
This article was downloaded by: [Laurentian University]
On: 12 March 2013, At: 11:22
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence: An
International Journal
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/uaai20

WRAPPER INFERENCE FOR AMBIGUOUS
WEB PAGES
Valter Crescenzi a & Paolo Merialdo a
a Dipartimento di Informatica e Automazione, Università degli Studi
Roma Tre, Roma, Italy
Version of record first published: 28 Feb 2008.

To cite this article: Valter Crescenzi & Paolo Merialdo (2008): WRAPPER INFERENCE FOR AMBIGUOUS
WEB PAGES, Applied Artificial Intelligence: An International Journal, 22:1-2, 21-52

To link to this article: http://dx.doi.org/10.1080/08839510701853093

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/uaai20
http://dx.doi.org/10.1080/08839510701853093
http://www.tandfonline.com/page/terms-and-conditions

WRAPPER INFERENCE FOR AMBIGUOUS WEB PAGES

Valter Crescenzi and Paolo Merialdo & Dipartimento di Informatica e
Automazione, Università degli Studi Roma Tre, Roma, Italy

& Several studies have concentrated on the generation of wrappers for web data sources. As
wrappers can be easily described as grammars, the grammatical inference heritage could play a
significant role in this research field. Recent results have identified a new subclass of regular
languages, called prefix mark-up languages, that nicely abstract the structures usually found in
HTML pages of large web sites. This class has been proven to be identifiable in the limit, and a
PTIME unsupervised learning algorithm has been previously developed. Unfortunately, many
real-life web pages do not fall in this class of languages. In this article we analyze the roots of
the problem and we propose a technique to transform pages in order to bring them into the class
of prefix mark-up languages. In this way, we have a practical solution without renouncing to
the formal background defined within the grammatical inference framework. We report on some
experiments that we have conducted on real-life web pages to evaluate the approach; the results
of this activity demonstrate the effectiveness of the presented techniques.

INTRODUCTION

Due to the huge amount of data available on the web, information
extraction from websites has become a relevant research field. A significant
number of works have focused on the study of methods and techniques for
the development of wrappers, i.e., programs that perform the extraction
task (see Laender et al. (2002a) and Chang et al. (2006) for surveys on
the topic). Many proposals (Baumgartner, Flesca, and Gottlob 2001;
Embley, Jiang, and Ng 1999b; Freitag 1998; Kushmerick 2000; Laender,
Ribeiro-Neto, and daSilva 2002b; Muslea, Minton, and Knoblock 1999;
Soderland 1999) have studied the problem of semi-automatically generat-
ing wrappers for extracting data from fairly structured HTML pages. These
approaches need a training phase that involves a human intervention to
identify and annotate data fields to be extracted.

Recent studies have addressed the issue of making the wrapper
inference process completely automatic (Arasu and Garcia-Molina 2003;

Address correspondence to Paolo Merialdo, Dipartimento di Informatica e Automazione, Università
degli Studi Roma Tre, Via della Vasca Navale 79, Roma 1-00149, Italy. E-mail: merialdo@dia.uniroma3.it

Applied Artificial Intelligence, 22:21–52
Copyright # 2008 Taylor & Francis Group, LLC
ISSN: 0883-9514 print/1087-6545 online
DOI: 10.1080/08839510701853093

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

Crescenzi, Mecca, and Merialdo 2004; Lerman et al. 2004; Wang and
Lochovsky 2002). These studies concentrate on data-intensive websites,
and their goal is to reduce and possibly eliminate the efforts required for
the training process, which can represent a drawback, especially in the
maintenance of wrappers over a large number of data sources. Since wrap-
pers are essentially parsers for the HTML code of web pages, grammar
inference could in principle play a fundamental role for understanding
limitations and opportunities of unsupervised learning techniques. Surpris-
ingly, most of the approaches that have been proposed in the literature do
not have a formal background from the grammatical inference perspective.
An exception is represented by the ROADRUNNER approach (Crescenzi et al.
2001), which is based on strong theoretical foundations (Crescenzi and
Mecca 2004) with a clear relationship with the traditional field of grammar
inference.

In ROADRUNNER, pages from data-intensive websites are considered as the
result of an encoding process that serializes instances of a given data type
into HTML pages. Then, the generation of pages can be considered as a
process that produces strings of a specific class of languages whose proper-
ties depend on the encoding function and on the underlying data type. In
this framework, the wrapper generation problem can be described as the
problem of inferring the language associated with a data type, given the
encodings of a collection of instances of that type.

ROADRUNNER introduces a class of languages, called prefix mark-up lan-
guages (Crescenzi and Mecca 2004), that nicely abstracts the characteristics
of pages from data-intensive websites, and for which several important
properties hold. Prefix mark-up languages are identifiable in the limit from
positive data, i.e., it is possible to infer a grammar given a finite number of
positive examples only. Also, it has been developed in algorithm, called
MATCH, (Crescenzi et al., 2001), that is able to infer a wrapper from a set
of sample pages: it has been proven that for pages that comply with the
class of prefix mark-up languages, MATCH runs in polynomial time com-
plexity w.r.t. the input length (Crescenzi and Mecca 2004). Therefore
MATCH can represent a practical solution, yet based on a sound theoretical
framework, for the extraction of data from data-intensive websites.

Prefix mark-up languages are generated by a particular class of encod-
ings, called prefix mark-up encodings, which allow the constructs of the
underlying data type to be identified from the encoded output data. Unfor-
tunately, even in regular websites, there are several pages that do not fall in
the class of prefix mark-up languages. This is a serious drawback that limits
the opportunities of MATCH. One possible development to overcome this
issue is that of studying more involved inference algorithms for broader
classes of languages; however, the theoretical foundations of grammatical
inference suggest that this direction is not always a practical solution.

22 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

Therefore, with the objective of elaborating a practical solution, in this
article we analyze the roots of the problem on the theoretical framework of
ROADRUNNER, and propose a technique to preprocess the sample pages in
order to bring them in the target class of prefix mark-up languages. Our
approach corresponds to defining a new a class of languages, which is
broader than the class of prefix mark-up languages and which is still iden-
tifiable in the limit.

The effectiveness and the efficiency of our proposal has been evaluated
in practice by means of an experimental activity. We have processed several
real-life web pages with the techniques presented in this article; then we
have compared the results of running the wrapper inference algorithm
MATCH against the preprocessed pages and those obtained using the original
pages. The results of this experience show that the proposed approach
improves the effectiveness of the inference algorithm without compromis-
ing its efficiency.

This article is organized as follows: in Section 2 we recall the formal
page generation model at the basis of our approach. Section 3 discusses
opportunities and limitations for the class of prefix mark-up languages
and introduces the main ideas on which we have built our practical
solution. Section 4 illustrates the basic ideas of our approach, which are
then formalized in Section 5. Section 6 discusses technical details about
the implementation of the technique and discusses the results of our
experimental activities on real-life web pages. Section 7 presents related
work and Section 8 concludes the article.

BACKGROUND: DATA TYPES, ENCODINGS,
AND MARK-UP LANGUAGES

Pages in a data-intensive website can be considered as the result of an
encoding process that serializes instances of a given data type into HTML
pages. In this section, we formally define data types and instances; then,
we illustrate the notion of mark-up encoding, which abstracts the process
to generate HTML pages from data type instances. Finally, we show
that according to this framework, HTML pages can be seen as regular
languages, and that the wrapper inference problem corresponds to infer
a regular grammar, given a set of sample pages.

In our framework, a wrapper corresponds to a union-free regular
expression (UFRE), which is defined as follows. Given a special symbol D,
and an alphabet of symbols R not containing D, a UFRE over R is a string
over alphabet R [fD; �;þ; ?; ð; Þg defined as follows. First, the empty string,
E and all elements of R [fDg are union-free regular expressions. If a and b
are UFRE, then a � b, ðaÞþ, and ðaÞ? are UFRE. The semantics of these

Wrapper Inference for Ambiguous Web Pages 23

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

expressions is defined as usual,þbeing an iterator and ðaÞ? being a
shortcut for ðajEÞ (denotes optional patterns).

To introduce our formal framework, consider the two pages in Figure 1,
which are taken from a popular website. Each page contains information
about used copies of a given book. The book is described by several fields,
such as title, author, best price, and list price. Information about used
copies of the book are organized in a nested list: the outer list groups items
according to their status (‘‘brand new items,’’ ‘‘like new,’’ and so on). The
inner list reports details of each item: price, seller feedback, comment, etc.
Some of the data fields in the page, like the author of the book and the
comment on an item, are optional. It is reasonable to assume that pages
like those in Figure 1 have been generated by encoding in HTML data
organized according to a common data type.

