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TECHNICAL COMMUNICATION

r.survey: a tool for calculating visibility of variable-size objects 
based on orientation
Txomin Bornaetxea a and Ivan Marchesini b

aDepartment of Geology, University of the Basque Country (UPV/EHU), Leioa, Spain; bResearch Institute for 
Geo-Hydrological Protection (IRPI), Italian National Research Council (CNR), Perugia, Italy

ABSTRACT
Identification of terrain surface features can be done using 
approaches such as visual observation or remote sensing image 
processing. Accurate detection of survey targets at the ground level 
primarily depends on human visual acuity or sensor resolution, and 
then on acquisition geometry (i.e. the relative position and orienta
tion between the surveyor and the terrain). Further, the delimita
tion of the observer’s viewshed boundary or of the sensor’s ground 
footprint is sometimes insufficient to ensure that all enclosed tar
gets can be correctly detected. Size and orientation can hamper 
ground target visibility. In this paper we describe a new release of r. 
survey, an open-source spatial analysis tool for terrain survey 
assessment. This tool offers the necessary information to assess 
how terrain morphology is perceived by observers and/or sensors 
by means of three basic visibility metrics: 3D distance, view angle, 
and solid angle. It is also fully customizable, allowing single or 
multiple observation points, ground or aerial point of view, and 
size setting of the observed target, making it useful for many 
different purposes.
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1. Introduction

Terrain survey includes detection and measurement of surfaces, and can be conducted 
over large areas using simple visual observation or remote sensing via instruments such as 
laser scanners or optical, infrared and radar sensors. It is a key part of many scientific 
disciplines including geomorphology, biology, biogeography, archeology, landscape stu
dies, and civil engineering (Santangelo et al. 2010, Edan et al. 2013, Minelli et al. 2014, 
Fábrega-Álvarez and Parcero-Oubiña 2019, Saeidi et al. 2019). In this regard, visual 
observation of terrain, either directly or through photo interpretation, has been one of 
the most widely used approaches. However, the quality of such observations is difficult to 
assess due to the implicit subjectivity of the observer. During recent decades, significant 
progress has been made to objectively quantify what is visible or not visible from certain 
observation locations. This process is known as viewshed analysis (Higuchi 1983), and 
many GIS tools have been developed for it (Domingo-Santos and Fernández de Villarán 
2017, Sahraoui et al. 2018, Fábrega-Álvarez and Parcero-Oubiña 2019).
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Surface observation (on Earth or other planets) is not limited to direct eye contact. The 
use of remote sensors mounted in satellites, aircraft, or unmanned aerial vehicles (UAV), as 
well as ground-based sensors, is becoming increasingly crucial, providing data that go 
beyond the capacity of human vision. Hence, the concept of what is visible and not visible 
can vary depending on the observer’s specifications (i.e. sensor characteristics).

Optical cameras, the human eye, and data collection sensors, such as radar, laser 
scanners, or infrared waves, require a direct line of sight between them and the target 
terrain to attain full operability. Thus, viewshed areas can provide valuable information for 
assessing surveyed territories (Chae et al. 2017). Visibility analysis has been widely devel
oped and discussed from the human perspective (Higuchi 1983, Fisher 1992, Ogburn 
2006, Llobera 2007, Nutsford et al. 2015), although other fields such as telecommunica
tion, natural hazards, and remote sensing may also benefit from such spatial information 
(Proy et al. 1989, Dodd 2001, Edan et al. 2013, Tajelsir Raoof et al. 2020). For example, 
Bornaetxea et al. (2018) proved the relevance of the spatial delimitation of the ‘effective 
surveyed area,’ that is, the portion of the territory that should be used to train and validate 
landslide susceptibility models that are based on field survey landslide inventories. For 
this work, the authors designed a specific GRASS GIS python module that automatically 
delineates the ‘effective surveyed area,’ referred to as r.survey. Recently, Knevels et al. 
(2020) transferred the original GRASS GIS-based python tool into R. In this paper we go 
further and present the new release of the Python version of r.survey.

The r.survey open-source spatial analysis tool offers basic information to determine 
how an analyzed surface may be perceived, particularly if an object of a given size can be 
detected by one or multiple viewpoints. The tool has been optimized for earth surface 
analysis and, thus, is especially useful for evaluating the visibility of features on terrain 
slopes, such as landslides, road cuts, minor vegetation, quarry scars, geological outcrops, 
surface pipelines, parking areas, and burned areas. Visibility can be evaluated in terms of 
3D distance, solid angle, and orientation of the terrain with respect to the line of sight 
(view angle). Therefore, depending on the purpose of the study, one can be interested in 
searching the closest position to observe a given territory. Conversely, for others, having a 
frontal view (perpendicular to the plane where the observed object shows its maximum 
extension) may be more relevant. In some cases, the aim may consist of a combined 
balance between the closest view and the frontal view to evaluate how much of the 
human field of view is occupied by a given object.

To summarize and also present an example, r.survey provides the user with the 
necessary information to answer questions such as the following:

● In the field, from how many locations is something visible?
● During fieldwork, which location would provide the best position for observation of 

a given point or area (according to the distance, angle, or both)?
● Which portion of the territory is visible along a given survey path/flight?
● Are objects of a given size visible from a given survey path/flight?

The remainder of this paper organized as follows. First, in Section 2, we describe the 
software features that deal specifically with visibility analysis. In Section 3, we present a 
detailed description of the design of the algorithm and the underlying rationale behind it. 
In Section 4, we explain the benefits of the parallelized design of the code. In Section 5, we 
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show the results of different tests carried out in a synthetic digital elevation model (DEM) 
created specifically for this purpose. We also describe the application of r.survey in a 
specific study area using a real digital elevation model. In Section 6, we discuss the 
obtained results and the different implications related to the software, as well as the 
potential applications of r.survey. Finally, in Section 7, we summarize the lessons learned 
and outline the principal conclusions.

