
Using some results about the Lie evolution of differential operators to obtain
the Fokker-Planck equation for non-Hamiltonian dynamical systems of
interest
Marco Bianucci

Citation: Journal of Mathematical Physics 59, 053303 (2018); doi: 10.1063/1.5037656
View online: https://doi.org/10.1063/1.5037656
View Table of Contents: http://aip.scitation.org/toc/jmp/59/5
Published by the American Institute of Physics

Articles you may be interested in
Solution of Schrödinger equation for two different potentials using extended Nikiforov-Uvarov
method and polynomial solutions of biconfluent Heun equation
Journal of Mathematical Physics 59, 053501 (2018); 10.1063/1.5022008

Equivalence and symmetries for variable coefficient linear heat type equations. I
Journal of Mathematical Physics 59, 051507 (2018); 10.1063/1.5000589

On Madelung systems in nonlinear optics: A reciprocal invariance
Journal of Mathematical Physics 59, 051506 (2018); 10.1063/1.5025667

Geometric Lagrangian approach to the physical degree of freedom count in field theory
Journal of Mathematical Physics 59, 052901 (2018); 10.1063/1.5008740

PT-symmetric eigenvalues for homogeneous potentials
Journal of Mathematical Physics 59, 053503 (2018); 10.1063/1.5016390

Quantum localisation on the circle
Journal of Mathematical Physics 59, 052105 (2018); 10.1063/1.5001178

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/920663169/x01/AIP-PT/COMSOL_JCPArticleDL_WP_042518/comsol_JAD.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Bianucci%2C+Marco
/loi/jmp
https://doi.org/10.1063/1.5037656
http://aip.scitation.org/toc/jmp/59/5
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5022008
http://aip.scitation.org/doi/abs/10.1063/1.5022008
http://aip.scitation.org/doi/abs/10.1063/1.5000589
http://aip.scitation.org/doi/abs/10.1063/1.5025667
http://aip.scitation.org/doi/abs/10.1063/1.5008740
http://aip.scitation.org/doi/abs/10.1063/1.5016390
http://aip.scitation.org/doi/abs/10.1063/1.5001178


JOURNAL OF MATHEMATICAL PHYSICS 59, 053303 (2018)

Using some results about the Lie evolution of differential
operators to obtain the Fokker-Planck equation
for non-Hamiltonian dynamical systems of interest

Marco Bianuccia)

Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR-CNR),
Forte Santa Teresa, Pozzuolo di Lerici, 19032 Lerici, SP, Italy

(Received 13 December 2016; accepted 23 April 2018; published online 17 May 2018)

Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability
density function of a subpart of a given complex system is a classical issue of sta-
tistical mechanics. Zwanzig projection perturbation approach to this issue leads to
the trouble of resumming a series of commutators of differential operators that we
show to correspond to solving the Lie evolution of first order differential operators
along the unperturbed Liouvillian of the dynamical system of interest. In this paper,
we develop in a systematic way the procedure to formally solve this problem. In
particular, here we show which the basic assumptions are, concerning the dynamical
system of interest, necessary for the Lie evolution to be a group on the space of first
order differential operators, and we obtain the coefficients of the so-evolved operators.
It is thus demonstrated that if the Liouvillian of the system of interest is not a first
order differential operator, in general, the FPE structure breaks down and the master
equation contains all the power of the partial derivatives, up to infinity. Therefore, this
work shed some light on the trouble of the ubiquitous emergence of both thermody-
namics from microscopic systems and regular regression laws at macroscopic scales.
However these results are very general and can be applied also in other contexts that
are non-Hamiltonian as, for example, geophysical fluid dynamics, where important
events, like El Niño, can be considered as large time scale phenomena emerging from
the observation of few ocean degrees of freedom of a more complex system, including
the interaction with the atmosphere.©2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5037656

I. INTRODUCTION

As it is well known and it is also shown in Sec. III, in perturbation approaches in classical
statistical mechanics, and in particular when we exploit the powerful Zwanzig projection formal-
ism,1–5 we face the problem of solving the interaction representation of the perturbation Liouville
operator, namely, the following compound of operators: exp(L0t)LI exp(−L0u), where L is the Liou-
villian and the subscripts “0” and “I” stand for “unperturbed” and “interaction” (or “perturbation”),
respectively. Using the Hadamard lemma we can write the above expression as a power series of
commutators,

eL0uLI e
−L0u =LI + [L0,LI ]u + [L0, [L0,LI ]]u

2/2! + [L0[L0, [L0,LI ]]]u
3/3! . . . .

≡ eL
×
0 u[LI ], (1)

where L×0 [LI ]≡ [L0,LI ]≡L0LI − LIL0. For “solving” the above expression, we mean to find a
corresponding explicit, exact or approximate, partial differential operator, possibly of finite maximum
order in the power of derivatives. Notice that, in principle, this series leads to a partial differential
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operator with derivatives of all orders, up to infinity, a result that would make useless the corresponding
master equation for the Density Function (DF) of the system of interest. As we show in Sec. III,
to obtain just first and second order partial derivatives in the master equation from the Zwanzig
projection procedure, we need that the series of Eq. (1) give rise to a first order partial differential
operator.