Data Type and Instances

To formally describe data type and instances, we consider a nested
relational data model (Abiteboul and Beeri 1995; Hull 1988), that is, typed
objects with nested lists (i.e., ordered sets) and tuples. Tuples have attri-
butes (possibly optional), which in turn may be either atomic attributes
or lists of tuples.

We assume the existence of an atomic type U , called the basic type,
whose domain denoted by domðU Þ, corresponds to all the strings of finite
length over a data alphabet D. There exists a distinguished constant null ,

FIGURE 1 Pages from http://half.ebay.com.

24 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

and we will say that a type is nullable if null belongs to its domain.
Nonatomic types (and their respective domains) are recursively defined
as follows: (i) if T1; . . . ;Tn are basic, optional or list types, amongst which
at least one is not nullable, then ½T1; . . . ;Tn� is a tuple type, with domain
domð½T1; . . . ;Tn�Þ ¼ f½a1; . . . ; an� jai 2 domðTI Þg; (ii) if T is a tuple type, then
hT i is a list type, with domain corresponding to the collection of finite lists
of domðT Þ elements; (iii) if T is a basic or list type, then ðT Þ? is an optional
type, with domain domðT Þ [fnullg.

Nested types and their instances can be suitably represented as trees
(Hull 1998). Figure 2 shows the tree representation for the data type that
abstracts the data of used book pages, discussed above, and an instance
of this data type, namely, the instance associated to the left page of
Figure 1. In the following, we will denote Tr the tree associated with the
type r, and tr the tree associated with an instance of r.

We also need to introduce a labelling system for type and instance trees
to identify their nodes. The labelling system is recursively defined as
follows. The root of a type tree Tr is labelled by root. If a list node or an
optional node is labelled a, then its child is labelled a:0; if a tuple node with
n children is labelled a, then its n children are labelled a:1; . . . ; a:n. An
instance tree tr of Tr is labelled similarly, but all the children of a list-
instance or optional-instance node labelled a, are labelled a:0. In this
way, each node in an instance tree has the same label as the corresponding
node in the type tree. For example, the two nodes Very Good Items and
Good Items in the instance in Figure 2 are both labelled by the label
root:5:0:1, which is also the label of the corresponding string node in the
type tree.

Mark-Up Encodings

We now introduce the notion of Mark-up encodings, which aims at
abstracting the creation of mark-up based documents—for example,
HTML pages—from instances of data types.

FIGURE 2 Abstract data types and instances.

Wrapper Inference for Ambiguous Web Pages 25

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

Let R [R be an alphabet of symbols, called the schema alphabet, with
ðR [RÞ \ D ¼ ; and R ¼ f<=a> j <a>2 Rg. Essentially, the schema alpha-
bet is disjoint to the data alphabet, and it is made of mark-up tags, i.e., it
contains a closing tag <=a> for every opening tag <a>.

A mark-up encoding enc is a function that associates a regular
expression to a given type r. Namely, enc associates every node of Tr

labelled a with a pair of delimiters, denoted startðaÞ and endðaÞ, with
startðaÞ; endðaÞ 2 ðR [RÞþ, i.e., nonempty strings over the schema alphabet,
and then recursively processes the nodes of Tr as follows:

. for a basic leaf node U labelled a, encðU Þ ¼ startðaÞ � Dþ � endðaÞ

. foranoptionalnode ðT Þ? with labela, encððT Þ?Þ ¼ startðaÞ � ðencðT ÞÞ? � endðaÞ

. for a tuple node ½T1; . . . ;Tn� with label a; encð½T1; . . . ;Tn�Þ ¼ startðaÞ � encðT1Þ
� � � � � encðTnÞ � endðaÞ

. for a list node hT i with label a; encðhT iÞ ¼ startðaÞ � ðencðT ÞÞþ � endðaÞ.

We say that a mark-up encoding is well-formed if tags in the encoding of
any node of the type tree are properly nested and balanced so that every
occurrence of a symbol<a> in R is ‘‘closed’’ by a corresponding occurrence
of a symbol <=a> in R. Formally, we say a string is well-formed if it belongs
to the language defined by the context-free grammar Gtag defined by the
following productions, being S the starting nonterminal symbol:

S ! aXDa jXXDX

X ! aa j aX a jXX ðfor all a 2 RÞ
XD ! aXDa jXXD jXDX j~

Then, a mark-up encoding is a well-formed mark-up encoding if
startðaÞ~ endðaÞ, is a well-formed string with ~ denoting a placeholder
for data encodings.

Figure 3 shows an encoding for the data type of our running example; it
is easy to verify that this encoding is well-formed.1

Mark-up encodings are used to model the construction of pages
starting from the instances of a data type. Let tr be the tree representation

FIGURE 3 A well-formed mark-up encoding.

26 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

of an instance I of the data type r, and let enc be an encoding over r; enc
applies over the labelled nodes of tr as follows:

. for a constant leaf node a 2 domðU Þ with label a; encðaÞ ¼ startðaÞ�
a � endðaÞ

. for a null node with label a; encðnullÞ ¼ startðaÞendðaÞ

. for a list-instance node ha1; . . . ;ani with label a;encðha1; . . . ;aniÞ¼ startðaÞ�
encða1Þ � . . . � encðanÞ � endðaÞ

. for a tuple-instance node ½a1; . . . ;an� with label a;encð½a1; . . . ;an�Þ¼ startðaÞ�
encða1Þ � . . . � encðanÞ � endðaÞ

. for an optional-instance node ðaÞ? with label a; encððaÞ?Þ ¼ startðaÞ�
encðaÞ � endðaÞ.

The production of a web page can be seen as the serialization of an
instance obtained with a visit of the corresponding instance tree.

Note that by construction, encoded instances and encoded types are
well-formed strings. Then, every occurrence o of a symbol in the schema
alphabet is in correspondence with one balancing occurrence o.2 Given a
well-formed string s, we denote subStrðoÞðsÞ ðsubStr½o�ðsÞÞ the substring of s
that is (strictly) enclosed between o and o. For example, given the string
s ¼<TR><TD><A><=A><=TD><=TR>, then subStr½<TD>�ðsÞ ¼ <TD>
<A><=A><=TD>, and subStrð<A>ÞðsÞ ¼ <A><=A>.

FIGURE 4 Encodings of types ðencðrÞÞ and instances ðencðI ÞÞ.

Wrapper Inference for Ambiguous Web Pages 27

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

Well-Formed Mark-Up Languages
A well-formed mark-up encoding enc applied to all the instances of a

type r generates a language of strings. These languages, which are called well-
formed mark-up languages, are regular and the corresponding regular exp-
ression encðrÞ can obtained by applying enc to r (Crescenzi and Mecca 2004).

This is illustrated in Figure 4: the encoding shown in Figure 3 for the
type r of Figure 2 (left) produces the regular language specified by the
regular expression in Figure 4 (left). When it is applied to the instance
shown in Figure 2 (right) it produces one of the strings of the language,
namely, the HTML code in Figure 4 (middle).

In this framework, the generation of a wrapper from a set of sample
pages corresponds to infer a regular language given a set of sample strings.

PREFIX MARK-UP LANGUAGES: OPPORTUNITIES
AND LIMITATIONS

The class of well-formed mark-up languages presented in the previous
section is not identifiable in the limit with positive data only (Crescenzi
and Mecca 2004). In this section, we discuss the class of prefix mark-up
languages, a subclass of mark-up languages that is identifiable in the limit,
and then represents a promising opportunity for the development of
techniques for the automatic inference of web wrappers.

Prefix Mark-Up Languages

The class of prefix mark-up languages is defined as the class of languages
obtained by applying to the instances of an abstract data type r a prefix mark-
up encoding (Crescenzi and Mecca 2004), that is a mark-up encoding function
enc for which the following conditions, called the prefix constraints, hold:

. Wrapping delimiters: all delimiters of nonleaf nodes are such that there is
at least one symbol of R in the start delimiter which is closed by a symbol
of R in the end delimiter;

. Point-of-choice delimiters: symbols of delimiters that mark optional, and list
nodes do not occur inside delimiters of their child node.

The mark-up encoding shown in Figure 3 is not prefix. The point-
of-choice delimiters constraint is violated because the delimiter of the outer
list node includes a <TR> tag, which occurs also inside the delimiter of its
child (tuple) node. Likewise, the wrapping delimiters condition is not satis-
fied, because in the first optional node of the root tuple there is no opening
tag in the start delimiter that is closed in the end delimiter. Pages generated by
the encoding in Figure 3 will not fall in the class of prefix mark-up languages.