2. Related tools

To date, a number of tools have become available for the automatic detection of visible 
areas either from single or multiple perspectives (Table 1). These include Viewshed and 
Viewshed2 in ArcGIS Pro version 2.7 (ESRI 2021), r.los or r.viewshed in GRASS (Neteler et al. 
2012, GRASS Development Team 2020) or the Visibility Analysis Plugin for QGIS (Cuckovic 
2016). Most approaches consider the viewshed as an ensemble of pixels (cells) in a digital 
elevation model that presents a direct line of sight with the observer, resulting in a simple 
binary map showing visible and non-visible pixels. However, as noted by some authors 
(Domingo-Santos et al. 2011, Nutsford et al. 2015), qualitative information regarding how 
something is visible offers much more useful data than simply classifying the terrain as 
visible and not visible. Indeed, in addition to elevation, aspect and slope play essential 
roles in how terrain is perceived. Unfortunately, the most popular viewshed algorithms 
available in most GIS packages do not consider pixel orientation or slope, forcing 
researchers to develop their own algorithms to obtain more accurate results or to reach 
the specific objectives related to their field of study. One such example is PixScape, an 
open-source software program used for viewshed analysis focused on landscape assess
ment (Sahraoui et al. 2018).

The most advanced tool in ArcGIS Pro is Viewshed2, which is able to perform very 
efficient parallel calculations of visibility from multiple locations to produce several 
primary outputs, including the number of points from which each cell can be viewed, 
and the identifier of the viewpoints (maximum 32) from which each cell is visible. The 
Visibility Analysis plugin for Qgis (Cuckovic 2016) is mainly devoted to producing 
outputs that are related to the outer edge of the viewshed and to the height that a 

Table 1. Main features of visibility tools. GIS: running in a GIS environment; multiple: multiple 
viewpoints are processed; parallel: parallel processing of multiple viewpoints; number: output map 
portraying the number of viewpoints each cell is visible from; view angle: output map portraying the 
view angle (Θ) each cell is visible from; distance: output map portraying the 3D distance (∆) each cell is 
visible from; solid angle: solid angle (Ω) of an object in each cell; and identifier: identifiers of the 
viewpoints a cell is visible from.

Viewshed2 r.viewshed Visibility Analysis PixScape
r.survey 

(this work)

GIS ArcGIS Pro GRASS GIS QGIS - GRASS GIS
Multiple yes no yes yes yes
Parallel yes no no yes yes
Number yes no yes yes yes
View Angle (Θ) no vertical no yes yes
Distance (∆) no no no no yes
Solid Angle (Ω) no no no no yes
Identifier yes no no yes yes
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cell should reach to become visible from a given viewpoint. It is also able to produce 
maps of the number of points from which each cell can be viewed. Among GIS tools, 
Pixscape is probably one of the most complete software programs related to visibility 
analysis available to date (Sahraoui et al. 2018). It offers a user-friendly interface where 
viewsheds can be calculated interactively for single viewpoint, and also allows many 
options to be set related to observer height, field of view (horizontal and vertical 
bounding), or target height. A multiple viewpoints option is also allowed, and there 
are three main outputs provided in raster or vector format: (i) the number of times each 
cell can be viewed, (ii) the angular height, and (iii) the angular area. The GRASS GIS tool 
r.viewshed can be used to calculate the viewshed and the vertical angle to the 
viewpoint.

All visibility indices produced by the instruments mentioned above do not depend on 
the size of the object being viewed. Therefore, it may be useful to have an instrument that 
allows evaluation of whether or not an object of a certain size is visible from one or more 
perspective. Similarly, it could be useful to have such an instrument capable of identifying 
the point of view from which a given object, located on a given territory, is most visible 
because of its position, size, and orientation with respect to multiple points of view. This 
could be useful for multiple applications, such as evaluation of the effective surveyed area 
when planning a field trip or assessing the visual impact on the landscape of a planned 
mining facility, considering its size and morphology. For these reasons, we developed a 
new version of r.survey.

3. Design of r.survey

A literature review reveals that automatic visibility analysis tools primarily follow two 
approaches: sight-line methods (Fisher 1996, Joly et al. 2009) and solid angle meth
ods (Germino et al. 2001, Domingo-Santos et al. 2011). The latter takes advantage of 
trigonometric calculations to quantify the surface areas of the observer’s retina 
occupied by the target pixel (Llobera 2003, Sahraoui et al. 2016a). Meanwhile, the 
former considers any visible cell in a discretized surface if there is no interruption 
along the straight line between the observer and the target pixel. The approach 
employed by r.survey combines both strategies. First, the visible pixels (cells) are 
selected according to the line-of-sight method using the pre-existing GRASS com
mand, r.viewshed (Haverkort et al. 2009, Petrasova et al. 2018, Toma et al. n.d.). Then, 
three principal outputs (visibility metrics) are given, based on trigonometric calcula
tions, to provide quantitative information about how the terrain is perceived from 
the selected observation points (or viewpoints). This information concerns the three- 
dimensional distance (∆), relative orientation (view angle, Θ), and solid angle (Ω) of 
each target with respect to the viewpoint. A map containing a set of points describ
ing the location of the observer and a digital elevation model (DEM) is the manda
tory input for r.survey. Maps of buildings and trees that portray height information 
can be used to alter the DEM. In particular, for trees, the local elevation of the DEM 
can be altered by adding a random tree height constrained by an average value and 
accuracy estimation (standard deviation), according to a Gaussian model. 
Furthermore, the observer’s view can be set as spherical or downward. The former 
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implies that the observer can look in any direction, while the latter is devoted to 
simulating the field of view of a flying object facing the ground.