Using the Lie formalism, solving Eq. (1) corresponds to find the “evolution” of the interaction
Liouvillian LI , along the unperturbed Liouvillian L0 in some appropriate phase space. Thus looking
for first order partial differential operator solutions of the same equation means studying the condition
for which the Lie evolution along a given Liouvillian is a group in the space of the first order
partial differential operators: we can say that Eq. (1) leads us to work with the Lie algebra. Actually,
introducing a Lie algebra is not necessary and it is not done in standard papers exploiting the Zwanzig
projection formalism. This is because most of them concern the foundation of statistical mechanics
issue, where the “fundamental” approach requires staying in a Hamiltonian framework.6–10 The
Hamiltonian nature of the system and the fact that in this field canonical equilibrium DF is an “a priori”
hypothesis impose both a Fokker-Planck-like structure for the effective reduced Liouvillian of the part
of interest and a fundamental relationship between the diffusion (second order partial derivatives) and
the dissipation (first order partial derivatives) terms. This relationship, often cited as the fluctuation
dissipation theorem, allow us to deal only with the deterministic parts of the Fokker-Planck Equation
(FPE), i.e., the first order partial derivatives, and to obtain the diffusion coefficients just by using the
fluctuation dissipation relationship (see Ref. 10 for a clear example of such an approach). From the
physicist point of view, in fact, in the Hamiltonian cases, fluctuation and dissipation processes come
out from the perturbation and the corresponding reaction forces, respectively, of the fast microscopic
degrees of freedom (often called thermal bath) to the slow system of interest. They are the way the
exchange of energy between the two systems is balanced at equilibrium, from a statistical point of
view. In a nutshell, from a formal point of view, the fact that in the FPE for the reduced DF of the
system of interest the coefficients of the second order partial derivatives are strictly related to those
of the first order ones allows us to skip the problem of solving Eq. (1), focusing all the attention to
the easier task of finding the drift terms.8,10–12

However, the Zwanzig formalism can be applied to obtain statistical information from dynamical
systems in a great variety of cases, well beyond the classical problem of foundation of thermody-
namics and statistical mechanics. For example, it can be applied to climate dynamics problems13

or to some geophysical fluid dynamics phenomena like El Niño/La Niña episodes14 where the
system of interest of the corresponding models is usually intrinsically dissipative and also the
interaction with the atmosphere is not of Hamiltonian type.14–18 In non-Hamiltonian cases, fluc-
tuation and dissipation could not balance each other, and they could be of different “strength” and
origin. Moreover, the equilibrium DF (if any) is not known “a priori” and often is not possible
to obtain an analytical expression for it. This means that to obtain the Liouville equation for the
reduced DF of the part of interest, we are forced to solve Eq. (1) and go deeper into the Lie algebra
formalism.

Of course, Lie algebra concepts are not new for physicists, who know and use them since the first
half of the previous century. For example, they are largely used in theoretical, classical, and quantum
physics as the generators of “infinitesimal” (Lie) group transformations. In classical mechanics, the
dynamics of Hamiltonian systems is usually described as symplectic flows where the Lie algebra
is associated with the Poisson Bracket (PB) operation between functions of the phase space of the
system.

Moreover, generalized PB between functions defines also co-symplectic fluxes, as in the case
of the equation of motion for the rigid rotor and fluid dynamics theories in Eulerian variables,19–23

where the associated semi-simple Lie algebra generates the SO(3) group. Lie integrators have been
introduced to exactly preserve conserved quantities in the numerical simulation of Hamilton-Jacobi
equations.24,25 It is also well known that the classical to quantum mechanics correspondence for a
given dynamical system is obtained by transforming the Lie-Poisson brackets among functions to
commutators (i.e., Lie algebras) among the operators associated with observables.

Here, as we have stated above, we are interested in finding the coefficients of the differential
operator corresponding to Eq. (1), and thus we shall deal with Lie algebras from a different point of
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view with respect to the above cited standard cases: we shall focus on the Lie evolution of differ-
ential operators along some Liouvillian. However, to achieve this goal, we have to put the problem
in a more general and formal context that leads us to some results that can be useful also beyond
the specific problem of statistical mechanics here addressed. For example, we see that for the Lie
evolution of functions, along a generic Liouvillian, we get an effective antisymmetric property of the
Liouvillian operator also for non-Hamiltonian (symplectic or co-symplectic) fluxes. Moreover, the
same, but under the limit of validity of Assumption C (see Sec. IV), holds also for the Lie evolu-
tion of differential operators. This fact could be used, for example, for an eigenvalue/eigenvector
approach to the Lie evolution of operators, something that we do not address in the present
paper.

For those interested in further generalizations, we think worthwhile observe that most of the
results we shall obtain hold under the sole assumption of working with differential operators acting
on “enough” smooth functions; thus, in principle, we could not require to have some physical system
to which we refer. Namely, in principle, we could develop the present results staying in the formal
framework of the pure differential geometry field.

Having said that, we want to stress again that the present work is mainly devoted to contribute
to solve specific physics problems in statistical mechanics. In fact, the main result of this paper, from
a physics point of view, shall be the generalized FPE stemming from a so large class of dynam-
ical systems that it can contribute to shed some light on the ubiquitous emergence, in nature, of
canonical/Gaussian DF and regular and linear Onsager-like regression laws and, at the same time, to
formally justify the possible departure from these standard statistical behaviors.

For those interested in a more formal and mathematical approach, we shall insert sometime,
sparsely, without following a true rigorous criterion, some hints on how to generalize in a more
abstract way the approach developed here.

This paper is organized as follows. In Sec. II, we give a general formal definition of the dynamical
system we are interested in. This part is devoted to those interested in a fundamental approach, from
a mathematical point of view, of the physical problem we focus on in the present work. In Sec. III,
we introduce, with a more physical point of view, the specific problem we want to contribute to
solve: finding the time evolution of the reduced DF for a dynamical system of interest weakly
interacting with other dynamical system. Here we show that the perturbation approach of this problem,
and in particular the Zwanzig projection procedure, leads us to face with the trouble of the Lie
evolution of differential operators along the Liouvillian of the system of interest. Thus in Secs. IV
and V we give a context adapted introduction of the Lie derivative and of the Lie evolution of
differential operators, and we find a representation of this evolution operation, in terms of the formal
analytic expression of the coefficients of the basis of the vector field. In Sec. VI we apply the results
of Sec. V to get the FPE for the reduced DF for the system of interest and we give a couple of
simple specific physical examples where these results are used. Finally, in Sec. VII, we consider
the special cases where the system of interest is Hamiltonian apart from some linear (dissipative or
explosive) terms and we show how it is possible to find, in an alternative way with respect to that of
Sec. VI, the explicit coefficients of the FPE. Section VIII is devoted to the conclusions of the present
work.