28 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

The definition of prefix mark-up languages poses constraints on the
delimiters of the underlying data types that ensure this class of languages
to be identifiable in the limit with positive sample only (Crescenzi and
Mecca 2004). In the web context, this has important consequences as it
means that for pages that belong to this class of languages, a wrapper
can be generated automatically even taking as input only a set of sample
pages.

Another important feature that makes wrapper inference feasible for
prefix mark-up languages is that they are associated with a simple and
natural characteristic sample. In grammar inference, the notion of charac-
teristic sample associated with a class of languages is used to define the
properties that the set of samples must exhibit to identify exactly one lan-
guage in the class (Angluin 1982). Prefix mark-up languages are associated
with an interesting notion of characteristic sample, which is obtained by
encoding a rich set of instances.

Definition 1 (Rich Set of Instances). A set of instances I ¼ fI1; . . . ; Ing of a
schema r, is a rich set of instances if in I every attribute occurs with at least two
different values; every optional is instantiated at least once, and is null at least once,
as well; every list appears at least with two different cardinalities.

This notion of characteristic sample (Crescenzi and Mecca 2004) has a
practical impact since it is likely that even taking a small set of sample pages
randomly, one can obtain the characteristic sample needed to feed the
inference process.

In Crescenzi et al. (2001), we describe an algorithm called MATCH, which
is able to infer a grammar from a set of sample pages. It has been proven
that for prefix mark-up languages, MATCH runs in polynomial time with
respect to the length of the input encodings (Crescenzi and Mecca
2004). Unfortunately, although prefix mark-up languages exhibit these
nice features, experience says that many HTML pages found on the web
do not fall in this class of languages, whereas they usually belong to the
broader class of well-formed mark-up languages.

To overcome this issue, one possible direction is that of studying more
involved inference algorithms for broader classes of languages; however,
the theoretical foundations of grammatical inference suggest that this
direction is not always a practical solution, as the more expressive the class
of inferable languages is, the more complex the characteristic samples
become, and too sophisticated and ‘‘unnatural’’ characteristic samples
cannot be asked of the final user of a wrapper generator system.

Therefore, with the objective of elaborating a practical solution, our
approach is that of preprocessing the sample pages in order to bring them
in the target class of prefix mark-up languages.

Wrapper Inference for Ambiguous Web Pages 29

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

BRINGING PAGES INTO PREFIX MARK-UP LANGUAGES

Our proposal for bringing pages into prefix mark-up languages is based
on a transformation, trans f Pext , that works on a set of sample pages P.
Assuming that pages in P might have been generated by a well-formed
mark-up encoding that does not satisfy the wrapping and point-of-choice
delimiters conditions, the goal of trans f Pext is that of repairing the violations
of the prefix constraints directly on pages. Hence, transf Pext will be applied as
a preprocessing step over the set of pages that feed the wrapper inference
process.

To argument the correctness of the transformation, we present transf Pext

contextually with its intensional counterpart, transfint , an abstract trans-
formation that operates on the encodings in order to fix violations of prefix
constraints. In fact, trans f Pext can be considered correct if it does not corrupt
the underlying data type, that is, if it produces strings that can still be con-
sidered as the result of the application of a ‘‘fixed’’ encoding on the orig-
inal data type instances. Therefore, we show that every transformation
performed by trans f Pext on pages has a univocal correspondence with a trans-
formation performed by trans fint on the encoding. If trans fint fixes viola-
tions of the prefix constraints on the originating encoding, then trans f Pext

achieves its goal of transforming pages into a language of the class of prefix
mark-up languages.

Overall, our approach can be summarized as follows. We have a set of
pages, P ¼ fp1; p2; . . . ; png that represent the set of positive samples for
the wrapper inference process. According to our model, we assume that
these pages have been generated by applying a well-formed mark-up encod-
ing enc over a set of instances I ¼ fI1; I2; . . . ; Ing of a given data type
r : pi ¼ encðIiÞ; i ¼ 1; . . . ;n. If enc does not satisfy the prefix constraints,
pages in P do not belong to a language of the class of prefix mark-up
languages. We introduce a transformation trans fint that operates on enc,
and a transformation trans f Pext that works over pages of the sample set P
such that if trans fintðencÞ is a prefix mark-up encoding, then
trans f PextðpiÞ ¼ trans fintðencÞ � ðIiÞ; i ¼ 1; . . . ;n, and every trans f PextðpiÞ
belongs to a prefix mark-up language.

The approach corresponds to define a new class of languages, for which
our transformation succeeds. The new class is more expressive than the
class of prefix mark-up languages, and is still identifiable in the limit with
a characteristic sample that slightly differs from that of the class of prefix
mark-up languages.

Our transformations are based on two complementary techniques: seg-
mentation and disambiguation. The former aims at introducing wrapping
delimiters, the latter solves ambiguities due to violations of the point-
of-choice delimiters. We first present the two techniques separately, then

30 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

we show how they can actually cooperate to deal with the recursive structure
of the underlying data types.

We introduce some notations to distinguish the symbols of the schema
alphabet R [R from their occurrences in the encoding and in the pages.
Given a string s ¼ a1 � a2 � . . . � an over an alphabet R [R, occurðsÞ denotes
the set of all occurrences of the alphabet symbol in s : occurðsÞ ¼
fa1; a2; . . . ; ang. Conversely, symbolðaiÞ denotes the alphabet symbol of
which ai is occurrence; then symbolðaiÞ 2 R [R; i ¼ 1; . . . ;n.

The segmentation and the disambiguation techniques manipulate
the occurrences of symbols in the encoding and in the pages. We associate
every occurrence o with an annotation, i.e., a sequence of symbols over
the schema alphabet. We assume that our transformations initialize the
annotation of every occurrence (in pages as well as in the encoding)
with its corresponding symbol in the schema alphabet. Annotations are
then manipulated by the transformations by means of a function,
annotateðo; sÞ, that simply appends a string s to the annotation of the
occurrence o it applies to. In the following, for the sake of readability, we
blur the distinction between symbol and annotation associated to an occur-
rence; we assume symbolðoÞ returns the annotation associated with o, and
we refer to the annotated alphabet to indicate the set of annotation
symbols that can be dynamically built over the original schema alphabet.

The Segmentation Technique

To describe our repairing transformations, we shall refer again to the
encoding in Figure 3 and to the pages it produces, such as the ones in
Figure 4. The wrapping delimiters condition imposes that all delimiters
of nonleaf nodes must have at least one opening tag in the start delimiter
which is closed in the end delimiter. In our example, in the encoding of
Figure 3 the wrapping delimiters condition does not hold in the delimiters
of the optional node of the root tuple. However, observe that such an
optional node occurs before the unique occurrence of IMG (which appears
in the delimiter of the optional itself) and after the unique occurrence
of =H1 (in the delimiter of the first attribute). These properties can be used
to split the tuple into segments: each segment is bounded by a pair of
unique occurrences and includes a (possibly empty) sequence of tuple
attributes. Every segment can be marked by a ‘‘virtual’’ delimiter, and occur-
rences within each segment can be annotated by means of a symbol identi-
fying the segment they belong to.

The introduction of the virtual delimiters associated to segments can
solve violations of the wrapping delimiters condition. In our example, since
our optional node falls in a segment that embeds one attribute, it would be
enclosed by a ‘‘virtual’’ delimiter that will work as a wrapping delimiter.

Wrapper Inference for Ambiguous Web Pages 31

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

The above transformation, which is performed by trans fint, can repair
missing wrapping delimiters in the root tuple of the encoding. To intro-
duce its extensional counterpart, which is actually performed by trans f Pext

on pages, we observe that symbols that in the encoding occur exactly once
in the delimiters of the attributes of the root tuple will appear exactly once
in all the pages produced by that encoding; interestingly, the inverse also
holds, if we assume instances from a characteristic sample: symbols that
occur exactly once in every encoded instance are originated by symbols that
occur exactly once in the delimiters of child nodes of the root tuple. In
other words, by segmenting the pages based on symbols that occur once
in all the pages, we can obtain on them the same effects of segmenting
directly the encoding. Therefore, trans f Pext segments pages based on sym-
bols that occur exactly once in all the pages, in the hope of repairing the
effects of a missing wrapping delimiter.

Once pages are segmented, it is possible to inspect each segment, in
order to trigger further segmentations. In fact, occurrences of tags that
are not unique on the original page, could become unique within the more
focused context of a segment. It is easy to verify that the effects of a recur-
sive segmentation on pages still correspond to a recursive segmentation of
the encoding. Then, our transformation on pages trans f Pext , and analogously
its intensional counterpart trans fint , performs a recursive segmentation that
run until new segments are found.