The average size of the object being viewed is a fundamental input to the model. It 
must be given as the radius of the circle that has the same area as the object under 
consideration. Any value is allowed as this value does not depend on the working 
resolution. If no value is provided, the tool uses a value equal to half the resolution of 
the DEM. Many other options can be set, for example observer height with respect to the 
ground or respect to an elevation datum, maximum distance to perform the calculations, 
a view-angle threshold to exclude, a priori, cells oriented almost perpendicularly to the 
lines of sight. More details are available via the code availability section.

r.survey is designed as a GRASS GIS python module, which source code was written 
using the GRASS Scripting library and the pyGRASS library (Zambelli et al. 2013). It is 
organized into four main blocks (Figure 1), data preparation, the single point loop, data 
aggregation loops, and map outputs.

3.1. Data preparation

The input point map must be provided to the tool as a vector layer. If it represents the 
positions of a UAV, helicopter, or satellite, it must include an attribute field containing the 
absolute elevation values with respect to the same datum used by the input DEM. Caution 
must be taken not to use the points outside the valid (non-null) cells of the DEM. Observer 
height (with respect to the ground, default 1.75 m) and maximum distance of observation 
(default 1000 m) are parameters required by the r.viewshed module and by r.survey.

The target object size is provided by the object radius parameter. It is used to represent 
a circle of the same size as the target object. The circle is located at the center of the cells, 
and its orientation is defined by the aspect and slope values of the cells.

Figure 1. r.survey flowchart. ∆ refers to 3D distance raster layers, Θ refers to view angle raster layers, 
and Ω refers to solid angle raster layers.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



Because r.survey produces different types of outputs, a name to be used for the prefix 
of the output maps is requested (more details are available in the code availability 
section).

In the first block of instructions (Figure 1(a)), the DEM was modified according to the 
presence of possible tree and building maps. The elevations provided by the maps were 
added to the DEM values. Then, slope and aspect maps were derived for the calculations 
of the three components, bx

!
, by
!

, and bz
!

, of the unit vector b̂ normal to the terrain surface 
in each cell.

3.2. Single point loop

In the second block (Figure 1(b)), the coordinates of each viewpoint are used by the r. 
viewshed module to compute the viewshed area (Haverkort et al. 2009, Petrasova et al. 
2018, Toma et al. n.d.), selecting only those pixels that have a direct line of sight from 
the viewpoint. This tool also returns the vertical angle value between the viewpoint 
and each visible DEM cell, and the curvature of the earth can be considered. In 
addition, at this step, the field of view can be restricted to the downward vision in 
cases such as unmanned aerial vehicles (UAVs). Then, the three main outputs are 
derived by using trigonometric equations: 3D distance, view angle, and solid angle.

3.3. 3D distance

The 3D distance is the three-dimensional linear distance between a viewpoint and a 
target pixel. Unlike the planar distance, the 3D distance (∆) measures the length of the line 
of sight between two points (Figure 2), considering their relative elevation difference and 
their x and y coordinate differences (formula 1): 

Figure 2. 3D distance between the observer and the object. The observer can be on the ground or in 
flight.
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Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y � y0ð Þj j
2
þ x � x0ð Þj j

2
þ z � z0ð Þj j

2
q

; (1) 

where y, x, and z are the coordinates of the viewpoint and y’, x’, and z’ correspond 
to the coordinates of the target pixel. Trigonometry allows for the measurement of 
an imaginary line connecting any cell and the 3D point defined by z, which is the 
elevation of the DEM from the viewpoint, plus the observer height (1.75, by 
default). However, if the absolute elevation option is set (in the case of UAVs, 
helicopters, aircraft, or satellite surveys), then the attribute table of the point map 
must contain an attribute column specifying viewpoint elevation. The calculation is 
then repeated for all available viewpoints. We acknowledge that 3D distance is a 
straightforward measure to obtain using GIS software. However, 3D distance is also 
needed for the calculation of the solid angle metric (Section 2.2.3) of the 
min3dDistance map (Section 2.3) and pointOfViewWithMin3dDistance map 
(Section 2.3). Thus, we provided a description of how it is calculated.

3.3.1. View angle
For each viewpoint, r.survey calculates the three components ax

!, ay
!, and az

! of the 
unit vector â describing the direction of the line of sight from that viewpoint 
toward each visible target. We define the view angle as the angle (Θ) between 

unit vectors â and b̂ (Figure 3). As shown in the illustration, the view angle for 
visible pixels has a well-defined range of values: 90°< Θ < 180°. The latter (180°) is 
the condition of unit vectors having opposite direction. In contrast, Θ = 90° indi
cates orthogonal directions, while values below 90° indicate that the unit vectors 
are oriented in the same direction and, thus, are not visible to each other.

According to formula (2), Θ can be calculated by exploiting the components of â and in 
the east, north, and vertical directions. This calculation was repeated for all available 
viewpoints. 

Figure 3. View Angle scheme for a single viewpoint (green arrow) and single cell (black arrow). 
Illustrations a and b represent the situation of a slope visible to the observer. Illustrations c and d show 
the view angle for a slope that is not visible to the observer.
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Θ ¼ acos
~ax �~bx þ~ay �~by þ~az �~bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~ax
2
þ~ay

2
þ~az

2
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~bx

2
þ~by

2
þ~bz

2
q

2

6
4

3

7
5 (2) 

3.3.2. Solid angle
The solid angle is one of the best and most objective indicators for quantifying visibility 
(Domingo-Santos et al. 2011). Unlike all other visibility indices, the value of the solid angle 
depends on the size and orientation of the object being viewed. The solid angle provides 
a measure of the portion of the field of view occupied by the observed object. For 
example, to an observer, a circle will appear smaller the further away it is located. This 
is because the area occupied by this circle is reduced with respect to the total field of view, 
and, hence, the solid angle value decreases. The idea is that any observed object would be 
progressively less perceived as far away and the more tilted it is with regard to the 
viewpoint.