II. DEFINITION OF THE DYNAMICAL SYSTEM

The general, but in some way, well-defined, dynamical system we are interested in is given by

d
dt

x(t)=V(x; ξ), (2)

where bold case is for vectors, here x, V ∈RN (or a subset of RN ), i.e., x ≡ (x1, . . ., xN ),
V(x; ξ)≡ (V1(x; ξ), . . . , VN (x; ξ)) ∈RN , and Vi(x; ξ) ∈Ck(RN ) :RN→R, i ∈N, 1 ≤ i ≤N , and k is an
appropriate integer. ξ is, for now, just a parameter. As we shall see later, our approach is useful for
cases where the velocity vector field V(x; ξ) can be separated in two parts,

V(x; ξ)=−C(x) − ε I(x)ξ, (3)
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where the “forcing” �ε I(x)ξ represents a perturbation. We shall say that the system is unperturbed
when the coupling parameter ε is vanishing. The starting point of the present work is that the unper-
turbed time evolution x0(t + u) [u negative or positive, x(t) ≡ x] of the system is known, namely, that
we are able to integrate analytically, or numerically, Eqs. (2)–(3) for ε = 0.

For any function f (x) ∈C∞(RN ), the time derivative along the flux generated by Eq. (2) can be
written as (repeated indices imply summation from 1 to N)

d
dt

f (x(t))=

{
Vi(x; ξ)

∂

∂xi
f (x)

}
x=x(t)

. (4)

Thus V i(x; ξ) are the coordinates of the vector field of the flux Φt
V :RN→RN for t ∈R, generated by

Eq. (2), on the basis (∂/∂x1, . . ., ∂/∂xN ).
More in general, it can happen that the phase space of the system is mapped only locally by RN ,

and thus we should consider a given compact smooth Riemannian manifold M and a tangent vector
field V , which can be thought as a smooth assignment of a tangent vector V (p; ξ) to each point
p ∈ M. The vector field defines a one-parameter family of maps, Φt

V : M→M for t ∈R, called the
flow of V . The flow is formally defined as the unique solution of the differential equation,

d
dt
Φ

t
V (p)=V(p; ξ), Φ

0
V (p)= p. (5)

Then, for a function f (p) ∈ C∞(M), the covariant derivative DV (f ) of f with respect to V is given by
the inner product, in the tangent space of p, of the tangent vector V and ∇p (the gradient of f on p),

DV (f )(p)=V(p; ξ) · ∇pf (p). (6)

Notice that, as we have already stressed, apart from the present section, including Subsection II A,
devoted to define the general formal framework we are considering, for the sake of simplicity, we
will focus on the case where the manifold M is RN (or a subset of RN ); thus we shall use mainly the
direct notations of Eqs. (2) and (4) rather than those in Eqs. (5)–(6).

A. Some more formal considerations

This work gives some formal tools for the study of “observables” of interest of a dynamical
system, where often the only possible measurable quantities of the system are averages in the phase
space of the system, using a DF as weight. Thus we make the following:

Assumption A. The state of the system is defined, at any given time, by a DF on the whole phase
space, ρ(p; t).

In practice we develop our approach considering to stay in a Riemannian manifold M given by
a differentiable manifold of dimension N endowed with a Riemannian metric on M (actually, for the
sake of simplicity, we shall consider M =RN , i.e., the flat Euclidean space equipped with the ordinary
Euclidean intrinsic metric). Therefore the DF measure of a set X ∈M is

µρ(X)=
∫
X
ρ(q; t)dq. (7)

The usual Lebesgue measure of the set X is denoted by µL(X), and the density of the Lebesgue
measure is the uniform density 1/µL(M) for all points q ∈ M. Thus dq = µL(dq) and we normalize
the DF as µρ(M) = 1.

Working on a differentiable manifold of dimension N endowed with a Riemannian metric, the
next requirement is satisfied directly by Assumption A, Eqs. (2)–(4), and the continuity equation;
however, for a more general approach we introduce the following:

Assumption B. We operate in a Banach space where a linear temporal evolution operator L of
the DF ρ(q; t) is defined as

∂

∂t
ρ(q; t)=Lρ(q; t), (8)

with, again, q ∈ M. We call L the Liouville operator or the Liouvillian.
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Using this assumption we can introduce the dual space and the associated Liouville adjoint
operator L+ in the following way:

d
dt
〈f (q)〉ρ =

∫
M

f (q)Lρ(q; t) dq=
∫

M

(
L+f (q)

)
ρ(q; t) dq, (9)

where the function f (q) belongs to the Banach space and the symbol 〈. . .〉ρ means the average with
the DF ρ(q; t) as weight.

Coming back for simplicity to M =RN (or a subset of RN ), i.e., q = x, and to the dynamical
system described by the Lagrangian (or Langevin) picture in Eq. (2), because the time evolution
is deterministic, using the continuity condition, we have that the Liouville operator is given by the
following first order partial differential operator:

LV =−
∂

∂xi
Vi(x; ξ) (10)

and
d
dt

f (x)=
(
L+

V f (x)
)
. (11)

Assuming the DF vanishes at the boundary of the set of the possible states of the system (or making
it to vanish at the boundary), we have

L+
V =Vi(x; ξ)

∂

∂xi
. (12)

Comparing this with Eq. (4) we have that the adjoint Liouville operator is the vector field associated
with the flux induced by the group (or semigroup) of transformation Φt

V of our dynamical system.
From Eq. (12) it follows that the time evolution by advection, for a time u, of any analytic function
s : RN→R, starting from s(x) at u = 0, is given by

s(xV (t + u))=
(
eL

+
V us(x)

)
. (13)

Notice that in the rhs of the above equation the time “t” does not enter; thus it should not be present
also in the lhs of the same equation. Actually, for the lhs of Eq. (13), we should use the more rigorous
notation s(xV (x; u)), where the first argument of the function xV (a; u) is the initial condition, i.e.,
xV (a; 0) = a. However, we think that the expression in Eq. (13) makes the notation less heavy, and it
can be directly connected to the usual Lagrange (or Langevin) picture, where x(t) = x.

