EF Loop Conformational Change Triggers Ligand Binding in β-Lactoglobulins*

Received for publication, June 13, 2003, and in revised form, July 11, 2003 Published, JBC Papers in Press, July 11, 2003, DOI 10.1074/jbc.M306269200

Laura Ragona‡, Federico Fogolari§, Maddalena Catalano‡§, Raffaella Ugolini§, Lucia Zetta‡, and Henriette Molinari§¶

From the ‡Laboratorio Risonanza Magnetica Nucleare, Istituto Macromolecole, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy and \$Dipartimento Scientifico e Tecnologico, Strada Le Grazie 15, 37134 Verona, Italy

 β -Lactoglobulins, belonging to the lipocalin family, are a widely studied group of proteins, characterized by the ability to solubilize and transport hydrophobic ligands, especially fatty acids. Despite many reports, the mechanism of ligand binding and the functional role of these proteins is still unclear, and many contradicting concepts are often encountered in the literature. In the present paper the comparative analysis of the binding properties of β -lactoglobulins has been performed using sequence-derived information, structure-based electrostatic calculations, docking simulations, and NMR experiments. Our results reveal for the first time the mechanism of β -lactoglobulin ligand binding, which is completely determined by the opening-closing of EF loop, triggered by Glu⁸⁹ protonation. The alkaline shift observed for Glu⁸⁹ pK_a in porcine β -lactoglobulin (pK_a 9.7) with respect to the bovine species $(pK_a, 5.5)$ depends upon the interplay of electrostatic effects of few nearby key residues. Porcine protein is therefore able to bind fatty acids provided that the appropriate pH solution conditions are met (pH > 8.6), where the EF loop conformational change can take place. The unusually high pH of binding detected for porcine β -lactoglobulin seems to be functional to lipases activity. Theoretical pK_a calculations extended to representative β -lactoglobulins allowed the identification of key residues involved in structurally and functionally important electrostatic interactions. The results presented here provide a strong indication that the described conformational change is a common feature of all β -lactoglobulins.

The physicochemical and biological characteristics of β -lactoglobulins, which belong to the lipocalin family, have been extensively studied in the last 30 years, but despite the wealth of data, the biological function of these extracellular proteins is still undefined (Ref. 1 and references therein). β -Lactoglobulins isolated from cow, goat, and sheep milk samples, under nondenaturing conditions, showed endogenously bound fatty acids (2). Many authors have suggested that bovine β -lactoglobulin (BLG)¹ has a transport and/or protective role toward bound ligands in the stomach (3). However, we have previously shown

(4) that BLG, despite its high stability at acidic pH, is unable to bind fatty acids at low pH, thus indicating that it could not be employed "as is" as a transporter through the human gastric tract.

Retinoids and fatty acids have been reported to bind to BLG in vitro in the pH range of 6.5-8.5, with dissociation constants on the order of 65 nm and 0.6 µm, respectively (5). Specifically, titration experiments of BLG with palmitic acid (PA) (4) have clearly shown that: (i) at neutral pH the primary site for palmitic acid binding is within the protein calyx; (ii) the amount of bound PA is drastically reduced upon decreasing pH and the ligand is completely released at pH 2; (iii) in the pH range 7.3-6.4, a conformational equilibrium was observed for the bound ligand reflecting the dynamics of EF loop (region 85–90) (Fig. 1), triggered by the titration of Glu⁸⁹ at anomalously high pK_{α} (~6.5) (6). On the contrary, it was shown that the highly similar porcine (PLG) (62% identity, 83% similarity) and equine (58% identity, 74% similarity) β-lactoglobulins had neither fatty acids physiologically bound nor the ability to bind them in vitro at neutral pH (7). We have previously reported PLG interaction studies with palmitic acid in the pH range 2-8, aimed at clarifying whether dimer formation could possibly have a role in binding (8). Indeed PLG exhibits a pH dependence of the monomer-dimer equilibrium opposite to that observed for BLG. NMR interaction studies demonstrated that PLG is unable to bind palmitic acid in this pH range. These results were rationalized by us and others (8, 9) hypothesizing that Lys⁶⁰ and Lys⁶⁹, forming a superficial positively charged patch at the open end of the BLG calyx, could be responsible for electrostatic interactions with palmitic acid carboxylate, thus driving the binding. Both PLG and equine β -lactoglobulin, which did not show endogenously bound fatty acids, exhibited the K69E mutation. However, tear lipocalin, a protein closely related to BLG, was shown to bind 16-doxyl stearic acid despite the absence of any charged side chain at positions 60 (Met) and 69 (Val) (BLG numbering) (10).

The importance of clarifying the binding mechanism and, hence, the functional role of β -lactoglobulins has prompted us to extend our previous investigations to all members of this family. In the present paper the comparative analysis of β -lactoglobulin binding properties has been performed using sequence-derived information, structure-based electrostatic calculations, docking simulations, and NMR experiments. Our results reveal for the first time the mechanism of β -lactoglobulin ligand binding, which is fully determined by the conformational change involving the opening-closing of the EF loop (11).

^{*} This project was supported by grants from Ministero Istruzione Università e Ricerca (MIUR) 2002, Fondo per Investimenti della Ricerca di Base (FIRB) 2001, Progetti Avanzati ed Iniziative de Sessione, and Fondazione Antonio de Marco. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[¶] To whom correspondence should be addressed. Tel.: 390-45-8027906; Fax: 390-45-8027929; E-mail: molinari@sci.univr.it.