For the calculation of the solid angle (Ω(s)) of an object of size s, we use two 
approximations. First, we use a circle to describe the equivalent size of the object; use 
of a circle provides an important advantage because, regardless of how tilted the circle is 
with respect to the observer, there is always a direction in which its diameter remains 
unaltered in the ellipse. Such an ellipse results from the projection of the circle in the 
plane perpendicular to the line of sight and is located at a distance d from the observer 
(see Figure 4). Therefore, based on this property, r.survey calculates the area of the 

Figure 4. Solid Angle scheme. (a) Projected ellipse of a tilted circle. (b) Trigonometric measure scheme 
where it is noted that r1 and r2 are perpendicular to d. (c) Spherical view.
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projected ellipse (Aellipse). The circle radius (r) is set by default to half of the DEM resolution 
to correspond to the equivalent circle inscribed within each cell. Nevertheless, the user 
can specify this value if the target size is known (more details are available in the code 
documentation, see the code availability section).

The projected ellipse can be split into two different semi-ellipses whose major axes are 
equal to the diameter of the original circle. In Figure 4(b), we show how the minor axes of 
the two semi-ellipses depend on (i) the target pixel 3D distance (d) from the viewpoint (v) 
and (ii) the view angle (Θ) value. Focusing on the plane that passes through the center of 
the cell, the viewpoint, and the vertical axis, two triangles can be defined (T1 and T2 in 
Figure 4(b)) and used to calculate the semi-axes r1 and r2 according to Equations 3(a)–5(b). 

r1 ¼ tan β1ð Þ � d (3a) 

r2 ¼ tan β2ð Þ � d (3b) 

where 

β1 ¼ acos
r2 � H1

2 � d2

� 2 � H1 � d

� �

(4a) 

β2 ¼ acos
r2 � H2

2 � d2

� 2 � H2 � d

� �

(4b) 

and 

H1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 � 2 � r � d � cos 270 � Θð Þ

p
(5a) 

H2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2 � 2 � r � d � cos � 90þ Θð Þ

p
(5b) 

The solid angle of a surface is by definition equal to the projected spherical surface in 
the evolving sphere (Aspheric) divided by the square of the radius of the sphere [R = (r2 

+ d2)°.5] (Figure 4(c)). In the second approximation made by r.survey, we use the ellipse 
surface area (Aellipse) instead of the projected spherical surface in the evolving sphere. This 
assumption becomes less biased when d ≫  r when Aspheric ’ Aellipse. Consequently, we 
assume that the solid angle can be approximated using Equation (6). 

Ω sð Þ ’
Aellipse

r2 þ d2ð Þ
; (6) 

where the solid angle value is in steradians. This calculation is repeated for all viewpoints.
An estimate of the percentage error due to the approximation of the projected 

spherical surface with the ellipse surface is given in Figure 5 as a relative percentage of 
the difference between the exact solid angle and the approximated value (Equation (7)). 

Error ¼
Asphere � Aellipse
� �

Asphere
� 100 (7) 

We compared the value of the solid angle and of the approximate solid angle of two 
circles with radius 2.5 and 25 m located at a distance ranging from 1 to 1000 m from the 
observer. If we observe both the solid and dotted curves, the error decreases rapidly and 
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becomes negligible (less than 1%) at a distance from the observer larger than 13 and 
124 m, respectively, which, in relative terms, implies fewer than 3 pixels when the radius is 
half the DEM resolution. The error becomes even smaller (0.1%) after 40 and 394 m (fewer 
than 8 pixels).

3.4. Data aggregation loops and output maps

When a vector map including more than one viewpoint is provided as input to r.survey ∆, 
Θ, and Ω(s) visibility metrics are calculated for each location, producing a map for each 
metric for each viewpoint. Visibility metric maps are then aggregated (third block of the 
code; see Figure 1) and elaborated to generate the final cartographic products.

Seven output raster maps are created, plus an additional eighth map if the optional 
binary map flag (-b) is specified. The min3dDistance map portrays the value of the 
minimum three-dimensional distance between each pixel and the closest viewpoint in 
meters. The maxViewAngle map shows the value of the maximum view angle between 
each pixel and the viewpoints, in degrees. Given that 180° implies a face-to-face view and 
90° signifies an orthogonal view between the observer and the terrain, maxViewAngle is a 
measure of the frontal view from which each single cell is visible. Another output is the 
maxSolidAngle map, which shows the value of the maximum solid angle among those 
measured from different viewpoints. In this map, the pixels closest to the observation 
points have to be interpreted with special attention, considering that the error, with 
respect to the real solid angle, can reach 10% in the immediate neighboring pixels (see 
Section 2.2).

The other three maps (pointOfViewWithMin3dDistance, pointOfViewWithMaxAngle, 
and pointOfViewWithMaxSolidAngle) are used to register, in each cell, the identifier of 
the viewpoint from where an observer can obtain, respectively: (i) the minimum values of 

Figure 5. Error plot. Black and dotted lines represent the percentage error between the real solid angle 
and the approximate solid angle with respect to the distance for two circles with radii 2.5 and 25 m, 
respectively.
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3D distance, (ii) the maximum values of view angle, and (iii) the maximum value of the 
solid angle. Another relevant output is the numberOfViews map, which portrays the 
number of viewpoints from where each pixel is visible. In contrast, r.survey can provide 
a binary map of visibility. A value of 1 implies that the pixel is visible from at least one 
observation point, and null values represent the pixels that are not visible from any of the 
observation points. All the cited maps are filtered based on the choice of the user by the 
view angle threshold (fourth block in Figure 1). Setting a value slightly larger than 90° for 
this threshold has the effect of removing, from the output maps, all those cells oriented 
nearly perpendicular to the lines of sight.