Figure 5 illustrates the intensional and the extensional segmentation
functions (segmentint and segmentext , respectively). The former operates on
an encoding, the latter on a set of pages (that is, encoded instance of a
given type). They both perform the actual segmentation by calling the
same function, segment, shown in Figure 6.

Function segment works on well-formed strings: based on a set of ele-
ments, U , which occur in the input string s the segmentation process: (i)
splits the well-formed input string s into segments, i.e., well-formed
substrings of s; (ii) annotates each segment with a suitable identifier;

FIGURE 5 Intensional and extensional segmentation.

32 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

(iii) introduces virtual occurrences of symbols in f<v>;< =v>g to mark
each segment.3 The extent of each segment is determined by means of
the occurrences of the input set U : namely, each segment is bounded by
a pair of consecutive occurrences in U . The function guarantees that
virtual nodes are inserted correctly, that is, that the output string is still
well-formed.

Figure 7 shows the results of the segmentation produced on a well-
formed string. Symbols in boldface correspond to the set of occurrences
U on which the segmentation is based. The dashed lines indicate
consecutive occurrences that enclose the same subset of U.

The segmentation, as it is defined above, can repair only missing
wrapping delimiters that occur in the root tuple. However, we will see that
based on the effects that can be obtained by means of the disambiguation
technique, the segmentation can operate to fix also missing delimiters
occurring in nested tuples.

FIGURE 6 Function segment.

FIGURE 7 Segmenting well-formed strings.

Wrapper Inference for Ambiguous Web Pages 33

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

The Disambiguation Technique

Violations of the point-of-choice delimiters condition arise when sym-
bols in the delimiters of optional and list nodes occur inside the delimiters
of their child node. We say that the occurrences that violate the condition
are ambiguous because they do not allow the delimiters of parent and child
constructs to be distinguished. In the example shown in Figure 3, the TR

occurrences of the list and tuple delimiters are ambiguous.
Our technique for repairing missing point-of-choice delimiters is based

on the observation that ambiguous occurrences can be distinguished by
considering the set of symbols that occurs in the well-formed string that
they enclose.

Consider again the encoding in Figure 3 and its serialization in Figure 4:
the well-formed string that is surrounded by the TR occurrence of the outer
list delimiter is <TR><TD><HR=><=TD><=TR> and includes an occur-
rence of the HR symbol; differently, the well-formed string that is
surrounded by the TR occurrence of the tuple delimiter encloses a set of
symbols, which includes, for example, I and UL.4 If we annotate each
ambiguous occurrence with one of the symbols taken from the well-formed
string they surround, the point-of-choice delimiters condition is satisfied.
For example, we can distinguish the TR occurrences of our example by
annotating the list’s one with HR, and the tuple’s one with I. In essence,
we create a partition of the ambiguous occurrences, by means of a par-
titioning set of symbols. This strategy is adopted by tranfint to disambiguate
occurrences on the encoding.

The same approach can be applied also over pages: at the extensional
level, symbols that participate in a violation of the point-of-choice delimiter
on the encoding have multiple occurrences. Then, trans f Pext considers
ambiguous every occurrence that occurs more than once in P. If the
ambiguous occurrences can be partitioned on the encoding based on the
symbols they enclose, the same criterion can be applied at the page level.
Then, also trans f Pext distinguishes ambiguous occurrences by means of the
symbols that occur within the well-formed string they bound.

The correspondence between the intensional and the extensional
transformation can be preserved only if the encoding is repaired by distin-
guishing ambiguous occurrences by means of symbols that do not occur
under an optional node. This means that at the extensional level, we can
correctly distinguish ambiguous occurrences if and only if the underlying
encoding can be repaired by distinguishing occurrences that violate the
point-of-choice delimiter using symbols that do not appear under an
optional node.

To understand this point, consider the symbols that in the encoding
occur under an optional node: in the enclosed instances, their presence

34 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

depends on the way the optional is instantiated. If trans f Pext used these
symbols to disambiguate the occurrences, it would distinguish the
ambiguous occurrences because of the presence=absence of the optional
data in the encoded instance. For example, in the encoded instances of
Figure 4, the first TR could be considered different from the second
one, because the former encloses a well-formed string including the sym-
bol A, while the latter does not, as the optional data is null-instantiated
(as reported in Figure 2). This distinction would corrupt the pages, as
instances of the same data type would be delimited by different delimiters
in the encoded instances.

Our definition of trans f Pext prevents the creation of partitions based on
symbols coming from the instantiation of optional nodes. In fact, trans f Pext

creates the partition by associating with each ambiguous occurrence exactly
one symbol from the well-formed string they bound. This choice guaran-
tees that symbols coming from instances of optional nodes cannot partici-
pate in determining the partition. Let us illustrate this point by means of
our example. Figure 8 reports the TR occurrences5 of pages in Figure 4;
the solid thin lines represent the associations with the set of symbols of
the well-formed string each occurrence encloses. Observe that according
to the above restriction, it is not possible to create a partition based on tags
related to the instantiation of an optional data type. If we associate A with
the second occurrence of TR, we cannot associate any symbol to the third
TR, as any choice would lead the inclusion of the second TR as well. Con-
versely, we can create a partition of the TR occurrences if we assign exactly
one tag with every element by considering the tags HR and B. The thicker
lines represent a correct solution: it produces a partition of the ambiguous
elements with a set of symbols that respect the above restriction, and it is
easy to verify that it actually solves the point-of-choice violation.

It is important to observe that the approach fails if two (or more)
optionals are instantiated with mutually disjunctive behaviors. In this case,
ambiguous occurrences could be partitioned according to the optional that
is actually instantiated under each occurrence. Clearly, such a partition
would be a wrong solution. This reason imposes some restriction on the

FIGURE 8 Partitioning ambiguous occurrences on pages.

Wrapper Inference for Ambiguous Web Pages 35

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

characteristic sample for the class of languages we can repair; namely, it is
required that optionals cannot be instantiated with mutually disjunctive
behaviors.

The following definitions formally describe the above concepts. We first
formalize the concept of partitioning set, which is the set of symbols that
determines a partition over a set of occurrences with the restriction dis-
cussed above; then we introduce the function partition, which is used by
trans f Pext and by tranfint to disambiguate ambiguous occurrences.

Definition 2 (Partitioning set). Given a set O of occurrences over the alphabet
R [R, a binary relation dom over the same alphabet and its occurrences, and a
symbol h of the alphabet, consider the set Oh of k occurrences of that symbol
Oh ¼ fo1; . . . ; okg;where symbolðoiÞ ¼ h 8i ¼ 1; . . . ; k, and the sets Li ¼
fl 2 R [Rj domðoi; lÞg of all alphabet symbols with which each occurrence is in
relation according to dom.

A partitioning set of the occurrences of h in O is defined as a set of schema
symbols L� such that

jL� \ Li j ¼ 1; i ¼ 1; . . . ; k:

A partitioning set L� ¼ fl1; . . . ; lng of n alphabet symbols, determines a
partition pL

�
of Oh in n subsets

pL
� ¼ fOlj

h g;O
lj
h ¼ fojo 2 Oh and domðo; ljÞg; j ¼ 1; . . . ; n:

In Figure 8 the dom relation among the TR occurrences and symbols HR ,
UL, I , DIV , A is represented by the solid thin edges connecting them.
According to such a relation, there are several partitioning sets for the TR

occurrences (namely, fHR ; Ig; fHR ;DIV g; fHR ;ULg): they all define the
same partition that separates in two distinct subsets the first TR occurrences
of each pages from the remaining ones.

The definition of the partitioning set is based on a generic
binary relation dom over an alphabet R [R and a set of occurrences O over
R [R, dom � O � ðR [RÞ. We now introduce the binary relations domenc

int and
domPext , which are specific versions of dom for occurrences at the intensional
and extensional level, respectively.

Definition 3 (Binary relation domenc
int over an encoding). Given an encoding

enc defined over a type r, and an occurrence o2Oenc � domenc
int ¼

fðo; symbolðo0ÞÞ j o0 occurs exactly once in subStrðoÞðencðrÞÞ is outside of any
optional or list substringg.

In the above definition, Oenc denotes the set of the schema symbol
occurrences associated with an encoding enc over a type r: Oenc ¼ fojo 2

36 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

occurðencðrÞÞ and symbolðoÞ 2 R [Rg. Similarly, OencðI Þ denotes the set of
occurrences associated with the encoded instance encðI Þ, and OP the set
of occurrences associated with a set of pages: OencðI Þ ¼ fo 2
occurðencðI ÞÞjsymbolðoÞ 2 R [Rg, and OP ¼ [i¼1;...;nOencðIiÞ, with P ¼
fencðI1Þ; . . . ; encðInÞg.