¹ The abbreviations used are: BLG, bovine β -lactoglobulin; PLG, porcine β -lactoglobulin; PA, palmitic acid; ¹³C₁ PA, singly enriched pal-

mitic acid; ¹³C PA, fully enriched palmitic acid; HSQC, heteronuclear single-quantum coherence; MIF, molecular interaction field; PDB, Protein Data Bank.

FIG. 1. Superposition of BLG x-ray structures with EF loop in the closed (PDB code 3blg; *light gray*) and open (PDB code 2blg; *dark gray*) conformations. Region 109–116 of both proteins has been removed from the ribbon representation in order to better visualize the EF loop region-(85–90). Asp⁸⁹ side chain is shown.

EXPERIMENTAL PROCEDURES

Materials—PLG was purified from milk at NIZO Food Research (The Netherlands) as previously described (8). Palmitic acid was purchased from Sigma. Palmitic acid-protein complexes were prepared as described previously (4). 1.5 mM protein solutions were prepared in 10 mM Na₂HPO₄/NaH₂PO₄ solution at pH 7.0, and a molar excess of PA (4:1 molar ratio) was employed for complex preparation. NMR titrations at different pH levels were performed adding a few microliters of 0.25 N H₃PO₄ or 1 M NaOH to the PA-protein complex prepared at pH 7.0.

10 mM phosphate buffer solution, at different pH levels (7–10), was added to the tube containing PA, and NMR experiments were acquired to check the solubility of the fatty acid. A solution of 50 mM KOH at pH 12.5 was necessary to dissolve a uniformly ¹³C-labeled PA, 5 mM, for NMR analysis.

NMR Characterization-NMR spectra were acquired on an Avance Bruker 500 MHz spectrometers at 27 °C. ¹H chemical shifts were referred to 3-trimethylsilylpropionate, and ¹³C chemical shifts were referenced as described previously (4). ¹H one-dimensional NMR spectra of apo- and holo-PLG were run at each pH to check protein stability. One-dimensional proton decoupled ¹³C spectra were recorded on the complex prepared with carboxyl-enriched PA (¹³C₁ PA) in the pH range 7.0-10.0. The carboxyl region was acquired with a sweep width of 2,520 Hz, 2,000 time domain points, and 20,000 scans. The aliphatic PA signals were observed through one-dimensional proton decoupled ¹³C spectra of completely enriched PA (¹³C-PA) in complex with PLG, in the pH range 7.0-10.0 and with BLG, in the pH range 2.5-7.3. A sweep width of 5,040 Hz, 16,000 time domain points, and 3,584 scans were employed. Two-dimensional ¹H-¹³C HSQC experiments were recorded on ¹³C-PA and on PLG-¹³C-PA complex with 512 and 2048 data points in the t_1 and t_2 dimensions, respectively, and a spectral width of 7002 $(t_2) \mbox{ and } 5040 \ (t_1) \mbox{ Hz}.$ The spectra were processed and analyzed with the programs XWINNMR (Bruker) and XEASY (12).

Docking Simulations—Docking simulations were performed using the program GRID, version 21 (Molecular Discovery Ltd.) (13, 14). All available BLG structures deposited in the PDB and the PLG x-ray structure (PDB code 1exs) were employed as targets. Crystallographic water molecules were removed. The coordinates of palmitic (C16) and caprylic (C8) acids were derived from the coordinates of palmitic acid bound to BLG (PDB code 1b0o). The fatty acid carboxyl group was considered deprotonated, bearing a net negative charge of -1. The target proteins were considered rigid, and hydrogens were added with the program GRIN (part of the GRID package). The docking search was performed on the whole protein. All GRID input parameters were employed with their default values. The calculated molecular interaction fields (MIF) were inspected with Gview (part of the GRID package). The docking results were visualized with Gview, InsightII (Accelrys, San Diego, CA), and Swiss-PdbViewer (15). Modeling and pK_a Calculations—Models for lactoglobulins have been built based on the x-ray structures of BLG with the EF loop in the open (PDB code 2blg) and closed (PDB code 3blg) conformations (11) using the Swiss-PdbViewer program (15). Gaps and insertions were shifted out of secondary structure elements, where this was possible, and built using the scan loop data-base module of Swiss-PdbViewer. The anchor residues were chosen such as to make possible the closure of the loop. Hydrogens have been added using the program Gromacs (17).

The University of Houston Brownian Dynamics (UHBD) program version 5.1 (18), was used for the electrostatic and pK_a calculations. We employed the single-site titration model (19), which includes partial atomic charges of each ionizable group and models the ionization by adding a +1 or -1 point charge to one central atom of the ionizing group. We used a dielectric constant of 20 to represent protein interior. Partial atomic charges and radii for the protein were taken from the pK_a files provided by UHBD. The electrostatic potential computed by UHBD has been used for generating an ensemble of protonation states at different pHs using a Montecarlo procedure as described previously (20). A straightforward application of this procedure led to few but very large pK_{α} shifts, which were associated with atoms (and therefore with charges) too close to each other. The bumps were then removed using the program WHATIF (21), and pK_a values were computed again. The solvent was assigned a dielectric constant of 80 and ionic strength of 100 mM, and the ion exclusion radius was set to 2.0 Å. The ionic strength was chosen based on the observation that the pK_a values are fairly insensitive to ionic concentrations over 100 mm. A probe with a radius of 1.4 Å was used to define the boundary between the protein and solvent dielectric regions. Electrostatic potentials were calculated by focusing on one titrable residue at a time. The last focusing run employed a grid spacing of 0.25 Å. The temperature was set at 25 °C.