In the rhs of Eq. (13), we have used the big parentheses to emphasize the limits of application
of the operator eL

+
V u, namely, the rhs of Eq. (13) is a function. It is important to specify that, to avoid

confusion in the notation, as we are going to work with the algebra of operators.

III. PERTURBATION APPROACHES AND THE LIE EVOLUTION
OF DIFFERENTIAL OPERATORS

As we stated in the Introduction, we are interested in the case where the tangent vector V can
be separated in two parts as in Eq. (3), where �ε I(x)ξ is considered as a “force” that perturbs the
system of interest. Therefore the Liouvillian in Eq. (10) can be written as

LV =L0 + ξLI , (14)

where

L0 ≡
∂

∂xi
Ci(x) (15)

and

LI ≡ ε
∂

∂xi
Ii(x), (16)

from which Eq. (8) becomes

∂

∂t
ρ(x; t)= L0ρ(x; t) + ξ LI ρ(x; t). (17)
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Usually, for a perturbation power expansion of the Liouville equation (17), one works in the
interaction representation

∂

∂t
ρ̃(x; t)= ξ L̃I (t) ρ̃(x; t), (18)

where
ρ̃(x; t)≡ e−L0t ρ(x; t) (19)

and
L̃I (t)≡ e−L0tLI e

L0t . (20)

As we already stated in the Introduction, Eq. (20) gives the central operator we focus on. It is clear from
Eqs. (18) and (20) that it would be really useful to have, if possible, an explicit analytic expression
of it, in terms of the basis (∂/∂x1, . . ., ∂/∂xN ) of the tangent manifold of the states of the system at
any point x. This is actually the issue that we address in this paper.

The specific case of perturbation approach we are interested in is where the points x of the system
of Eq. (2) represent the states of a part of interest of a larger dynamical system (the dot stays for d/dt),

ẋ=−C(x) − ε I(x)ξ,

ξ̇ =F(ξ, π, εh(x)),

π̇ =Q(ξ, π, εh(x)). (21)

In this case, the parameter ξ is not fixed but it represents an extra variable of the system, which
from now on we shall call booster, mimicking, usually, a more or less complex set of external
variables interacting with the system of interest.11,26–28 Thus, the booster variable ξ is part of a
general “external environment” of which the dynamics is given by the velocity vector field (F, Q). In
turn, this dynamics is affected by the smooth function εh(x), representing the “reaction force” of the
system of interest on the perturbing environment. For the sake of simplicity, we also assume h(0) = 0.
The equation of motion for the DF of the part of interest can be obtained using a Zwanzig-like formal
projection approach in the perturbation version of Refs. 2, 3, 10, 12, and 29. In this approach, we
hide the dynamics and the initial state of the “external” part (ξ, π) by some system-specific average
procedure. Consequently, the evolution of the DF of the part of interest is not anymore deterministic
and, to the lowest non-vanishing order on LI , the time evolution of the reduced DF, obtained by this
projection/perturbation approach, is governed by an integro-differential equation,

∂

∂t
ρ(x; t)=L0ρ(x; t) +

{
LI

∫ t

0
du φ(u) eL0uLI e

−L0u
}
ρ(x; t)

+

{
LI

∫ t

0
du εS(u) h(x0(t − u))

}
ρ(x; t), (22)

where the LiouvilliansL0 andLI are defined in Eqs. (15) and (16), respectively, φ(u) is the (unnormal-
ized) unperturbed (ε = 0) auto-correlation function of the booster variable ξ, and S(u) is the response
function of the average of ξ to the reaction term h(x), having assumed that the average value of ξ is
vanishing for ε = 0. Moreover, in Eq. (22) we have used the notation introduced in Eq. (13) for the
unperturbed (here backward) evolution of x,

x0(t − u)≡
(
e−L

+
0 ux

)
. (23)

Notice that the last term in the rhs of Eq. (22), resulting from the reaction of the system of interest
on the external (ξ, π) dynamical system, is a first order partial derivative operator, i.e., it induces an
additional deterministic drift that, in certain cases, can be identified as a dissipation force.3 However
in the present work, the focus is on the second term in the rhs of Eq. (22) that contains the expression
in Eq. (1) [changing u with �t, it is also the same as of Eq. (20)]. This operator is usually drastically
simplified by using some approximations, involving time scale separation (see, for example, Ref. 29),
or specific system arguments.10 In Ref. 2, for the specific case we dealt with there, we have shown
that this term gives rise exactly to a first order partial derivative; therefore, Eq. (22) results to be a
FPE. Moreover, in the same paper, we were able to obtain the analytic expression of this first order
partial differential operator.
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Here we shall show how and when it is possible in general to get a formal expression of our
central operator of Eq. (1), in terms of the basis (∂/∂x1, . . ., ∂/∂xN ) of the vector field of the fluxes
on the phase space in the unperturbed (ε = 0) velocities’ vector field Ci of Eq. (3).

For further use, we introduce the left and the right representations of a differential operator of the
vector field: in general a Liouvillian is written in the left representation, as for L0 and LI in Eqs. (15)
and (16), respectively, i.e., in the form ∂jf j(x), with the components of the basis of the vector field
put on the left of the velocity field. This is because it evolves the DF in the expectation calculus of
observables of interest. However in standard differential calculus, a vector field is written in the right
representation gj(x)∂j, i.e., with the components of the basis of the vector field on the right. Of course
we have ∂jf j(x) = f j(x)∂j + (∂jf j(x)); thus the left and the right representations coincide for solenoidal
vector fields (as it is the case for Hamiltonian flows). Notice that in the Liouville framework to any
LiouvillianL= ∂jfj(x) (left representation) is associated the adjoint one defined asL+ =−fj(x)∂j (right
representation) that, in the Lagrangian point of view, evolves directly the observable of interest inside
the expectation calculus, instead of evolving the DF. In the following, we shall use also the definitions
“left kind” and “right kind” for a first order differential operator to refer to a vector field that is written
in the left representation ∂jf j(x) and to vector field that is written in the right representation f j(x)∂j,
respectively.