4. Multi-core processing

One of the main improvements with respect to the first version of r.survey (Bornaetxea et 
al. 2018) is the possibility of running blocks II and III (Figure 1) in parallel, splitting the 
points representing the observer location into p sets, where p is the number of parallel 
processes required by the user (with p = < to the number of available CPU cores). When 
the aim is to derive the values of the visibility metrics along a given path (e.g. a road or a 
UAV track), viewpoints can be very dense in terms of number per unit of distance, and the 
higher the number of viewpoints, the longer the computational time. Parallel processing 
makes such tasks more tractable in reasonable times.

Parallel computation was implemented using the Python multiprocessing library and 
the ability of GRASS GIS to set a temporary spatial region centered on the considered 
point without affecting the parallel computation of other points.

We tested the influence of the multi-core processing on the computational time of the 
survey using the entire Gipuzkoa Province (Basque Country) as our study area (Bornaetxea 
et al. 2018), which has an area of 1980 km2. We used a set of 1000 viewpoints randomly 
located along a road network in the study area. We used three different DEMs at 
resolutions of 100 × 100, 50 × 50, and 20 × 20 m, in combination with two different 
maximum distance parameter values (1000 m and 10,000 m).

Here, we describe the tests performed using a 64 core (AMD Opteron 4 × Sixteen-Core 
a 2.5 GHz and cache 2048 KB) server with 320 GB of RAM and running Ubuntu 18.04 GNU/ 
Linux OS with a 4.15.0–101-generic kernel image. Proportionally similar results were 
obtained when working on standard laptop or desktop machines with 8 or 12 cores 
and lower RAM.

The results show that the computational time, using the 100 m DEM resolution and 
with the maximum distance equal to 1000 m, was 14,479 and 526 s for 1 and 48 cores, 
respectively. The values became 49,313 and 1795 s, respectively, using the 20 m DEM 
resolution and maximum distance equal to 10,000 m. Hence, we observe a computational 
time reduction equal to a factor larger than 27.

We exploited the speedup (Sp) and efficiency (Ep) indexes (Mergili et al. 2014) to 
evaluate the gain in computing time due to parallel processing. Sp is defined as T0/Tp, 
where T0 and Tp represent the execution times with a single core or p cores, respectively. 
Sp = p indicates an ideal speedup, with no relevant irreducible sequential part of the code. 
Ep is equal to T0/(p∙Tp) and in case of ideal performance is equal to 1.0.

The processing performance has weak dependence on DEM resolution and even 
weaker dependence on the maximum distance parameter (Figure 6). Speedup and 
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efficiency remained at relatively high values until 32 cores, and then an abrupt reduction 
in performance was observed. With 32 cores, speedup reached a computational time 
reduction equal to a factor close to 27 or 29 (depending on the experimental settings), 
and the efficiency was close to 0.9. These numbers describe the efficient computational 
performance of the parallel code. We argue that the rapid reduction in the performance 
for a number of cores larger than 32 is because the CPU architecture is in effect, including 
hyper-threading, and that the real number of cores is only 32. The additional CPUs are 
detected as logical CPUs by the GNU/Linux kernel, and are not able to efficiently manage 
the concurrent access to the same execution unit (Qun et al. 2016).

5. Performance assessment

We carried out several experimental tests in both controlled and real-world environments 
to illustrate and validate the products of r.survey.

5.1. Performance assessment using synthetic data

To further assess performance, we designed a synthetic straight valley with a slight 
inclination at the bottom, simulating a small, regular river valley (Figure 7). The initial 
set of experiments was based on viewpoints located at ground level. First, a single 

Figure 6. Speedup and efficiency curves of r.survey multi-core processing. Each line represents a DEM 
with a given resolution and different maximum distance.

12 T. BORNAETXEA AND I. MARCHESINI



viewpoint located in the upper part of one side of the valley was used. Further, we set a 
large tower (50 m tall, square footprint of 30 × 30 m) in the middle of the slope. 
Subsequently, we added a symmetric observation point to the opposite slope (Figure 7) 
and repeated the calculations. During these tests, we set the maximum visible distance to 
3500 m but left the remaining options as default (including the observer elevation which 
was 1.75 m above the ground level).

The second set of experiments included multiple viewpoints located at relevant dis
tances from the ground. The red dots in Figure 7 simulate the viewpoints of a helicopter 
flying at a constant elevation of 1000 m above sea level. The tower was then removed and 
the process was again run twice. In one case, we used the spherical field of view, while we 
reduced it to a downward view in the other case.

In all experiments, the resolution of the DEM was 5 × 5 m, and the object radius used 
for calculating the solid angle was 2.5 m, although this value can be modified according to 
the user’s requirements.

5.1.1. Ground-level viewpoints
In the first experiment, a single viewpoint was used (Figure 8). All three output maps (solid 
angle, view angle, and 3D distance) highlight that the largest portion of the territory is 
included as part of the considered maximum visible distance, except for the two portions 
in the NE and SE corners of the maps and the few aligned cells hidden behind the tower. 
The 3D distance map (Figure 8(d)) shows the minimum values for pixels that are close to 
the viewpoint; these values then grow radially to reach a maximum value larger than 
3500 m. This is expected because the maximum distance value was used through r. 
viewshed to define a bi-dimensional buffer around the viewpoint location. The view 
angle map (Figure 8(b)) shows a clear differentiation between one slope of the valley 
and the opposite slope, with values that are always larger than 90°, but never reach 180°. 
The highest view angle values are on the opposite slope as that is where the terrain is 
oriented toward the observer. We also observe that, given the synthetic DEM (a valley) 
and the viewpoint location (one side of the valley), it is not possible to obtain a visual 
angle equal to 180° (perfect frontal view). Indeed, the combination of distance and visual 