RESULTS

Docking Experiments—To evaluate the role of the EF loop conformational change on binding, different chain length fatty acids were docked within BLG and PLG employing the GRID docking program. The GRID method has been developed for determining energetically favorable binding sites for small chemical groups (probes) on a target molecule (protein) (13, 14). The probe groups are small chemical entities that are moved through a regular grid of points around the target molecule in order to calculate, at each point of the grid, an interaction energy, thus generating MIFs. The ligand molecule is represented as a collection of GRID probes, and MIFs calculated for each probe are used to define the ligand position with respect to the target and to estimate the binding energy of the ligand at its binding site.

Palmitic acid, the most abundant BLG endogenous ligand, was docked to all available BLG structures. GRID generated a docking solution for PA within the protein calyx only when the target BLG presented the EF loop in the open conformation. A very good agreement was observed for the positioning of both the aliphatic chain and the carboxyl tail of the docked and experimentally determined PA (PDB code 1b0o) (Fig. 2A). The inspection of MIFs, generated for hydrophobic and carboxyl oxygen probes, indicates that PA docking solution maximizes both electrostatic and hydrophobic interactions.

Docking experiments performed with the available PLG xray structure (PDB code 1exs), obtained at pH 3.2 with the EF loop in the closed conformation, were never successful in locating PA within the protein cavity. A model of PLG structure with the EF loop in the open conformation was obtained with the Swiss-PdbViewer program, and GRID simulations showed fatty acids located within the hydrophobic pocket of the protein (Fig. 2B). Interestingly the opening of the EF loop appeared to be a requisite for binding even when the shorter caprylic acid (C8) was used in docking experiments.

Electrostatics and pK_a Calculations on β -Lactoglobulins— The opening of the EF loop-(85–90) in BLG has been shown to be triggered by the titration of Glu⁸⁹ (11). EF loop closed conformation is stabilized in BLG by a pattern of hydrogen bonds involving Asp⁸⁸, Glu⁸⁹, Asn⁹⁰, Asn¹⁰⁹, Ser¹¹⁰, and Ser¹¹⁶

FIG. 2. **GRID docking solutions obtained for BLG** (*A*) and PLG (*B*). *A*, superposition of predicted (green) and experimentally observed (red) positions of PA. *B*, docked solution obtained for PLG (*blue*). The side chains of residues 82 and 105 are shown.

If the conformational change of the EF loop determines the binding ability, it is clear that all factors affecting $\text{Glu}^{89} \text{ } pK_a$, such as the nature and charge of close residues, will modulate the pH of binding.

A comparison of the amino acid sequences of the EF loop region of all β -lactoglobulins, (Fig. 3) revealed that although Glu⁸⁹ is always conserved, its flanking residues (88 and 90) differ both in side chain length and charge. Charged residues close in space to Glu⁸⁹ influence its titration as well. To study the pH dependence of the EF loop conformational change and correlate the sequence mutations with the binding ability, pK_a calculations were performed on the BLG and PLG experimentally determined structures and on the modeled structures of a few lactoglobulins (lacc_felca, laca_canfa, lacb_horse, laca_horse, lacb_macgi) selected on the basis of their clustering in the phylogenetic tree (built with the ClustalW program (22)) (Fig. 4).

Two models were built for each β -lactoglobulin, using as a template BLG structures with the EF loop in the open (PDB code 2blg) and closed conformations (PDB code 3blg), respectively. pK_a calculations were performed using the University of Houston Brownian Dynamics program, which solves the Poisson-Boltzmann equation and provides electrostatic free energies, generating a statistical ensemble of protonation states by a Montecarlo procedure (18). The obtained $\text{Glu}^{89} \ pK_a$ values are reported in Table I.

The inspection of all β -lactoglobulin structures allowed the identification of those side chains close to the Glu⁸⁹ carboxylic group. Most of these residues never display any charge in different β -lactoglobulins; however, a small subset, consisting of residues 88, 90, 107, 108, and 116, shows a charge change along the different species; lacb_macgi was excluded from this analysis because its low sequence identity with BLG (34%), localized mainly at the level of the EF loop, made its model less reliable. Moreover, residue 116 is close to an insertion making it impossible to reliably discuss any result on Glu⁸⁹ pK_a. It is worth noting that on going from BLG to PLG, Glu⁸⁹ pK_a increases by nearly two pH units, thus suggesting that PLG binding should indeed occur but at pH higher than 8.0.

NMR Titration Experiments—PLG interaction studies with ${}^{13}C_1$ and ${}^{13}C$ PA were performed in the pH range 8.0–10.0, *i.e.* at pH values higher than the calculated Glu⁸⁹ pK_a. The increase in PA resonance intensities was used to monitor the

uptake of ligand by the protein, because PA is solubilized only through protein binding. Fig. 5 shows that $^{13}\mathrm{C}_1$ resonance becomes measurable at pH 8.6, and its intensity increases with pH, showing that PLG can bind PA upon EF loop opening. A line width increase of carboxyl resonance is observed raising the pH from 8.6 ($\Delta v_{1/2} = 11$ Hz) to 9.7 ($\Delta v_{1/2} = 17$ Hz). The amount of bound PA as a function of pH, as derived from the integration of C₁₆ methyl resonance, is shown in Fig. 6. The transition midpoint occurs at pH 9.7, thus affording a clear indirect estimate of Glu⁸⁹ pK_a of PLG.