IV. THE LIE DERIVATIVE

Let O be the set of operators f → s, where f and s are smooth functions on a generic set S (here
we do not need to identify it better) to R, and let us choose an operator A ∈O. For any B ∈O, we
define the adjoint-Lie operatorA×[B], associated with the operatorA and applied toB as the standard
antisymmetric compound of operators (the commutator),

A×[B] f ≡ [A,B] f ≡AB f − BA f ≡ (AB − BA) f . (24)

The adjoint-Lie operator so defined introduces a Lie algebra structure in the set O. It is well known
that, having a general Lie algebra (for example, a vector field), the adjoint-Lie operator of the algebra
is a derivative-like operator. In fact, for any A,B,D ∈O, if we apply the definition of Eq. (24), the
usual Leibniz rule holds (very easy to demonstrate),

A×[BD] · · ·=BA×[D] · · · + A×[B]D · · · (25)

and, likewise,

(AB)×[D] · · ·=AB×[D] · · · + A×[D]B · · · . (26)

Thus we can say that the definition of the adjoint-Lie operator in Eq. (24) corresponds to the Lie
derivative “along A” of the generic operator B as usually introduced in differential geometry. With
the introduced Lie algebra structure of the set O, we can obtain a Lie group defining the exponential
adjoint-Lie operator as

B(u) · · · ≡ eA
×u[B] · · · ≡

∞∑
k=0

uk

k!
A×k[B] · · · , (27)

where u ∈R. Thus, we shall refer to the exponential adjoint-Lie operator as the Lie evolution induced
by A (or along A). From the definitions given in the previous equation, it is clear that the following
equation holds true:

d
du
B(u) · · ·=A×[B(u)] · · · . (28)

Notice that, using in Eq. (27) the Leibniz rule of Eq. (26), it is straightforward to obtain the
following result (Hadamard Lemma):

eA
×u[B] · · ·= eAu Be−Au · · · . (29)

From the Hadamard lemma, we have the trivial but very important property,
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eA
×u[BD] · · ·= eA

×u[B] eA
×u[D] · · · , (30)

which means that the Lie evolution of the composition of many operators is equal to the composition
of the Lie evolution of each operator, exactly as it happens for the standard time evolution of product
of functions. Using this property we have that for any function s(X) that can be represented as a power
series over its general argument X, the following important equations hold:

eA
×u[s(X)] · · ·= eA

×u


∞∑
k=1

akXk

· · ·

=

∞∑
k=1

ak(eA
×u[X])k · · ·= s

(
eA
×u[X]

)
· · · . (31)

It is worthwhile stressing that in the previous equation the argument X can be a point of the space
RN (or M) of the dynamical system of Eq. (2) or it can also be a generic operator ∈O, for example,
a differential operator.

Coming back to our specific case, comparing Eqs. (29)–(30) with Eqs. (15), (16), (20), and (22),
we see that we can identify the unperturbed Liouvillian L0 = ∂iCi with A, ∂j (i.e., the natural basis of
the tangent vector field on the manifold of the system) with B and the (smooth) functions I(x) with D.
Thus, we are lead to conclude that to evaluate the Lie evolution of the interaction Liouville operator
LI along the unperturbed Liouvillian L0, we have to solve the Lie evolution of both the function I(x)
and the elements ∂j of the basis of the vector field.

Notice that using Eq. (31) this result can be generalized also to the cases where the perturbation
Liouville operator LI is not a first order partial derivative, but it is a general analytic function of
differential operators (for example, when the perturbation is given by a diffusion process).

To evaluate the Lie evolution, induced by the unperturbed Liouvillian L0, of the elements ∂j of
the basis of the vector field, it is useful to have in mind the following basic results (1 ≤ i, j ≤ N, f and
s are enough smooth functions):

∂i
×
[
∂j

]
· · ·= 0, (32)

∂i
×[s(x)] · · ·= (∂is(x)) · · · , (33)

f (x)×[s(x)] · · ·= 0, (34)

f (x)×
[
∂j

]
· · ·=−

(
∂jf (x)

)
· · · . (35)

Equations (33) and (35) are equivalent to each other because of the antisymmetric property of the
elements of the Lie algebra, and they mean that the Lie derivative along the basis of the tangent vector
field of a given function is not an operator, but just the ordinary derivative of the same function,
along the direction of the basis of the tangent vector field. More in general we have the following
fact:

Proposition 1. If A and B are generic partial differential operators with derivatives up to order
m and l, respectively (including the case m = 0 or/and l = 0 when A or/and B are just functions of
the variables of the system), then the Lie evolution of B along A, defined as eA

×u[B], is generally
a partial differential operator with all order, up to infinity, partial derivatives, apart from the cases
m = 0, where it is a function, and m = 1 where it is a partial differential operator of the same
maximum order of B.

Proof. To demonstrate Proposition 1, let us start from the case m = 0, i.e., where the operator A
is just a function: A= f (x). In this case, it is convenient to notice that if B= s(x)∂l

j , with l, j ∈N : (0 ≤
j ≤N), exploiting Eq. (30), we have

ef (x)×u
[
s(x)∂l

j

]
· · ·= ef (x)×u[s(x)]

(
ef (x)×u

[
∂j

] ) l
· · · , (36)
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but ef (x)×u[s(x)]= s(x) and expanding ef (x)×u
[
∂j

]
in power series as in Eq. (27), we see that the first

order term of the series is given by −
(
∂jf (x)

)
while the higher orders vanish; thus, we obtain

ef (x)×u
[
s(x)∂l

j

]
· · ·= s(x)

(
1 −

(
∂jf (x)

) l
)
· · · , (37)

which demonstrates Proposition 1 for m = 0. For m ≥ 1, we leave to the reader to check directly that
the nth term of the series eA

×u
[
s(x)∂l

j

]
contains derivatives of order up to k = l + (m � 1) n [including

the trivial case l = 0; hint: as in Eq. (37), exploiting Eq. (30), we can reduce the demonstration to
the simpler case l = 1]. Thus, for n→∞, we have that k →∞, apart from the case where m = 1, for
which k = l. □

Notice that in some particular cases, also for m > 1 the maximum order of the partial derivative
operator, corresponding to the Lie evolution of B along A, can be finite, let says = k̄, because the
coefficients of the differential operators with k ≥ k̄ vanish for any n. The simplest case is when
A×[B]= 0, i.e., when A and B commute to each other for which eA

×u[B]=B. A less trivial case is
considered by Corollary 1 at the end of the present section.