For example, for the serialized encoding in Figure 4 domenc maps the
first and the second TR occurrences to fHR ;TDg and fI ;UL;DIV ;TD;
IMG ;BRg, respectively.

A similar relation, domencðI Þ, holds for occurrences and symbols of an
encoded instance encðI Þ.

Definition 4 (Binary relation domencðI Þ over an encoded instance). Given
an encoding enc defined over a type r, an instance I of that type, and an occurrence
o2OencðI Þ: domencðI Þ¼fðo;symbolðo0ÞÞjo0 occurs exactly once in subStrðoÞðencðI ÞÞg.

Then domencðI Þðo; sÞ holds if s is a symbol associated to an occurrence
that belongs to the substring of encðrÞ enclosed between o and its corres-
ponding balancing occurrence.

For example, for the (left) page in Figure 4 domencðI Þ maps the first and
the second TR occurrences to fHR ;TDg and fI ;UL DIV ;Ag, respectively.

Observe that the definition of the two relations slightly differs: in the
domenc symbols that occur under an optional node do not participate in
the relation, while they cannot be excluded in the relation domencðI Þ defined
over encoded instances.

Finally, we introduce domPext , which maps the occurrences of symbols in a
set of pages to the symbol alphabet.

Definition 5 (Binary relation domPext over a set of pages). Given an
encoding enc defined over a type r, a set of instances I ¼ fI1; . . . ; Ing over that type:
domPext ¼ [i¼1;...;ndom

encðIiÞ.

Based on the above definitions, tranfint and tranf Pext can compute
partitions over the set of their occurrences. This is done by means of the
function partition, reported in Figure 9, that takes as input a set of
occurrences and a dom relation, and returns as output a set of partitions
over the input set. Since partition is parametric with respect to the dom

relation, it can be applied by both tranfint and tranf Pext .

Segmentation and Disambiguation in Action

Apparently, the aforementioned techniques work autonomously: the
segmentation introduces wrapping delimiters, the disambiguation solves

Wrapper Inference for Ambiguous Web Pages 37

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

violations of the point of choice delimiters condition. Nevertheless, they
can actually support each other to achieve the goal of bringing pages into
a prefix mark-up language.

We have seen that each segment corresponds to a (possibly empty) set
of attributes of the root tuple. Therefore, if the disambiguation is run over
segments rather than over pages, the ambiguous occurrences are con-
veniently taken in a more focused scope, enhancing the effectiveness of
the approach. Suppose, for example, that a pair of list attributes occurs
in the root tuple. If the the tuples of these lists have the same delimiters,
their occurrences would be processed by the same disambiguation step.
On the contrary, if the segmentation puts the two lists in different
segments, the occurrences of the delimiters of their tuples will be
elaborated by two separate disambiguation processes.

The disambiguation allows the approach to apply the segmentation also
over deeply nested tuples. In fact, as a result of the disambiguation, all the
well-formed strings bounded by a distinguished occurrence correspond to
the same substring of the encoding. Therefore, the whole process of seg-
mentation and disambiguation can be recursively run over sets composed
of well-formed strings surrounded by the same distinguished occurrence
in the partition computed by the disambiguation.

To give an example consider again the encoding of Figure 3: suppose
that also the optional in the first nested tuple (the tuple delimited by
<TR>) misses the wrapping delimiter condition (for example, assume that
<DIV> and <TD> do not occur). As this option does not occur in the root
tuple, the segmentation cannot affect it. However, we have seen that when
the disambiguation runs over the set of TR occurrences it creates a partition
composed of two subsets, one including the TR occurrences that delimit the
tuple, and the other including those that delimit the list. Hence, we can
run the segmentation again over the set of well-formed strings surrounded
by every tag occurrence in a subset of the partition. In our example, the
segmentation would be triggered first against the set of well-formed strings
bounded by the TR occurrences of the list; then against the set of well-
formed strings bounded by the TR occurrences of the tuple: in this case

FIGURE 9 Function partition.

38 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

the presence of the occurrences of <=IMG>, and
, which are unique
in the context of the inner tuple, allows the segmentation to introduce
virtual delimiters, solving the missing wrapping delimiter in the nested
tuple as well.

THE trans f Pext PREPROCESSING TRANSFORMATION

We now present the complete definition of our preprocessing trans-
formation trans f Pext , which builds on the techniques discussed in the pre-
vious section, and operates on pages to bring them into the class of
prefix mark-up languages. To prove its correctness we also present its inten-
sional counterpart, trans fint : based on it we define the conditions that must
hold in the originating encoding to guarantee that the transformation actu-
ally operated on pages by trans f Pext succeeds in bringing pages into the class
of prefix mark-up languages.

Overall, our approach corresponds to define a new class of languages
that we call distinguishable mark-up languages: we prove the new class of
languages is still inferrable in the limit, and we formally define its associated
characteristic sample.

We first introduce the concept of distinguishable rich set of instances,
which is a restriction of the concept of rich set of instances given in
Definition 1 for prefix mark-up languages.

Definition 6 (Distinguishable Rich Set of Instances). A set of instances
I ¼ fI1; . . . ; Ing of a schema r, is a distinguishable rich set of instances if I is a
rich set of instances and additionally: ðiÞ optionals do not exhibit mutually disjunc-
tive behaviors; that is, for every pair of optionals, and for every tuple that either
directly or indirectly contains both optionals, there is at least one such tuple in which
they are both instantiated at least once or they are both null; ðiiÞ optionals do not
exhibit segmenting behaviors; that is, for every optional and for every tuple that either
directly or indirectly contains that optional, there is at least one such tuple in which it
is not instantiated or it is instantiated more than once.

Similarly to prefix mark-up languages, also for distinguishable mark-up
language the notion of characteristic sample is based on distinguishable
rich set of instances.

The Intensional and Extensional Transformations

Figure 10 reports the algorithms corresponding to the intensional
(left) and extensional (right) transformations. Due to the strict correspon-
dence between an encoding and the corresponding encoded instances, the

Wrapper Inference for Ambiguous Web Pages 39

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

structure of the algorithms is the same: the former works on an encoding,
the latter on a set of sample pages, i.e., encoded instances. Both transfor-
mations iteratively transform their input by performing segmentation and
disambiguation steps.

The segmentation operates on pages and on the serialized repre-
sentation of the encoding: it introduces virtual delimiters and annotates
occurrences with symbols that identify the segment each occurrence
belongs to.

The disambiguation is performed by computing a partition over a set
of ambiguous occurrences, that is, occurrences that are associated with
the same symbol of the schema alphabet. The partition is computed by
applying the proper binary relation: domPext on the pages, domenc

int on the
encoding.

As several partitions may be returned, there is a choice construct to
nondeterministically pick one of the computed partitions. The partitioning
set associated to the chosen partition is then used to annotate, that is, dis-
tinguish, the ambiguous occurrences. The distinguished occurrences indi-
viduate at the intensional level a substring, at the extensional level a set of
page fragments, i.e., substrings of encoded instances. These are added to

FIGURE 10 Intensional and extensional transformations.

40 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

the set T , which stores the elements on which the whole process is exe-
cuted until some change occurs on the input.

We say that trans fint deterministically distinguishes the input encoding
whenever all its invocations of the function partition return at most one
partition, and all the returned partitions are distinguishing partitions.

Definition 7 (Distinguishing Partitioning Set). A partitioning set L� of a set
of occurrences O is called a distinguishing partitioning set if jL�j ¼ jOj.

In other words, a distinguishing partitioning set of occurrences iden-
tifies a partition made of singletons. The following results establish the class
of languages for which trans f Pext is correct, that is, the class of languages that
corresponds to pages that can be repaired by means of our transformation.

Definition 8 (Distinguishable Mark-Up Encoding, Distinguishable Mark-
Up Languages). The class of distinguishable mark-up languages is defined as the
class of languages obtained by applying to the instances of an abstract data type r a
distinguishable mark-up encoding, that is, a mark-up encoding function enc for
which trans fint deterministically distinguishes enc and trans fintðencÞ is a prefix
mark-up encoding.

Theorem 1 (Correctness). Given a set of encoded strings, called P ¼
fencðI1Þ; encðI2Þ; . . . ; encðInÞg, of a distinguishable rich set of instances of a type
r according to a distinguishable mark-up encoding enc, then

trans f PextðencðIiÞÞ ¼ trans fintðencÞ � ðIiÞ; i ¼ 1; . . . ;n:

Since the proof of the theorem requires the introduction of a number
of technical notions, for the sake of readability we have moved it to
Appendix A.