We observed, from the analysis of ¹H NMR spectra, that PLG maintains its conformation up to pH 10, whereas at higher pH the protein starts to precipitate. ¹H and ¹³C chemical shifts of PA complexed with PLG are reported in Table II.

DISCUSSION

The influence that pH exerts on protein structure is widely believed to be electrostatic in nature via changes in the protonation state of titrable groups, which in turn influence processes like ligand uptake or release, partial or global unfolding, and protein-protein association (23). Our results clearly show for the first time that the protonation state of Glu⁸⁹ influences ligand binding in β -lactoglobulins, forcing the EF loop to act as a mobile lid, hindering the access to the protein cavity when it is in the closed conformation. NMR titration experiments have shown that PLG is able to bind PA, provided that the appropriate pH solution conditions (pH > 8.6) are met. The dependence of the amount of bound PA on pH can be fitted with a sigmoid curve, both for BLG and PLG, thus indicating that the same binding mechanism is at work for the two proteins. In PLG the observed transition midpoint is highly shifted toward alkaline pH (pH 9.7) with respect to BLG (pH 5.5) (Fig. 6), reflecting the different pK_a of Glu^{89} side chains in the two proteins. These data strongly suggests that, contrary to previous reports (24), the EF loop conformational change also occurs in PLG and is likely to be a common feature of all β -lactoglobulins. To further investigate this phenomenon, pK_a calculations were performed for representative β -lactoglobulins from different species. It has been shown by us and others that theoretically determined pK_a values are in good agreement with experimentally determined ones (25), and we feel confident that the pK_a shifts calculated for the different models reflect a reliable trend, which should be considered as such, rather than as an assessment of the exact pK_a value of each titrating group. It is generally agreed that large pK_a shifts can be ascribed to the electrostatic effects of desolvation, nearby charges, and/or to the disruption of hydrogen bonds (25). To rationalize Glu^{89} pK_a

FIG. 3. ClustalW (22) alignment of β -lactoglobulins. The following species are reported: BOVIN (cow), BUBBU (domestic water buffalo), CAPHI (goat), SHEEP, CANFA (dog), FELCA (cat), PIG, HORSE, EQUAS (donkey), MACGI (eastern gray kangaroo), MACEU (tammar wallaby), and TRIVU (brush-tailed possum).