Figure 7. Details of the synthetic valley and the observer viewpoints used in Section 4.
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orientation is represented by the solid angle map (Figure 8(a)), which shows that, in 
addition to the values in the pixels surrounding the viewpoint, the best view from this 
point to the ground corresponds to the opposite slope. The lowest values are located in 
the north–south direction, where, as the view angle is close to 90°, and as the 3D distance 
increases, the solid angle becomes very small, reaching values smaller than 2 × 10−6 

steradians.
As a reference, it is well known that 4π steradians (sr) subtend the entire visible sphere 

and that 1 sr is equal to approximately 3283 square degrees (deg2) and to 1.18 · 107 square 
minutes (min2). It means that 2 · 10−6 sr ’ 23.6 min2. For comparison, letter acuity (the 
capacity to resolve a letter) is approximately 25 min2 (Healey and Sawant 2012) for a 

Figure 8. Results of the experiment with one single observer. (a) Solid angle in steradians (sr) 
(maxSolidAngle map). (b) View angle in degrees (°) (maxViewAngle map). (c) Solid angle values 
transformed into min2 and filtered by a threshold of 25. (d) 3D distance in meters (m) (min3dDistance 
map).
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human with perfect vision and in controlled conditions, that is, high contrast between the 
letters and the background. For simplicity purposes, Figure 8(c) shows only those pixels 
with a solid angle greater than 25 min2. In this case, there is a significant reduction in the 
portion considered visible. Moreover, under natural conditions (mist, vegetation, low 
contrast, etc.), the capability to detect and map features on the slope likely requires 
higher solid angle values, and, hence, the visible area should be even smaller. Therefore, 
the solid angle threshold (which depends on the observing sensor), as well as the average 
size of the object, can be customized by users in real-world applications.

On the other hand, it is interesting to note how the solid angle, view angle, and 3D 
distance maps change when an additional viewpoint is located on the opposite side of 
the valley (Figure 9(a–c)). Considering these two viewpoints, it is useful to verify from 
which viewpoint the single cells are more visible. In Figure 9(d–f), we show the 
pointsOfView* maps that portray the ID of the viewpoints from where each single cell is 
visible. Additionally, the numberOfView map (Figure 9(g)) indicates the number of points 
from which each pixel is visible. Indeed, the latter (green color) shows the portion of the 
terrain visible from both points of view. In addition, this map shows how the cells hidden 
by the tower in the experiment using a single viewpoint are now visible from the second 
viewpoint. Figure 9(d,e) allow us to clarify that the eastern corners are visible from the 
eastern viewpoint (ID = 2), while the opposite occurs for the western corners.

The 3D distance map (Figure 9(c)) shows the highest values at the bottom of the valley. The 
corresponding pointOfViewWithMin3dDistance map (Figure 9(f)) allows us to verify that, as 
expected, each side of the valley has a minimum distance from the viewpoints lying on the 
same side. However, the part hidden by the tower for point 1 is instead visible from point 2.

A similar behavior can be found in view angle maps (Figure 9(b,e)). In this case, the 
values in each slope correspond to the viewpoint located on the opposite side of the 
valley, with the exception of the four corners of the map.

The maximum solid angle results deserve special attention (Figure 9(a,d)). In particular, 
looking at the pointOfViewWithMaxSolidAngle map (Figure 9(d)), a buffer area of several 
meters can be observed surrounding each viewpoint location. This implies that, inside 
these buffers, the best viewpoint is the closest one. In contrast, similar to the previous 
experiment, to observe something outside the boundaries delimited by the buffer area, 
the viewpoint located on the opposite side of the valley should be preferred.

5.1.2. Flight observation points
In this experiment, nine points were used to evaluate the performance of r.survey. Points 
were located at a constant elevation of 1000 m above sea level along the valley 
(Figure 10).

As expected, the resulting maps cover different extensions when the downward-looking 
direction option is enabled or disabled. If not used, the field of view of the sensor and/or 
observer encompasses the total spherical field of view. In contrast, when forcing the 
downward looking direction, only the portion of the valley under the viewpoint’s elevation 
is considered. The values corresponding to the visible pixels were identical in both cases.

Because it is a constant elevation flight, the relative distance between the points and 
the ground changes as a result of the inclination of the synthetic valley. This is highlighted 
in the minimum 3D distance map (Figure 10(i,j)), where the values of the cells located 
close to viewpoint 1 are smaller than those of the cells located in proximity of viewpoint 9.
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The maximum view angle values are concentrated at the very bottom of the valley 
exactly under each viewpoint (Figure 10(e,f)), where the frontal view is total (180°), and at 
both sides of the valley, where the unit vectors of the line of sight and of the normal to the 
terrain have opposite direction.

We observe that the solid angle values are quite homogeneous in the maps 
(Figure 10(a,b)), at least when the downward option is used. This again confirms 
that r.survey is working as expected. Compared to what we obtain from the ground 
positions, from an aerial position, we expect to have a nearly equivalent capacity 
across the different cells to detect objects on the terrain.

Figure 9. Results of the experiment with two observers. (a) Solid angle in steradians (sr) (maxSolidAngle 
map). (b) View angle in degrees (°) (maxViewAngle map). (c) 3D distance in meters (m) (min3dDistance 
map). (d) Points of view of maximum solid angle (pointOfViewWithMaxSolidAngle map). (e) Points of 
view of maximum view angle (pointOfViewWithMaxAngle map). (f) Points of view of minimum 3D 
distance (pointOfViewWithMin3dDistance map). (g) Number of views (numberOfViews map).
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Finally, considering that our synthetic valley was designed not to have irregular 
roughness, there are no hidden areas, and all terrain is visible from every point of 
view (see Section 5.2 for examples in a real DEM). However, because of the regular 
horizontal distance of 500 m between each viewpoint, the pointOfView* maps 
(Figure 10(c,d,g,h,k,l)) show a quite regular distribution as well.