From Theorem 1, the corollary follows.

Corollary 1 (Characteristic Sample of Distinguishable Mark-Up
Languages). Any set of pagesP ¼ fencðI1Þ; . . . ; encðInÞg, obtained as the encodings
of a distinguishable rich set of instances of a schema r, according to a distinguishable
mark-up encoding enc is a characteristic sample for encðrÞ.

The hypothesis of Theorem 1, in practice can easily be satisfied because
of the richness of the HTML of modern websites; the segmentation tends
to isolate instances of distinct subtypes, augmenting the possibility that
the disambiguation problem triggered over each segment admits a unique
solution. On the other hand, disambiguated occurrences allow finer
segmentations on instances of deeply nested types.

Wrapper Inference for Ambiguous Web Pages 41

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

The results of our empirical experimentation, as reported in the next
section, confirm the effectiveness of the approach in real-life web pages.

IMPLEMENTATION AND EXPERIMENTS

To evaluate the overall impact of our approach, we have developed a
Java prototype that implements the transformation trans f Pext and we have
run it to preprocess pages from several real-life websites.

The implementation of the segmentation and disambiguation techni-
ques is rather simple, but it is worth reporting here some technical details
about the development of the module that performs the disambiguation, as
the problem of computing a partitioning set is an instance of the set par-
titioning problem, a well-known and widely studied NP-complete problem
(Balas and Padberg 1976; Hoffman and Padberg 1993). To solve it, we have
developed a depth-first search algorithm in a state space. The algorithm
takes as input a set of elements E ¼ fe1; e2 . . . ; ekg, each element ei associa-
ted with a set of symbols Li , and produces as output a partition of the
elements such that each class of the partition is associated with exactly
one symbol. As a very first step, before starting the search procedure, the
algorithm discards the symbols, if any, that are associated with all the ele-
ments of the input set: these symbols would lead to the trivial solution
made of a unique subset (containing all the elements). In the search
procedure, the algorithm makes a decision of one symbol assignment in
each step. If the constraints of the problem are violated the algorithm
backtracks.

Because of the backtracking, the algorithm is subject to exponential
behaviors. In the worst case, the search is of exponential size with respect
to the number of symbols. However, we observe that the number of symbols
that can really contribute to the solution is usually small. Also, the problem
is strongly constrained, in the sense that early choices immediately prune a
large number of successive searches. We claim that the number of symbols
is small, as several symbols are associated to the same set of elements and
therefore they are equivalent in the sense that they would produce the
same partition. In Figure 8, the dashed boxes indicate clusters of equivalent
symbols. For example, UL and I are equivalent, and fHR ; Ig and fHR ;ULg
are equivalent partitioning sets that produce the same partition. As the
number of clusters is much smaller than the number of symbols, we com-
pute the partition using clusters of equivalent symbols instead of symbols.
This choice produces great improvements in terms of performances, as it
significantly reduces the search space. The second aspect that limits the
processing time is related to the nature of the problem, which is strongly
constrained, and then simple heuristics can contribute to minimize the
branching factor of the search tree. For example, during the search we

42 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

follow a most constrained strategy by considering first the symbols that are
associated with the smallest set of elements; if this choice leads to a failure,
we prune the search tree earlier.

Experiments

The developed prototype has been used to run a number of
experiments on real HTML sites. All experiments have been conducted
on a machine equipped with an Intel Pentium Mobile processor
working at 2 GHz, with 1 GB of RAM, running Linux (kernel 2.6) and
Sun JRE 1.5.

We have conducted two sets of experiments. The first set of experi-
ments involves the Wien test-bed, which was selected by Kushmerick in
his seminal work on wrapper induction (2000). It is worth saying that this
test-bed is rather old; however, experimenting our technique against this
data-set has a two-fold significance for our approach. First, since the same
test-bed has been used in our previous works (Crescenzi et al. 2001, 2004;
Crescenzi and Mecca 2004) it allows us to progressively compare the
results of our developments. Second, as the HTML code of Wien’s pages
is quite poor, applying our preprocessing technique over these pages is
challenging, as the poorness of HTML is a handicap for our approach,
which on the contrary leverages on the richness of HTML of modern
websites.

The second set of experiments involves pages taken from well-known
websites. To evaluate the ability of our preprocessing technique, we have
chosen pages with different levels of nesting of the underlying data types.

The experiments were conducted as follows. First, we have preprocessed
the pages with the techniques discussed in the paper;6 then, the output
pages were given as input to our prototype that implements the MATCH

algorithm. The generated wrappers were finally used to extract data from
the pages. For each experiment we have used approximately 10 sample
pages.

It is worth saying that MATCH is able to also run on pages that do not
comply to prefix mark-up languages; but in this case, as discussed
(Crescenzi and Mecca 2004), there is no guarantee that a solution can be
found, or that it can produce useful solutions. Moreover, our prototype
implementation of MATCH includes techniques that enhance the formal
framework with methods that identify and extract irregular regions
(Crescenzi et al. 2004). Essentially, when it is not able to infer a wrapper,
it computes the minimal DOM subtree that causes the failure and considers
it as an attribute to be extracted. The drawback of this approach is that the
extracted subtree might be rather large (in the worst case it can be rooted
even at the document root), and it might include several data fields.

Wrapper Inference for Ambiguous Web Pages 43

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

The presence of ambiguous occurrences (in the sense discussed in this
article) in the HTML code of real-life web pages is one the most frequent
causes that forces MATCH to extract large subtrees. Therefore, in this context
the preprocessing technique proposed in the article assumes a relevant
role, and its effectiveness can be evaluated by observing the number of
values that can be correctly extracted with the wrappers generated by
MATCH with or without the preprocessing step.

To this end, for each dataset we have manually developed an ideal wrap-
per, which has then been used to extract the correct values.7 Then we have
run MATCH against the original pages, and against the pages treated by
means of our preprocessing technique. The number of values extracted
by the wrappers generated by MATCH in the two stages can then be compared
with the number of correct values.

We distinguish extracted and partially extracted values. For a given
basic type attribute A, let SM denote the set of values extracted by a wrapper
generated by MATCH, and Si the set of values extracted by the ideal wrapper.
We say a value for A is correctly extracted if SM ¼ Si. It is partially extracted
if each element of Si occurs as a part of a value of a basic attribute B in the
dataset extracted by MATCH. Usually this happens because several attributes
are grouped within a subtree.

As the preprocessing is an additional step for the inference process, we
also report computing times; namely, the computing times include both
the cost of the transformation and of the MATCH application.

Figure 11 illustrates the results of our experiments on the Wien test-
bed. We list the results obtained running MATCH directly on the sample
pages, and those obtained after preprocessing the input pages with the
transformation trans fext presented in the article.

Relevant improvements are marked in gray (sources 4, 7, 9, 18, 29, 30).
Several values that previously were extracted in a subtree are now extracted
correctly. This is a consequence of the preprocessing, which has disambig-
uated the HTML code, letting MATCH to infer a more accurate wrapper. It is
worth saying also that the results obtained from samples 3, 13, 26, and 27
could be considered optimal with respect to our current system, as the
expected values of the Wien dataset were computed with a wrapper based
on a schema alphabet richer than ours: we are currently using only tags,
whereas the alphabet of the ideal wrappers includes punctuation symbols
as well.

Let us now comment on the results produced on the second dataset,
which are reported in Figure 12. In this case we had net improvements in
the majority of sources (1, 3, 7, 10–17); this is mainly due to the more
involved and richer HTML code of these pages with respect to the samples
in the Wien dataset. However, we have also observed one case (sample 5)
in which the effects of the preprocessing technique have been negative.

44 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

Analyzing the logs of the experiment, we have observed that the failure is
related to the segmenting behavior of an optional within a list. According
to the formal framework of this article, we can conclude that the set of
pages used to infer the wrapper is not a characteristic sample for the
correct language.

Finally, we observe that computing times are usually greater when the
preprocessing is enabled. However, it is interesting to observe that there
are some exceptions (sources 1, 4, 5, 8, 9): in these cases, the repairing
technique significantly simplifies the inference process, and improves the
overall efficiency.

FIGURE 11 Experimental results: the effects of the preprocessing on the Wien data set.