P02754	LACE BOVIN	LIVTQTMKGL	DIQKVAGTUY	SLAMAASDIS	LLDAQSAPLR	
P02755	LACE BUBBU	LIVTOTMKGL	DIOKVAGTNY	SLAMAASDIS	LLDAOSAPLE	
102700	LACE CADUT	THEOTHER	DIQUUNCTUV	CLANAACDIC	LIDAOGADID	
PUZ 756	THCB_CREHI	TIVIQIMKGL	DIQKVAGIWI	SPYWYY2D12	PPDMO2NAPPK	
PO2757	LACB_SHEEP	IIVTQTMKGL	DIQKVAGTUH	SLAMAASDIS	LLDAQSAPLR	
P33685	LACA CANFA	IVVPRTMEDL	DLQKVAGTUH	SMAMAASDIS	LLDSETAPLR	
P33688	LACC FELCA	ATVPLTMDGL	DLOKVAGTHH	SMAMAASDIS	LLDSEVAPLE	
100000		XTVI LINDOL	DEQUARGE	SHAHAASDIS	LIDGETATOR	
P33687	LACE_FELCA	ATVPLTMDGL	DLOKARGUMH	SMAMAASDIS	LLDSETAPLR	
P33686	LACC CANFA	IVIPRTMEDL	DLQKVAGTUH	SMAMAASDIS	LLDSETAPLR	
P04119	LACE PIG	VEVTPIMTEL	DTOKVAGTUH	TVAMAVSDVS	LLDAKSSPLK	
0000000	LACE HODEE	THINDOTHODI	DIOFUACIUN	CUANAACDIC	LIDGEGADID	
PU2 750	LACE_HORSE	INTEGINODE	DPOFARORAU	SANAYONIS	PPDSF2WARK	
P13613	LACB_EQUAS	TNIPQTMQDL	DLQEVAGKUH	SVAMAASDIS	LLDSEEAPLR	
P21664	LACA FELCA	ATLPPTMEDL	DIRQVAGTUH	SMAMAASDIS	LLDSETAPLR	
P19647	LACEFOILS	TREPORTMORE	DLOFVIGRINH	SVAMVASDIS	LUDGEGIPUR	
115011	LACA DODGE	TRIPOTHORI	DIQUVACION	GUNNINGDIG	LIDGEGUDID	
PU7380	LACA_HORSE	TDIPQIMQDL	DLQEVAGROH	SVAMVASDIS	LLDSESVPLR	
P11944	LACB_MACGI	VENIRSKNDL	GVEKFVGSWY	LREAAK—-T-	-MEFSIPLFD	
029614	LACE MACEU	VENIRSKNDL	GVEKFVGSWY	LREAAKT-	-MEFSIPLFD	
029146	LINCE TRIVIL	TENTHSVEEL	WENT TOPMY	DVFF & V &_	- אדד כד סו ד ס	
223140	INCD_INIVO	TENTINKEED	VVERDIGF WI	KVELAKA-	-MELDIFULD	
P02754	LACE BOVIN	VYVEELKPTP	EGDLEILLOK	WENGECAQKK	IIAEKTKIPA	
P02755	LACE BUBBU	WWWFFLKDTD	FORETLLOK	NENGECLORK	ΤΤΔΕΥΤΥΤΡΑ	
102100	LACD_DODDO	VIVEEDNI II	ECHIETHON	UENCECYQUU	TIADATATA	
PU2 756	LACE_CAPHI	VIVEELKPIP	LONLEILLOK	WENGECROKK	TINGKIKIPA	
P02757	LACB SHEEP	VYVEELKPTP	EGNLEILLQK	WENGECAQKK	IIAEKTKIPA	
P33685	LACA CANFA	VYIOELRPTP	ODNLEIVLRK	WEDGRCAEOK	VLAEKTEVPA	
122600		VVVOELDETE	DOMINITION	NEORDCUORK	TINOUTEIDA	
F33600	LACC_FELCA	VIVQELKFIF	RUNDETTERK	MEGUNCAGUN	TEAQUIEEFA	
P33687	LACB_FELCA	VYVQELRPTP	RDNLEIILRK	WEDNRCVEKK	VLAEKTECAA	
P33686	LACC CANFA	VYIQELRPTP	QDNLEIVLRK	WEDNRCVEKK	VFAEKTELAA	
P04119	LACE PIG	AVVEGLEPTE	FGDLETLLOK	RENDRC JOEV	LLAVETDIDA	
101115	LACD_IIO			A BURGALLY	TELEVERDAD	
PU2758	LACE_HORSE	VYIEKERPTP	EDNLEIILRE	GENKGCAEKK	IFAEKTESPA	
P13613	LACE EQUAS	VYIEKLRPTP	EDNLEIILRE	GENKGCAEKK	IFAEKTESPA	
P21664	LACA FELCA	VYVOELRPTP	RDNLEIILRK	RENHACIEGN	IMAORTEDPA	
D10647	LACA FOUNS	UNVERLORTO	FONDETTIDE	CANHUCUEDN	TUAOUTEDDA	
F19047	LACA FOONS	VIVEELKFIF	LONDETTERE	GRININCALKIN	IVAQATEDFA	
P07380	LACA_HORSE	VYVEELRPTP	EGNLEIILRE	GANHACVERN	IVAQKTEDPA	
P11944	LACB MACGI	MDIKEVNLTP	EGNLELVLLE	KTDR-CVEKK	LLLKKTKKPT	
029614	LACE MACEIL	MDIKEVNLTP	EGNLELVLLE	KADR-CVEKK	LLLKKTOKPT	
020146		BITUEIBIDED	ECHI EL TULE	OTDO CUERR	ELLWATEND &	
Q29146	LTACE_IRIAO	MINIKEVINEIP	LONLELIVLE	QIDS-CARKK	LTTKKIERLY	
P02754	LACE BOVIN	VFKIDALNEN	KVLVLDT	DYKKYLLFCM	ENSAEPEQS-	