Here, as previously done in this section, we have to identify the partial differential operator A
with the unperturbed Liouvillian L0 of Eq. (15) that drives the deterministic (but not necessarily
reversible) time evolution of the DF of the system of interest in Eqs. (2)–(3). Thus A=L0 is a
first order partial differential operator (i.e., m = 1) of the left kind of the manifold of the states of
the system. Therefore, from Proposition 1, we have that the corresponding exponential adjoint-Lie
operator preserves the order of the differential operator to which it is applied. In turn, this means that
eL
×
0 u[∂i] is a first order partial differential operator (it is also straightforward to show that it is of the

same left kind of L0), i.e., eL
×
0 u[. . . ] is a Lie group on the vector field of the manifold of the states of

the system (or, better, on the tangent bundle of the manifold).
This fact is almost trivial from a mathematical point of view, but we think worthwhile stressing

its important role in the physics problems we are dealing with here.
From Proposition 1, we also have that the exponential adjoint-Lie operator eL

×
0 u[. . . ] applied to

a function of the variables of interest (i.e., l = 0 and m = 1) is not a differential operator, but it is still
a function. Actually, we can state something more.

Proposition 2. Let f (x) = (f 1(x), . . ., f N (x)) be a vector of N analytic functions fj(x) ∈C∞(RN ):
RN→R, 1 ≤ j ≤ N. Let A be a generic linear differential operator C∞(RN )→C∞(RN ) of the form

A · · · ≡ ∂i fi(x) · · · (38)

defined in a proper Banach or Hilbert space according to the specific case such that

A+ · · · ≡ −fi(x) ∂i · · · (39)

is the adjoint of A. For any analytic function s(x) :Rn→R, the following equalities hold true (we
recall that we use x(t) ≡ x):

eA
×u[s(x)] · · ·= e(−A+)×u[s(x)] · · ·=

(
e−A

+us(x)
)
· · ·= s(xA(t − u)) · · · , (40)

where xA(t − u)≡
(
e−A

+ux
)
.

Taking the limit u→ 0 in the previous result, we have the following lemma:

A×[s(x)] · · ·=
(
−A+)×[s(x)] · · ·=

(
−A+s(x)

)
· · · . (41)

Note that Proposition 2 means that the Lie evolution along the operator A of Eq. (39) of any analytic
function s(x) is identical to the Lie evolution along the (opposite sign) adjoint operator −A+, and it
is not an operator, but is the standard back time evolution of the function s(x) along the flux induced
by A+.

Proof of Proposition 2. To demonstrate that Eq. (40) holds for the exponential adjoint-Lie oper-
ator, we start from the first order term of the series that defines the exponential operator, i.e., we start
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demonstrating Eq. (41). The equalities in Eq. (41) can be obtained directly using the Leibniz rule in
Eq. (26),

A×[s(x)] · · · ≡ (∂i fi(x))×[s(x)] · · ·= (∂i s(x))fi(x) · · · , (42)

(
−A+)×[s(x)] · · · ≡ (fi(x) ∂i)

×[s(x)] · · ·= fi(x)(∂i s(x)) · · · . (43)

Then, it is straightforward to check that the principle of mathematical induction can be used to shift
this property to all the terms of the series that defines the exponential adjoint-Lie operator. □

From the physicist point of view, the importance of Proposition 2 is clear when we set
f i(x) = Ci, i.e., A=L0 as usual in the present work. In fact in this case we have

L×0 [s(x)] · · ·=
(
−L+

0s(x)
)
· · ·=

(
−

d
dt

s(x)

)
· · · (44)

and
eL
×
0 u[s(x)] · · ·= e(−L+

0 )×u[s(x)] · · ·=
(
e−L

+
0 us(x)

)
· · ·= s(x0(t − u)) · · · . (45)

It is important to note that Eq. (45) implies that as it regards the Lie evolution of functions, the
LiouvillianL0 = ∂i Ci and the opposite of its adjoint −L+

0 =Ci ∂i generate the same flux, corresponding
to the simple backward evolution of the function itself (i.e., the left and right representations of the
Liouvillian are, in this sense, equivalent, despite the fact that the velocity vector field is not solenoidal).
In some way, this equivalence generalizes the case of symplectic or co-symplectic fluxes, where we
have the identity L0 =−L+

0 . Unfortunately, when the Lie evolution along the Liouvillian is applied
to a differential operator, we do not have, in general, the equivalence between L0 and −L+

0 . However
this equivalence is desirable because it simplifies a lot the calculus and it makes possible a direct
connection with some classical results on Lie Algebras, where the differential operators are usually
written in the right representation instead of the left one. Now we shall show in which condition the
equivalence between L0 = ∂i Ci and −L+

0 =Ci ∂i holds also for the Lie evolution of operators.

Proposition 3. If L0 = ∂i Ci, the following conditions are equivalent:

1. L×0
[
L+

0

]
= (L+

0)×
[
L+

0

]
= 0, i.e., the Liouvillian commutes with its adjoint,

2. ∀j|1 ≤ j ≤ N, (∂j∂iCi) = 0, i.e., we have constant divergence of the velocity vector field Ci,
3. for the Lie evolution of vector fields of the tangent bundle, L0 is equivalent to −L+

0 , i.e., for any
element αj(x)∂j of the vector space, we have

eL
×
0 u
[
αj(x)∂j

]
= e(−L+

0 )×u
[
αj(x)∂j

]
, (46)

from which, taking the first order in u,

L×0
[
αj(x)∂i

]
= (−L+

0)×
[
αj(x)∂j

]
. (47)

Thus we introduce the following:

Assumption C. The Liouvillian L0 of the unperturbed system of interest in Eq. (15) commutes
with its adjoint L+

0 (or one of the three equivalent conditions of Proposition 3 is satisfied).