Wrapper Inference for Ambiguous Web Pages 45

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

RELATED WORK

The issue of semi-automatically generating wrappers for extracting data
from fairly structured HTML pages is a well-studied problem, and several
approaches have been proposed in the literature (Freitag 1998; Soderland
1999; Muslea 1999; Embley et al. 1999b; Baumgartner et al. 2001; Laender
et al. 2002b). One of the main limitations of these approaches is that they
need a training phase, in which the system is fed with a number of labelled
examples. This task involves a manual phase as pages need to be labelled by
a human expert that marks the relevant pieces of information. Also, most of
these proposals assume a-priori knowledge about the organization of data in
the target pages (e.g., pages must contain a list of flat records). Modern
tools ease the burden of the labelling activity; however, since pages can
change frequently, wrappers are brittle and their maintenance is costly.
Thus developing techniques that automate the wrapper generation task
can help web data extraction systems to reduce the costs of the wrapper
maintenance.

Other examples of wrapper generating systems base the data-
extraction process on the use of domain-specific ontologies (Embley
et al. 1999a; Davulcu, Mukherjee, and Ramakrishnan 2002). In this
approach, an ontology provides concise descriptions of the conceptual
model of data in the page and also allows for recognizing attribute occur-
rences in the text. An interesting contribution of these researches is that
an ontology can be used to infer wrappers around different sites of the
same domain, making them in some sense, also more resilient to changes
in the target site. On the other hand, the approach strongly depends on
the domain and assumes that the extracted data must be organized as a
flat table.

FIGURE 12 Experimental results: the effects preprocessing on modern websites.

46 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

More recently, several researchers have tackled the issue of automati-
cally inferring a wrapper given an input set of sample pages. Lerman
et al. (2004) have developed a system for the automatic extraction and seg-
mentation of records from web tables. Their approach relies on a specific
pattern that occurs in many websites for presenting lists of items: an index
page containing a list of short summaries, one for each item, which
includes a link leading to a page about details of the specific item. The pro-
posed technique aims at segmenting the index page by leveraging the
redundancy of information that this pattern produces: first information
from detail pages is used to segment the index page into records. The main
limitations of this approach is that it is based on a quite specific pattern.

Automatic data extraction from pages containing flat lists of tables is
the subject of several works. ViNTs (Zhao et al. 2005) proposes a technique
that uses both visual and DOM-related features. The former are related to
features depending on the visual presentation of one page when displayed
on a browser; the underlying idea is that the iterative structure of a list of
records is reflected both in the spatial organization of data in the browser
and in the structure of the DOM tree. Visual information for segmenting
web pages is also proposed by Zhai and Liu (2005) and Liu and Zhai
(2005); their approach complements visual and tree alignment of the fields
of a repeated item. Compared to our approach, these proposals do not
need multiple pages to infer a wrapper. On the other side, they can infer
a wrapper only for a flat list of tuples.

Arasu and Garcia-Molina (2003) have proposed an algorithm, called
EXALG, for extracting structured data from a collection of web pages
generated by encoding data from a database into a common template.
To discover the underlying template that generated the pages, EXALG uses
so-called large and frequently occurring equivalent classes (LFEQ), i.e., sets
of words that have similar occurrence patterns in the input pages. EXALG
has some points in common with our approach. First, also in EXALG, pages
are seen as the result of an encoding process that serializes complex objects
into strings. Also, LFEQs can be considered as a generalization of the
clusters of labels used in the disambiguation algorithm.

The main limitation of traditional grammar inference techniques, such
as those developed by Angluin (1982) and by Radhakrishnan and Nagaraja
(1987), when applied to modern information extraction problems is that
none of these classes with their algorithms can be considered as a practical
solution to the problem of extracting data from web pages because of the
unrealistic assumptions on the characteristic samples that need to be pre-
sented to the inference algorithm.

Some proposals use grammar inference techniques for information
extraction, in the spirit of this article. For example, Fernau concentrates
on XML documents, and studies the issue of using regular language-learning

Wrapper Inference for Ambiguous Web Pages 47

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

algorithms to infer the productions of the (contextual-free) grammar
associated with the DTD (Fernau 2000). Fernau’s work has strongly influ-
enced the definition of the formal framework of ROADRUNNER (Crescenzi and
Mecca 2004). Ideally, his approach could be applied over XHTML docu-
ments; however, the DTD associated to the XHTML of a web unlikely
reflects the structure of the encoded data, due to large amounts of
XHTML code used only for presentation purposes. Moreover, the strategy
proposed by Fernau requires a bias on the learning algorithm. Other con-
tributions try to apply grammar inference techniques to information
extraction from HTML codes. For example, Chidlovskii (2000) defines a
wrapper generation algorithm based on the inference of k-reversible gram-
mars; however, the approach is not fully automatic, and suffers from some
of the limitations of traditional grammar inference techniques discussed
earlier in this article. In Hong and Clark (2001), the authors use stochastic
context-free grammars to infer wrappers for web sources; their approach is
based on domain-specific knowledge provided to the wrapper generator.
Another related work is Kosala et al. (2002). In that article, tree automata
are used to infer tree languages for HTML pages; also in this case a
preliminary annotation phase is required.

CONCLUSIONS AND FUTURE WORK

Grammar inference provides an elegant and sound formal framework
for studying thorough techniques for the automatic generation of web
wrappers. Developing robust systems that implement these techniques for
extracting data from real-world web pages is a challenging issue.

In this article, we have shown that it is possible to support the theo-
retical framework studied for the inference of prefix mark-up languages
with an effective and efficient preprocessing phase. Our practical solution
is the result of a study of the relationship between real pages and formal
languages.

We are currently working in order to further improve our approach for
the automatic extraction of data from the web. A first direction we are
evaluating is that of developing methods to extend the schema alphabet
to symbols that also occur in the data alphabet. The idea is that of comput-
ing the schema alphabet dynamically by means of a statistical analysis of the
symbols that occur in the sample pages. Also, we have observed that
another limitation of our approach is the lack of expressive power of our
languages, which do not include the disjunction. Therefore, we are study-
ing techniques for addressing the issues of introducing disjunctions in
the inference process to find a better trade-off between expressivity and
performances.

48 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

REFERENCES

Abiteboul, S. and C. Beeri. 1995. On the power of languages for the manipulation of complex objects.
VLDB Journal 4(4):117–138.

Angluin, D. 1982. Inference of reversible languages. Journal of the Association for Computing Machinery
29(3):741–765.

Arasu, A. and H. Garcia-Molina. 2003. Extracting structured data from web pages. In: ACM SIGMOD
International Conf. Management of Data (SIGMOD’2003), San Diego, CA, pp. 337–348.

Balas, E. and M. W. Padberg. 1976. Set partitioning: A survey. SIAM Review 18:710–760.
Baumgartner, R., S. Flesca, and G. Gottlob. 2001. Visual web information extraction with

lixto. In: International Conf. Very Large Data Bases (VLDB 2001), Roma, Italy, September 11–14,
pp. 119–128.

Chang, C.-H., M. Kayed, M. R. Girgiz, and K. F. Shaalan. 2006. A suvery of web information extraction
systems. Computer 18(10):1411–1428.

Chidlovskii, B. 2000. Wrapper generation by k-reversible grammar induction. In: Proc. Internat Workshop
on Machine Learning and Information Extraction (ECAI’00), pp. 61–72.

Crescenzi, V. and G. Mecca. 2004. Automatic information extraction from large web sites. Journal of the
ACM 51(5):731–773.

Crescenzi, V., G. Mecca, and P. Merialdo. 2001. ROADRUNNER: Towards automatic data extraction from
large web sites. In: International Conf. Very Large Data Bases (VLDB 2001), Roma, Italy, September
11–14, pp. 109–118.

Crescenzi, V., G. Mecca, and P. Merialdo. 2004. Handling irregularities in roadrunner. In: ATEM-2004:
The AAAI-04 Workshop on Adaptive Text Extraction and Mining, San Jose, CA.

Davulcu, H., S. Mukherjee, and I. V. Ramakrishnan. 2002. Extraction techniques for mining services
from web sources. In: IEEE International Conference on Data Mining, pp. 601–604.

Embley, D. W., M. D. Campbell, Y. S. Jiang, S. W. Liddle, Y. K. Ng, D. Quass, and R. D. Smith. 1999a.
Conceptual-model-based data extraction from multiple-record web pages. Data & Knowledge
Engineering 31(3):227–251.

Embley, D. W., Y. S. Jiang, and Y. Ng. 1999b. Record-boundary discovery in web documents. In: ACM
SIGMOD International Conf. Management of Data, pp. 467–478.

Fernau, H. 2000. Learning XML grammars. In: Proc. 2nd Machine Learning and Data Mining in Pattern
Recognition MLDM’01, vol. 2123, LNCS=LNAI. Leipzig, Germany: Springer, pp. 73–87.