D02755		VENTDALNEN		DVERVIERCM	FNSAFDFOS-	
P02755	LINCE DODDO	VIKIDADNEN	KVBVBD1	DIKKILLICH	ENSALT EQS-	
PU2756	LACB_CAPHI	VFKIDALNEN	KATATDL	DAKKATTLECW	ENSAEPEQS-	
PO2757	LACB SHEEP	VFKIDALNEN	KVLVLDT	DYKKYLLFCM	ENSAEPEQS-	
P33685	LACA CANFA	EFKINYVEEN	OIFLLDT	DYDNYLFFCE	MNADAPOOS-	
100000	LACC FELCA	FEUTGVIDEN	FLIDIDT	DVENVI FECI	ENADADCON	
P33600	LTACC LETCH	ELKI21PDEN	EPIAPDI	DIEMILFFCL	ENADAPGON-	
P33687	LACB_FELCA	KFNINYLDEN	ELIVLDT	DYENYLFFCL	ENADAPDQN-	
P33686	LACC CANFA	XFSINYVEEN	OIFLLDT	DYDNYLFFCM	ENANAPOOS-	
DO4110	LINCE DIC	VENTNALDEN	OLELIDT	DVDGHLLICM	FNGAGDEUG	
P04119	LACD_FIG	VEKINALDEN		DIDDUPTER	ENSASPERS-	
PO2758	LACB_HORSE	EFKINYLDED	TVFALDT	DYKNYLFLCM	KNAATPGQS-	
P13613	LACE EQUAS	EFKINYLDED	TVFALDS	DYKNYLFLCM	KNAATPGQS-	
P21664	LACA FELCA	VENUDYOGEK	KISVLDT	DYTHYMFFCM	EAPAPGTENG	
D10647	LACA FOUNS	UETRNIVOCED	VICULDT	DVAUVWEECU	CDCLDGAEUC	
LT204/	CRUDAT TOTAL	VELVINIQGER	KISAPDI	DIANIMPICV	GPULFDALHG	
P07380	LACA_HORSE	VFTVNYQGER	KISVLDT	DYAHYMFFCV	GPPLPSAEHG	
P11944	LACB MACGI	EFEIYISSES	-SYTFCVMET	DYDSYFLFCL	YNISDREK	
029614	LACE MACEU	EFEIVISSES	ASYTESUMET	DYDSYFLECT	YNISDREK	
020141	LINCE TRI	PEPTYINCES	ACUTI CUMET	DYDNYTICC	ENGRIVERY	
Q29146	LACE_IRIVU	FLEININSES	ASTILSVELI	DIDNITLGCL	ENVINTREK	
P02754	LACE BOVIN	LACOCLVRTP	EVDDEALEKF	DKALKALPMH	IRLSFNPTQL	EEQCHI
P02755	LACE BURBU	LACOCLUPTE	EVDDEALEVE	DKAL KAL DMU	TRUSENPTOT	EEOCHY
F02755		DACQUEVRIF	EVDDERBERT	DEADEADFIII	TRESTMETQE	ELQCIIV
PU2756	LACE_CAPHI	LACQCLVRTP	EVDKEALEKF	DKALKALPMH	TREAFNPTQL	EGQCHV
P02757	LACB SHEEP	LACOCLVRTP	EVDNEALEKF	DKALKALPMH	IRLAFNPTQL	EGQCHV
P33685	LACA CANFA	LMCOCLARTI.	EVDNEVMEKF	NRALKTLPVH	MOLLN-PTON	EEOCLT
n22600	LACC FELCA	LUCOCI TRT	VADALEUMENE	DDALOTIDUD	VDIFFDDTOT	AFOCDT
r))000	LACC_FELCA	PACOCPIKIE	RADNEVMERF	DKWPŐIPAD	VKLFFDPIQV	MEQCRI
P33687	LACB_FELCA	LVCQCLTRTL	KADNEVMEKF	DRALQTLPVH	VRLFFDPTQV	AEQCRI
P33686	LACC CANFA	LMCQCLARTL	EVNNEVIGKF	NRALKTLPVH	MQLLN-PTQV	EEQCLV
P04110	LACE PTC	LUCOSLADT	EVDDOTEFVE	EDALKTI SVP	MR-TI.PAOT	EEOCDY
D00255	LACE HODGE	LUCOVI 1000	RIVEETHERL	DDALODIDOVE	NORIDDI TOTAVU	7EDGD-
PUZ 758	LACE_HORSE	PACOAPAKLO	MVDEEIMEKF	RRALQPLPGR	VQIVPDLTRM	AFRCKI
P13613	LACB_EQUAS	LVCQYLARTQ	MVDEEIMEKF	RRALQPLPGR	VQIVPDLTRM	AERCRI
P21664	LACA FELCA	MMCOYLARTI.	KADNEVMEKF	DRALOTLPVH	IRIILDLTOG	KEOCRV
P10647	LACA FOUNS	MUCOVIARTO	KUDEEUMEVE	SRILOPIECH	VOLUDBECC	OFFICE
F1504/	LACA EQUAD	INCOLLARIO	NVDEEVHERF	STALQPLPGR	VQIIQDPDGG	QERCOF
P07380	LACA_HORSE	MVCQYLARTQ	KVDEEVMEKF	SRALQPLPGR	VQIVQDPSGG	QERCGF
P11944	LACB MACGI	MACAHYVRRI	E-ENKGMNEF	KKILRTLAMP	YTVIEVRTR-	-DMCHV
029614	LACE MACEU	MACAHVIDDT	E-ENKGMMEE	KKII.BTI. 9MD	YTVIFUPTP-	-DMCHV
020111	LACD TRUE	NACAMUTAN	E ENROLLET	WITTER TEAT	VTUTE LOND	ENCON.
QZ9146	TACE_LEIAO	MACAMYERRI	L-ENKGMEEF	KEIVETLTIP	Y IMLEAQTR-	-EMCRV