5.2. Performance assessment using a real-world DEM

To exemplify the potential of the software in a real case study, we ran r.survey again for 
Gipuzkoa Province (Bornaetxea et al. 2018). The viewpoints, of which there were 18,103, 
were regularly distributed along the road network of the studied area, and we used the 

Figure 10. Results of different experimental settings simulating helicopter flight. Downward and 
spherical view maps share the same scale bar. Maps (a) and (b) show the solid angle in steradians (sr) 
(maxSolidAngle maps). Maps (e) and f) view angle in degrees (°) (maxViewAngle maps). Maps (i) and 
(j) show 3D distance in meters (m) (min3dDistance maps). Maps (c), (d), (g), (h), (k), and (l) show the 
corresponding point-of-view values (pointOfView* maps).
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available 5 × 5 m resolution DEM. In addition, we chose a large maximum visible distance 
(6000 m) and used the default values for the remaining options (which implies a radius of 
2.5 m for the target object used for calculating the solid angle).

As expected, even if we set a large maximum visible distance value, there are few 
hidden areas because of the presence of different aspects of land forms (Figure 11(a)). 
Overall, the viewshed covered 85% of the territory. In Figure 11(b), we excluded from the 
viewshed area those cells where the solid angle was smaller than 100 min2. We consider 
this value to be a reasonable threshold for visual acuity, under natural conditions, 
compared to the controlled conditions in a laboratory, where the minimum threshold is 
25 min2 (Healey and Sawant 2012). Therefore, Figure 11(b) shows the area in which an 
object with an average size of π*2.52 ~ 20 m2 can be detected. Note that viewshed area is 
significantly reduced and covers 62% of the territory. Figure 11(c,d) show a 3D represen
tation of a small portion of the studied area. The red lines represent the roads from which 
visibility metrics were calculated. We also show two different locations (i.e. A and B), 
where a landslide could hypothetically occur. The colors of the DEM indicate the values of 
the solid angle calculated for objects with a circle radius of 2.5 m (Figure 11(c)) and 7 m 
(Figure 11(d)), which are equivalent to circles having an area of ~20 m2 and ~150 m2, 
respectively. The values of the solid angle changed significantly in the two cases. In 
particular, it was observed that location B was placed in an area where a landslide of 
~20 m2 would not be visible (solid angle is close to 0.0 in Figure 11(c)). In contrast, a 
greater landslide (area ~150 m2) in the same location would have been visible because 
the solid angle values shown in Figure 11(d) were larger than 100 min2. On the other 
hand, in location A, both a small and a large landslide would have been visible because 
the solid angle values were close to or above 1000 min 2 (Figure 11(c,d)).

Figure 11. Results of the application of r.survey in a real-word DEM. (a) Complete viewshed. (b) 
Viewshed filtered based on solid angle values (>100 min2). (c) Solid angle map for a circle having a 
radius of 2.5 m in a zoomed-in portion of the terrain. (d) Solid angle map for a circle having a radius of 
7.0 m, in a zoomed-in portion of the terrain.
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In this example, we calculated solid angle maps for objects with a larger size with 
respect to the DEM cell resolution. We highlight that the calculated solid angle depends 
on the size of the object. Therefore, the object must be thought to be oriented according 
to the slope and aspect of the cells in which it is located. Consequently, we stress that the 
solid angle values calculated by r.survey in a given cell must not be summed with those of 
the surrounding pixels because they are only consistent within the pixel itself.

6. Discussion

How to assess whether or not a portion of terrain is visible is an ongoing subject of 
research (Klouček et al. 2015, Nutsford et al. 2015, Sahraoui et al. 2018, Abdulhafedh 2019, 
Fábrega-Álvarez and Parcero-Oubiña 2019, Palmer 2019, Saeidi et al. 2019, Mancini 2020). 
In fact, for survey activities, visibility (line of sight) is not sufficient if the objects of the 
survey are too small, too distant, or oriented in such a way that they cannot be perceived 
and/or mapped. This paper presents a multipurpose tool that returns relevant information 
to determine how features and/or objects of the analyzed terrain are actually visible. The 
tool relies on three visibility metrics which measure: (i) how far the target is 
(min3dDistance), (ii) how it is oriented with respect to the viewpoint (maxViewAngle), 
and (iii) how much it can be perceived (maxSolidAngle). Whether the observer is a human 
being, an optical camera mounted in an unnamed aerial vehicle (UAV), or a radar sensor 
mounted on a satellite, the user can take advantage of the information provided by those 
visibility metrics and delimit the ‘effective survey area’ according to specific aims. In 
addition, r.survey can alter the DEM to consider the presence of trees and buildings. We 
acknowledge that visibility and perception also depend on other environmental condi
tions such as color contrast with the background and atmospheric extinction (Domingo- 
Santos and Fernández de Villarán 2017). However, these conditions may vary with time 
and are not considered here.