Hereafter, unless explicitly stated, to stay in a more general context, we do not assume that the
above assumption is fulfilled; however, the specific application examples that we shall consider later
ahead shall share the validity of this assumption.

Proof of Proposition 3. We start the demonstration showing that condition (2) implies condition
(1). This is very easy because L×0

[
L+

0

]
= (Ck∂k∂iCi), which is vanishing if condition (2) holds. The

reversal is not so obvious, but it comes out consideringL0 as the generator of the flux in the manifold of
x: 0=L×0

[
L+

0

]
=−(L+

0∂iCi)=−d(∂iCi)/dt→ the divergence of the velocity vector field Ci is constant.
Now we demonstrate that from condition (3) condition (1) follows. Actually this is easy; in fact, it
is enough to choose αj = Cj in Eq. (47) to have directly L×0

[
L+

0

]
= (−L+

0)×
[
L+

0

]
= 0. For the reverse,

we use the equivalence between conditions (1) and (2) and we demonstrate that (2) implies (3).
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As in the cases of the previous propositions, to demonstrate Eq. (46) assuming condition (2) to
hold, we start demonstrating the equation for the first order term, corresponding to Eq. (47); then
it is easy, by induction, to shift the same property to all the terms of the power series that defines
the adjoint-Lie evolution in Eq. (46). For this purpose, we first use the Leibniz rule: L×0

[
αj(x)∂j

]

=L×0
[
αj(x)

]
∂j + αj(x)L×0

[
∂j

]
. In the first term of the rhs of this equation, Proposition 2 allows us to

substitute L0 with −L+
0 . Thus it remains to show that the same holds for the second term, but that is

easy to do L×0
[
∂j

]
=−∂i (∂jCi)=−(∂jCi)∂i − (∂j∂iCi) that, assuming condition (2) is satisfied, ends

the demonstration. □

Notice that under Assumption C, using the Lie time evolution (that, thanks to Proposition 2, for
functions is equivalent to the standard time evolution), we can substitute L0 = ∂j Cj with (L0 −L+

0)/2
and we recover the antisymmetric property of the Liouvillian operator also for non-Hamiltonian
(symplectic or co-symplectic) fluxes. This fact could be used for an eigenvalue/eigenvector approach
to the Lie evolution of operators, but it is beyond the scope of the present work.

Now we consider an important non-trivial case that is an exception to Proposition 1. In fact, in
this case the operator A is a field of differential operators of order m > 1, but eA

×u[B] is still a finite
order tensor field of differential operators. This is specified and demonstrated by the following:

Corollary 1. Let the set {e1,e2, . . . ,eN l } be a basis of the tangent tensor field of order l on
the manifold of the system. If A can be divided in two parts A=A1 + A2, where A1 is a differ-
ential operator of order m1 = 1 with coefficients that are linear functions of the vector x of the
phase space of the system (A1 = ∂jajkxk | ajk constants), while A2 is a differential operator of order
m2 > 1, commutating with all the N l elements of the set {ei}: A×2 [ei]= 0, i = 1, . . ., N l, then, for any
i = 1, . . ., N l, the Lie evolution of ei along A=A1 + A2 is the same differential operator of order l
as for the case A=A1.

Proof. For the sake of simplicity, we assume that l = 1, namely, that ei is a basis of the tangent
vector field and, without loss of generality, we can assume that it is the natural basis: ei = ∂i, i = 1, . . .,
N. As usual, using Eq. (30) it is straightforward to generalize the demonstration for the case where
l > 1. Then we define the setEO

i (u), i = 1, . . ., N, as the Lie evolution of the basis of ei along the generic

operator O; EO
i (u)≡ eO

×u[ei]. From Proposition 1, we know that EA1
i (u) is a first order differential

operator and, from A1 = ∂jajkxk , we have A×1 [ei]=A×1 [∂i]=−∂jaji. Thus, exploiting Eq. (28), we get

d
du
E
A1
i (u)=A×1

[
E
A1
i (u)

]

= eA
×
1 u
[
A×1 [∂i]

]
=−eA

×
1 u
[
∂jaji

]
=−E

A1
j (u) aji. (48)

Concerning EA
i (u)= eA

×u[ei], we have

d
du
E
A
i (u)= (A1 + A2)×

[
E
A
i (u)

]
= eA

×u [(A1 + A2)×[∂i]
]

= eA
×u
[
A×1 [∂i]

]
=−eA

×u
[
∂jaji

]
=−EA

j (u) aji. (49)

Equation (49) is formally identical to (48); therefore, sinceEA
i (u) andEA1

i (u) satisfy the same equation

with the same initial conditions (EA
i (0)=EA1

i (0)= ∂i), these operators are equal to each other for
any u. □

The above corollary is useful, for instance, to easily deal with the projection approach also when
the unperturbed system of interest includes second order differential operators as standard diffusive
processes,

A=L0 = ∂i aikxk + Di ∂
2
i , (50)

where the diffusion coefficients Di are constants. This is done as sketched in the following. First, we
notice that in this case Proposition 2 does not apply, and the Lie evolution along L0 of a function of x
is not a function, but a differential operator: L×0

[
xj

]
= ajkxk + 2Dj∂j. More precisely, using Corollary
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1 it is possible to show that a linear function of x is “Lie evolved” to a first order partial differential
operator, while a quadratic function is “Lie evolved” to a second order partial differential operator
and so on. This fact, if exploited in Eq. (22) with LI given in Eq. (16), leads to the result that when
the unperturbed Liouvillian is of the kind in Eq. (50), the FPE structure breaks down and the master
equation of Eq. (22) is an infinite series of differential operators of any order, apart from the case
where the interaction Liouvillian LI depends linearly on the variables of the system of interest. In
fact, if I(x) ∝ x, the master equation is solvable and it is a third-order differential operator. For the
proof of this and for its consequences from a physical point of view, we refer the reader to a next
paper we are working on.

