 are functionally indepen-

dent, one can consider the 3–dimensional level manifolds ϒc := {Fi = ci, i = 0,1,2,3} and use the
adapted solvable structure {Y0 := X0,Y1} to completely integrate the restriction of D to ϒc. To this
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Integration of geodesic flows via solvable structures

end, let

ϒc =



v1 = ε1

√
c0x2

1− c3

x1
, ε1 =±1

v2 = ε2

√
c3− (αx2− c2)

2

x2
1

, ε2 =±1

v3 =
c2−αx2

x2
1

,

x3 = ε2

√
c3− (αx2− c2)

2 + c1

α
,

and let us take {t,x1,x2} as internal coordinates on ϒc and Ωc = dt∧dx1∧dx2 as the corresponding
volume form. Hence, in UF = {∆ 6= 0}, where ∆ =Y0yY1yDtyΩc = x2

1v1v2 6= 0, we have the adapted
solvable structure {Y0,Y1} for D . The restricted 1–forms Ωi|ϒc can be written as Ωi|ϒc = dIi, with

I0 = t− ε1
c0

√
c0x2

1− c3,

I1 =−
ε1√
c3

arctan

 c3√
c3
(
c0x2

1− c3
)
+

ε2

α
arctan

 αx2− c2√
c3− (αx2− c2)

2

 ,

and the solutions to the Euler–Lagrange equations can be described implicitly as
{F0 = c0, F1 = c1, F2 = c2, F3 = c3, I0 = h0, I1 = h1}.

As a final remark we note that also in Example 3 a different integration path could have been
followed, considering the Abelian algebra generated by X2,Y0 and Y1 which provides a solvable
structure adapted to the first integrals F2,F0 and F3. More in general, the freedom one has in the
choice of the first integrals defining the foliation ϒc of UF seems to open a wide range of possibilities
allowing, for instance, the use of solvable structures adapted to both variational and non variational
first integrals. This method could be particularly useful when a lack of computable symmetries
makes difficult the application of Liouville theorem.
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