shifts in the analyzed models, contributions due to mutations at the level of residues either involved in H-bonds or close in space to the Glu⁸⁹ side chain were therefore considered. As shown in Table I, Glu⁸⁹ pK_a computed for lacb_pig, lacc_felca, and lacb_horse are higher than that computed for lacb_bovin, reflecting the mutation of the flanking Asn⁸⁸ residue to a neg-

atively charged aspartic acid. The strongest validation of these observations comes from NMR titration experiments demonstrating that PLG binding occurs at higher pH with respect to BLG. The agreement between experimental and theoretical pK_a gave us confidence in the interpretation of the pK_a trend calculated for all β -lactoglobulins. It is important to stress that

FIG. 4. Phylogenetic tree of β -lactoglobulin family. This diagram, produced by the program ClustalW (22), is drawn only approximately to scale, but the branch points are in correct order.

TABLE I Calculated pK_a values of Glu_{89} in β -lactoglobulins from different species

	,	.,	1				
0 Lesterlehulin		Key residues			${ m Glu}^{89} \ { m p}K_a$		
p-Lactoglobulin	88	89	90	116	Closed	Open	
Lacb_bovin	Asn	Glu	Asn	Ser	5.59	3.75	
Lacb_pig	Asp	Glu	Asn	Ser	7.40	4.42	
Lacc_felca	Asp	Glu	Asn	Asn	6.51	4.36	
Laca_canfa	Glu	Glu	Asn	Ser	5.64	3.31	
Lacb_horse	Asp	Glu	Asp	Ser	6.24	3.96	
Laca_horse	Gly	Glu	Arg	His	3.92	3.96	
Lacb_bovin mutant 1	Gly	Glu	Arg	\mathbf{Ser}	5.10		
Lacb_bovin mutant 2	Gly	Glu	Arg	His	3.30		

laca_canfa, showing a negative charged residue at position 88, similar to lacb_pig, lacc_felca, and lacb_horse, exhibits a calculated pK_a of 5.64, similar to that obtained for lacb_bovin (5.61). The analysis of the model showed that Glu⁸⁸ side chain in laca_canfa points in the opposite direction with respect to Glu⁸⁹, with the distance between the two carboxylic groups being the highest (8.5 Å) among all the analyzed structures (in

the range 3.5–6.0 Å), thus reducing the electrostatic effects.

The low pK_a value calculated for laca_horse correlates well with the presence of two close, positively charged residues (Arg⁹⁰ and His¹¹⁶). To single out whether the main role is played by the flanking Arg⁹⁰ or by the close His¹¹⁶, we modeled the following multiple mutations in BLG, N88G,N90R (mutant 1) and N88G,N90R,S116H (mutant 2), and calculated the corresponding Glu⁸⁹ pK_a values. Interestingly a pK_a of 5.10 was calculated for mutant 1 and a pK_a of 3.30 was obtained for mutant 2, thus indicating that the close, positively charged residue 116 plays the determining role in influencing the pK_a .

It is worth noting that when $\operatorname{Glu}^{89} pK_a$ was calculated for all of the models with the EF loop in the open conformation, very similar values were obtained, in the range 3.75-4.36 (Table I), as expected for accessible, solvent-exposed carboxylates.

A comment could be added that further supports the reliability of pK_a calculations. The low pK_a value (1.05) estimated for Asp⁹⁸ in lacb_bovin is in good agreement with the value of 2 that was determined experimentally by NMR (20).

Docking experiments run on BLG and PLG indicated that the opening of the EF loop plays a key role in modulating the binding of both proteins. The GRID solution obtained for the

FIG. 5. Carboxylic region of 125.7 MHz one-dimensional proton decoupled ¹³C spectra acquired in pH range 8.2-9.7 on the complex of ¹³C₁ PA with PLG at 27 °C.

FIG. 6. Plot of ¹³C PA methyl resonance areas versus pH for BLG (triangle) and PLG (square). Intensities are normalized according to the spectrum obtained at higher pH. The dotted lines represent the curve fits obtained with the program Sigma Plot.

PLG-PA complex clearly showed that fatty acid is located within the protein calvx adopting a conformation similar to that observed experimentally in BLG (Fig. 2B). PLG residues showing short contacts with bound PA are substantially the same as observed in holo-BLG (26). However the comparison of ¹H and ¹³C one-dimensional and two-dimensional HSQC NMR spectra of holo-PLG and -BLG revealed that PA H-16 and H-15 resonances exhibited less marked up-field shifts when bound to PLG (δ H16 = 0.69 ppm, δ H15 = 1.00) rather than to BLG $(\delta H16 = 0.20 \text{ ppm}, \delta H15 = 0.54 - 0.43)$. This behavior can be

TABLE II $^1\!H$ and $^{13}\!C$ chemical shifts of PA complexed with PLG, pH 9.7, 27 °C

Position number	$^{1}\mathrm{H}$	^{13}C
C-1		185.85
C-2	2.08	40.99
C-3	1.43	29.29
Other	1.05	32.17
C-15	1.00	25.14
C-16	0.69	17.66

attributed to a different distribution of aromatic residues in the binding cavity; in BLG, PA methyl protons feel the shielding effect of two aromatic residues (Phe⁸² and Phe¹⁰⁵) lying within 5 Å of its center (Fig. 2A), whereas in PLG the mutation F105L accounts for the reduced shielding effect (Fig. 2B). The minor chemical shift dispersion observed in PLG for C-4-C-12 carbons can be ascribed to the same effect. All of these NMR data confirm that PA should have the same spatial arrangement within the calyx of the two proteins. The conformational equilibrium clearly observed for PA bound to BLG, involving the carboxyl tail, at a pH value close to that of the EF loop conformational change (4), has been also observed for holo-PLG, as indicated by the ¹³C carboxyl PA line width increase on going from pH 8.6 to 9.7.

Docking simulations provided a lower binding energy for the interaction of PA with PLG (-10.6 kcal/mol) with respect to BLG (-14.81 kcal/mol), suggesting a minor affinity of the porcine protein for fatty acids. We have previously shown that binding energies provided by GRID for BLG were in good agreement with those measured through dynamic fluorescence experiments (27), and we are therefore confident of the reliability of the given energy differences. The mutation K69E, observed on going from BLG to PLG, may be held responsible for the lower interaction energy as deduced from the inspection of MIFs, showing less favorable electrostatic interactions with the ligand in PLG.

Altogether these data indicate that the pH-dependent conformational change of EF loop is a common feature of all β -lactoglobulins. The analysis presented here, while allowing the identification of structurally and functionally important electrostatic interactions in β -lactoglobulins, opens the way to the design of engineered proteins characterized by binding capability in a selected pH range.