Freitag, D. 1998. Information extraction from html: Application of a general learning approach.
In: Proc. 15th Conference on Artificial Intelligence AAAI-98, pp. 517–523.

Hoffman, K. and M. Padberg. 1993. Solving airline crew scheduling problems by branch and cut.
Management Science 39(6):657–682.

Hong, T. W. and K. L. Clark. 2001. Using grammatical inference to automate information extrac-
tion from the Web. In: Principles of Data Mining and Knowledge Discovery, 5th European Conference,
PKDD 2001, Freiburg, Germany, September 3–5, Lecture Notes in Computer Science 2168,
pp. 216–227.

Hull, R. 1988. A survey of theoretical research on typed complex database objects. In: Databases, ed.
J. Paredaens. London: Academic Press, pp. 193–256.

Kosala, R., J. Van den Bussche, M. Bruynooghe, and H. Blockeel. 2002. Information extraction in struc-
tured documents using tree automata induction. In: Proc. European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD 2002), pp. 299–310.

Kushmerick, N. 2000. Wrapper induction: Efficiency and expressiveness. Artificial Intelligence 118:
15–68.

Laender, A., B. Ribeiro-Neto, A. Da Silva, and Teixeira, J. 2002a. A brief survey of web data extraction
tools. ACM SIGMOD Record 31(2):84–93.

Laender, A. H. F., B. A. Ribeiro-Neto, and A. S. da Silva. 2002b. Debye – data extraction by example.
Data Knowl. Eng. 40(2):121–154.

Lerman, K., L. Getoor, S. Minton, and C. A. Knoblock. 2004. Using the structure of web sites for
automatic segmentation of tables. In: ACM SIGMOD International Conf. Management of Data
(SIGMOD’2004), Paris, France.

Wrapper Inference for Ambiguous Web Pages 49

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

Liu, B. and Y. Zhai. 2005. Net – a system for extracting web data from flat and nested data records.
In: Proc. Web Information Systems Engineering – WISE 2005, 6th International Conference on Web Infor-
mation Systems Engineering, New York, November 20–22, pp. 487–495.

Muslea, I., S. Minton, and C. A. Knoblock. 1999. A hierarchical approach to wrapper induction. In: Proc.
Third Annual Conference on Autonomous Agents, pp. 190–197.

Radhakrishnan, V. and G. Nagaraja. 1987. Inference of regular grammars via skeletons. IEEE Transactions
on Systems, Man and Cybernetics 17(6):982–992.

Soderland, S. 1999. Learning information extraction rules for semistructured and free text. Machine
Learning 34(1–3):233–272.

Wang, J. and F. H. Lochovsky. 2002. Data-rich section extraction from html pages. In: Proc. 3rd Inter-
national Conference on Web Information Systems Engineering (WISE 2002), December 12–14, Singapore:
IEEE Computer Society. Washington, DC, pp. 313–322.

Zhai, Y. and B. Liu. 2005. Web data extraction based on partial tree alignment. In: Proc. 14th International
Conference on World Wide Web, WWW 2005, Chiba, Japan, May 10–14, pp. 76–85.

Zhao, H., W. Meng, Z. Wu, V. Raghavan, and C. T. Yu. 2005. Fully automatic wrapper generation for
search engines. In: Proc. 14th International Conference on World Wide Web, WWW 2005, Chiba, Japan,
May 10–14, pp. 66–75.

NOTES

1. <IMG=> can be considered as a shortcut for <=IMG>; similarly for <BR=>

and <HR=>.
2. Also the UFRE symbols that occur in the serialization of the encoding are balanced.
3. We assume <v>;< =v> are special symbols in the schema alphabet that cannot be used to construct

the encoding.
4. For the sake of presentation, we will explain later how to obtain precisely these symbols even in

the presence of occurrences that enclose the delimiters of inner nodes of the underlying type as
in this case.

5. For the sake of readibility of the figure, we do not report all the involved symbols.
6. We also tidy the pages with nekoHTML ðhttp : ==www:apache:org=�andyc=neko=doc=html=Þ, a tool to

fix up fix errors and make the code compliant with XHTML.
7. For the Wien test-bed, when available, we have used the set of labels provided with the dataset.

APPENDIX A. PROOFS: CORRECTNESS, CHARACTERISTIC
SAMPLES OF A DISTINGUISHABLE MARK-UP LANGUAGE

To prove the correctness theorem, we need a couple of preliminary
results.

Proposition 1. Given an encoding enc of a type r over a schema alphabet
R [R, and a distinguishable rich set of instances I ¼ I1; . . . ; In, let
P ¼ fencðIiÞg, i ¼ 1; . . . ;n.

A symbol h occurs only once in Oenc iff it occurs exactly one in every OencðIiÞ,
i ¼ 1; . . . ;n

Observe that since the occurrences of alphabet symbols in an encoded
instance are produced by ‘‘serializing’’ occurrences of alphabet symbols in
the corresponding encoding, it holds a functional relationship between the
two types of occurrences. We introduce a function, generator, which maps

50 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

every symbol occurrence in an encoded instance into the symbol occur-
rence in the encoding from which it has been generated during the encod-
ing process.

Observe that given o 2 OencðI Þ, then generatorðoÞ 2 Oenc and
symbolðgeneratorðoÞÞ ¼ symbolðoÞ 2 R [R.

Given a set of occurrences O over an alphabet R [R, dom is defined
as a binary relation over the alphabet symbols and its occurrences:
dom � O � ðR [RÞ.

The following lemma clarifies the relationship between intensional and
extensional partitions of occurrences set.

Lemma 1. Given an encoding enc of a type r over a schema alphabet R [R, a
schema symbol h, a characteristic sample P ¼ fencðIiÞg, i ¼ 1; . . . ; n of the mark-
up language corresponding to encðrÞ, let pL

�

int be the only intensional partition asso-
ciated with the occurrence set Oenc

h . Then, OPh admits only one extensional partition
pL

�

ext associated with the same partitioning set L� ¼ fl1; . . . ; lng and

pLint
� ¼ fOl j

h g;O
l j

h ¼ fojo 2 Oenc
h and domenc

int ðo; ljÞg; j ¼ 1 . . . n;

pLext
� ¼ fN l j

h g;N
l j

h ¼ fojo 2 OPh and domPextðo; ljÞg; j ¼ 1 . . . n;

O
lj
h ¼ fo0jo0 ¼ generatorðoÞ; o 2 N

lj
h g

Proof. h can be written as symbolðgeneratorðoÞÞ, where o is a symbol
occurrence in one of the pages; then consider another generic symbol
occurrence o0 in a sample page and let a and b, respectively, be the
labels of the two nodes whose delimiters contain generatorðoÞ and
generatorðo0Þ. Consider that by definition of types and encodings over such
types, and by definition of the binary relations domenc

int and domPext , every inten-
sional partition trivially has an extensional counterpart. The other direction
is slightly more complex since ðo0; hÞ ¼ ðo0; symbolðgeneratorðoÞÞÞ 2 domPext

entails ðgeneratorðo0Þ; symbolðgeneratorðoÞÞÞ 2 domenc
int only if in the tree

representation of type r an optional node does not occur between the nodes
labelled a and b. The optional nodes can produce extensional partitions that
do not correspond to any intensional partition, if and only if the optional
instantiations exhibit mutually disjunctive behaviors which are excluded
by hypothesis.

The correctness (Theorem 1) can now be proven.

Proof. Observe that trans fint and trans f Pext have the same structure; but
whereas trans fint works on occurrences of schema symbols that delimit
portions of the encodings, trans f Pext works on sets of occurrences of schema
symbols that delimit fragments of pages, i.e., well-formed substrings of the
encoded instances. The theorem is proven if we show that trans fint works on

Wrapper Inference for Ambiguous Web Pages 51

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

one substring bounded by n if and only if trans f Pext works on one set of
substring bounded by a set of occurrences O such that
generatorðoÞ ¼ n 8 o 2 O. The proof can be given by induction on the
number of steps performed by one of the two algorithms by observing that
initially P ¼[i¼1;...;nencðIiÞ, Proposition 1 guarantees the first segmentation
step and Lemma 1 the inductive step.

Corollary 1, characteristic sample of distinguishable mark-up languages,
follows directly from Theorem 1 and from the fact that that prefix mark-up
languages are identifiable in the limit (Crescenzi and Mecca 2004).

52 V. Crescenzi and P. Merialdo

D
ow

nl
oa

de
d

by
 [

L
au

re
nt

ia
n

U
ni

ve
rs

ity
]

at
 1

1:
22

 1
2

M
ar

ch
 2

01
3