Compared to existing tools available for the automatic detection of visible areas, r. 
survey presents similarities, differences, and some improvements (Table 1). The main 
similarities are the ability to process multiple viewpoints and to calculate a map describ
ing the number of viewpoints from which each cell is visible. Improvements include the 
introduction of view angle, 3D distance, and solid angle output maps, which are not 
present in other tools, especially those integrated in GIS packages. A major difference is 
the identification of the points from which each individual cell is visible. In other types of 
software, this identification produces a list of points. In r.survey, three different output 
maps show, for each cell, the identification of the viewpoint (i) located most frontally 
(maximum view angle), (ii) located at the minimum distance (minimum 3D Distance), and 
(iii) from which the cell is most visible (maximum solid angle). Only Pixscape provides 
outputs comparable to r.survey; however, for both angular height and angular area, it 
follows the same approach as Domingo-Santos et al. (2011), so it only offers the values 
corresponding to the cell size (Sahraoui et al. 2016a, 2016b). This approach limits the 
inference of the real visibility of objects of a certain size compared with the 
maxSolidAngle of r.survey. Additionally, as a result of the 3D distance and view angle 
layers, which are not provided by PixScape, r.survey can be exploited in a wider field of 
potential applications. The possibility of setting multiple elevation values to the observa
tion points (such as in flight mode) and the option of altering the size of the target object 
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whose solid angle will be calculated provides high versatility. Furthermore, if we consider 
that our software is fully integrated in a powerful GIS environment (GRASS GIS), it 
facilitates the development of any other output in post-processing. However, the authors 
acknowledge that Pixscape is optimized for its primary application in computing land
scape visibility. Thus, it provides specific outputs for this purpose, such as a wide variety of 
visibility metrics or the tangential view. Meanwhile, r.survey has been optimized for earth 
surface analysis and, thus, evaluation of the visibility of features on terrain slopes (or 
included in the DEM).

The illustrated examples in Section 5 describe the informative content of the products 
of r.survey. The NumberOfViews map (Figure 9(g)) provides information on the number of 
viewpoints a target is visible from; this is an issue relevant to fields such as visual impact 
assessment studies (Shang and Bishop 2000, Joly et al. 2009, Palmer 2019, Saeidi et al. 
2019). PointOfView* maps allow identification of the position with the best visibility 
(maximum solid angle), the most frontal view (maximum view angle), or the nearest 
location (minimum 3D distance) with respect to a given target (Figures 9 and 10). Such 
information could be exploited to define the best position of telecommunication anten
nas or tourist viewpoint locations (Dodd 2001, Edan et al. 2013, Tajelsir Raoof et al. 2020). 
Meanwhile, the maxViewAngle layer could be beneficial for remote-sensing applications. 
Knowing the elevation above sea level and the orbital path followed by a satellite, the 
orientation of the terrain with respect to the sensor could provide useful information for 
assessing layovering, shadowing, and foreshortening (Herrera et al. 2013, Lu et al. 2019, 
Mondini et al. 2019, Letortu et al. 2020).

We believe that the maxSolidAngle map is a valuable product of r.survey. Similar to 
Domingo-Santos et al. (2011), our tool can calculate the solid angle from multiple view
points. However, unlike the tool proposed by those authors, not all the potentially 
thousands of solid angle maps are made available to the user. Instead, for each pixel, 
the maximum solid angle value is registered (maxSolidAngle map), together with the 
information about the identifier of the viewpoint from where each pixel is best visible 
(pointOfViewWithMmaxSolidAngle map). We did not choose, as suggested by Domingo- 
Santos et al. (2011), to sum up values of the solid angles calculated for the different 
viewpoints because theoretically this can lead to cumulative solid angle values that are 
unrealistically larger than 4π sr.

Another advantage of r.survey is the possibility of calculating the solid angle map for 
target objects with different sizes from the DEM resolution. Again, this is different from 
the work of Domingo-Santos et al. (2011), where the solid angle refers to the pixel size. 
We maintain that choosing the target object size is quite relevant as it allows us to 
delineate target-size specific ‘effective survey areas’ (Bornaetxea et al. 2018, Knevels et 
al. 2020); that is, the portion of the territory where an observer is actually able to detect 
target objects. The ‘effective survey area’ can be defined by thresholding the solid angle 
map based on a value that depends, for example, on human visual acuity. This value can 
be further modified to consider non-optimal environmental conditions during the 
survey. The illustrative examples in Section 5.2 and Figure 11 show one potential 
application of this concept. We demonstrated how the effective surveyed area could 
be significantly reduced even using a conservative threshold of 100 min2. Furthermore, 
Figure 11(c,d) show that two landslides located in the same position can be considered 
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visible depending on their size, and the tool provides the necessary information to 
evaluate it.

The parallel design of the code allows calculations to be sufficiently accurate in terms 
of spatial resolution in an affordable processing time. This is of major importance for its 
usage in real cases, allowing the assessment in a local to regional context with the only 
needs being a digital elevation model and a set of viewpoints. Therefore, as a tool 
designed for relatively large spatial analysis, the approach followed for the solid angle 
calculation (even being an approximation) offers a correct metric to define whether or not 
something is visible for areas from a medium distance and beyond (after approximately 
140 m according to Higuchi (1983)). The only exceptions are the immediate pixel areas 
around the observer, where more specific approaches should be applied (Domingo- 
Santos et al. 2011).

7. Conclusions

In this paper, we presented an effective algorithm and a useful software tool for earth 
surface survey assessment. Using a synthetic study area, the results endorse the idea that 
r.survey provides relevant spatial information for assessing the perception of the terrain 
from remote observers located either above the ground or mounted in any aerial device 
(such as UAVs, helicopters, and satellites).

This software provides outputs not available in other similar packages, such as 3D 
distance or view angle; it also offers some relevant setting options that make r.survey 
highly customizable for multiple purposes. The main advances with respect to the rest of 
the viewshed analysis algorithms are (i) the possibility that the observer is on the ground 
or in a flying device and (ii) the capability to estimate the solid angle according to the size 
of the object to be surveyed, rather than forcing it to the pixel size. This last option, 
specifically, is devoted to consider the relevance of the size of the object that one is 
attempting to detect in a survey.

In summary, we highlight that the parallelized design of the new release of r.survey 
increases its efficiency and allows process performance in high spatial resolution digital 
elevation models for large areas with an affordable processing time.

We offer the r.survey code in the form of an open-source license to facilitate and 
encourage future improvements by additional researchers. In addition, we intended to 
overcome the gaps in the binary representation of a complex GIS product such as the 
viewshed, providing users with very basic information to let them decide what is con
sidered visible and what is not.
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