Interestingly the binding mechanism identified for β -lactoglobulins is reminiscent of the mechanism of lipase interfacial activation associated with a conformational change, in which a lid, consisting of one α -helix, opens up by rotating around its hinge regions, thus allowing ligand binding. As it was reported that (i) β -lactoglobulins may play a role in increasing lipases activity by removing free fatty acids (28) and (ii) liver pig triacylglycerol hydrolases exhibit activity at an optimum alkaline pH of 8.5 (16), it is likely that the unusually high pH of binding detected for PLG is functional in lipases activity.

Acknowledgments-S. Mecucci and P. Benedetti are gratefully acknowledged for their support with the GRID program. We thank E. Silletti, A. Alting, and R. W. Visschers (NIZO Food Research, the Netherlands) for isolation and purification of PLG.

REFERENCES

- 1. Sawyer, L., and Kontopidis, G. (2000) Biochim. Biophys. Acta 1482, 136-148 2. Pérez, M., D., de Villegas, C. D., Sanchez, L., Aranda, P., Ena, J. M., and Calvo,
- M. (1989) J. Biochem. 106, 1094-1097 3. Uhrinova, S., Smith, M., Jameson, G. B., Uhrin, D., Sawyer, L., and Barlow,
- Dining J., Simir, Simory 39, 3567–3574
 Ragona, L., Zetta, L., Fogolari, F., Perez, D. M., Pujol, P., De Kruif, K., Lohr, F., Ruterjans, H., and Molinari, H. (2000) Protein Sci. 9, 1347-1356
- 5. Narayan, M., and Berliner, L. J. (1997) Biochemistry 36, 1906-1911
- Tanford, C., and Nozaki, Y. (1959) J. Biol. Chem. 234, 2874-2876
- Pérez M. D., Puyol, P., Ena, J. M., and Calvo, M. (1993) J. Dairy Res. 60, 55-63

and Molinari, H. (2001) Eur. J. Biochem. 268, 4477-4488

- Frapin, D., Dufour, E., and Haertlè, T. (1994) Biochim. Biophys. Acta 1205, 105–112
- 10. Gasymov, O. K., Abduragimov, A. R., Yusifov, T. N., and Glasgow, B. J. (2001) Biochemistry **40**, 14754–14762 11. Qin, B. Y., Bewley, M. C., Creamer, L. K., Baker, H. M., Baker, E. N., and
- Jameson, G. B. (1998) Biochemistry 37, 14014-14023
- Bartels, C., Xia, T., Billeter, M., Guntert, P., and Wüthrich, K. (1995) J. Bio-mol. NMR 5, 1–10
 Goodford, P. J. (1985) J. Med. Chem. 28, 849–857
- 14. Kastenholz, M. A., Pastor, M., Cruciani, G., Haaksma, E. E., and Fox, T. (2000) J. Med. Chem. 43, 3033-3044
- 15. Guex, N., and Peitsch, M. C. (1997) Electrophoresis 18, 2714-2723 16. Verger, R., Rietsch, J., Dam-Mieras, M. C. E., and de Haas, G. H. (1976)
- J. Biol. Chem. 251, 3128–3133
- Lindahl, E., Hess, B., and van der Spoel, D. (2001) J. Mol. Model. 7, 306–317
 Madura, J. D., Briggs, J. M., Wade, R., Davis, M. E., Luty, B. A., Ilin, A., Antosiewicz, J., Gilson, M. K., Bagheri, B., Scott, L. R., and McCammon,
- J. A. (1995) Comput. Phys. Commun. 91, 57–95

- 19. Antosiewicz, J., McCammon, J. A., and Gilson, M. K. (1994) J. Mol. Biol. 238, 415 - 436
- 20. Fogolari, F., Ragona, L., Licciardi, S., Romagnoli, S., Michelutti, R., Ugolini, R., and Molinari, H. (2000) Proteins Struct. Funct. Genet. 39, 317–330
- 21. Vriend, G. (1990) J. Mol. Graph. 8, 52-56
- 22. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673-4680
- 23. Fogolari, F., Brigo, A., and Molinari, H. (2002) J Mol Recognit. 15, 377-392 24. Burova, T. V., Grinberg, N. V., Visschers, R. W., Grinberg, V. Y., and de Kruif,
- C. G. (2002) Eur. J. Biochem. 269, 3958-3968 25. Herrgard, S., Gibas, C. J., and Subramaniam, S. (2000) Biochemistry 39, 2921-2930
- 26. Wu, S. Y., Pérez, M. D., Puyol, P., and Sawyer, L. (1999) J. Biol. Chem. 274, 170 - 174
- 27. Collini, M., D'Alfonso, L., Molinari, H., Ragona, L., Catalano, M., and Baldini, G. (2003) Protein Sci. 12, 1596-1603
- 28. Pérez, M. D., Sanchez, L., Aranda, P., Ena, J. M., Oria, R., and Calvo, M. (1992) Biochim. Biophys. Acta 1123, 151-155

EF Loop Conformational Change Triggers Ligand Binding in β-Lactoglobulins

Laura Ragona, Federico Fogolari, Maddalena Catalano, Raffaella Ugolini, Lucia Zetta and Henriette Molinari

J. Biol. Chem. 2003, 278:38840-38846. doi: 10.1074/jbc.M306269200 originally published online July 11, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M306269200

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 28 references, 3 of which can be accessed free at http://www.jbc.org/content/278/40/38840.full.html#ref-list-1