V. SOLVING THE LIE EVOLUTION OF DIFFERENTIAL OPERATORS

With the Assumptions A-B and the Propositions 1-3 of Secs. II–IV we are now in the right
position to solve the Lie evolution of differential operators. From Proposition 1, we have that the
Lie evolution of vector fields along the Liouvillian L0, as, for example, that in Eq. (20), is still a
vector field. Now we want to find the coefficients of this Lie-evolved vector field. Notice that if the
differential operator that we want to evolve is given by αj(x)∂j, from Proposition 2 we have

eL
×
0 u
[
αj(x)∂j

]
= αj(x0(t − u)) eL

×
0 u
[
∂j

]
. (51)

Thus all we need to evaluate is the Lie evolution of the basis of the vector field:

Ej(u)≡ eL
×
0 u
[
∂j

]
. (52)

Taking the derivative with respect to u of the previous equation, we obtain

d
du
Ej(u)=L×0

[
eL
×
0 u[∂j]

]
= eL

×
0 u
[
L×0 [∂j]

]
, (53)

from which, using L×0
[
∂j

]
=−∂i (∂jCi), Eq. (30), and Proposition 2, we get

d
du
Ej(u)=−Ei(u)(∂jCi)x=x0(t−u)

[
=−(∂jCi)x=x0(t−u)Ei(u) under the validity of Assumption C

]
, (54)

where (∂jCi)x=x0(t−u) ≡ (e−L
+
0 u∂jCi) is the unperturbed backward evolution of the partial derivatives

of the unperturbed velocity vector field Ci. Equation (54) represents a set of N linear ordinary non-
autonomous differential equations (ODE) that can be solved by standard methods, in terms of the
initial conditions Ej(0)= ∂j for j = 1, 2, . . ., N. Of course, to solve this linear ODE, we need to know
the coefficients (∂jCi)x=x0(t−u), namely, we must be able to integrate (analytically, numerically, under
some case-specific approximations, etc.) the unperturbed equation of motion for x(t) in Eq. (2) with
ε = 0. But that is our starting point, as we stated in the Introduction and in Sec. II. However there is
a way to obtain directly the explicit solution of Eq. (54). As we noted above, from Proposition 1, we
know that the operator Ej(u) in Eq. (52) is a vector field, i.e., it contains first order partial derivatives
with some position dependent coefficients,

Ej(u)≡ eL
×
0 u
[
∂j

]
= ∂k βj k(x; u)
[
= βj k(x; u) ∂k under Assumption C

]

βj k(x; 0)= δjk , (55)

where δjk is the Kronecker tensor. Thus βj k(x; u) are the components on the dual space of the vector
field of the operator Ej(u). On one hand, the u derivative of the last equation gives

d
du
Ej(u)= ∂k (

d
du

βj k(x; u))
[
= (

d
du

βj k(x; u)) ∂k under Assumption C

]
(56)
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but, from the other hand, exploiting Eq. (28) we also have

d
du
Ej(u)= ∂k L×0

[
βj k(x; u)

]
+ L×0 [∂k] βj k(x; u)

[
=L×0

[
βj k(x; u)

]
∂k + βj k(x; u)L×0 [∂k] under Assumption C

]
. (57)

Comparing to each other the expressions of Eqs. (56)–(57) for the time evolution of E(u) and consid-
ering again that L×0 [∂k]=−∂h (∂kCh), we obtain the following system of equations for the evolution
of the coefficients βj k(x, u):

d
du

βj k(x; u)=−(L+
0 βj k(x; u)) − (∂hCk)βj h(x; u),

βj k(x; 0)= δjk . (58)

Equation (58) is a system of linear partial differential equations (PDEs) for the coefficients of the
operator E(u) that results from the Lie evolution of the jth element of the basis of the vector field on
the tangent bundle. Thus, with respect to the linear ODE in Eq. (56) one could think that Eq. (58)
does not simplify our task of finding the analytical expression for E(u). However that is not true
because the partial derivative operator in Eq. (58) is just the unperturbed Liouvillian of the system,
i.e., it is the time evolution operator that generates the unperturbed flux in the manifold of the states
of the system. We recall that we assume we are able to solve in some way the unperturbed equation of
motion of the system. Taking into account this fact, we have the following main result of the present
paper:

Proposition 4. Under the validity of Assumptions A-B, the coefficients of the Lie-evolution of the
basis of the vector field, as defined in Eq. (55), are given by

βj k(x; u)=
(
e−L

+
0 u∂j(x0k (t + u))

)
≡

(
∂j(x0k (t + u))

)
x=x0(t−u)

, (59)

where 1 ≤ j, k ≤ N, and

x0k (t + u)≡
(
eL

+
0 uxk

)
(60)

in which L0 is the Liouville operator of Eq. (15).

Proof. The proof can be carried out in two different ways. The first one is finding the
formal solution of Eq. (58). For that we exploit the interaction picture defining the variable
β̃j k(x; u)≡ exp(L+

0u)βj k(x; u). Using this definition in Eq. (58) we have

d
du

β̃j k(x; u)=−(∂hCk)x=x0(t+u) β̃j h(x; u),

β̃j k(x; 0)= δjk , (61)

where −(∂hCk)x=x0(t+u) ≡−(eL
+
0 u∂hCk) is the unperturbed forward time evolution of the partial deriva-

tives of the velocity field �Ck . By inspection, considering that dxi(t + u)/du = �Ci(t + u), we can
easily verify that the solution of the system of Eq. (61) is given by

β̃j k(x; u)= ∂j(x0k (t + u)). (62)

Getting out of the interaction picture the first proof ends. The second way to demonstrate Proposition
4 exploits directly the definition of the Lie-evolution of the basis of the vector field of Eq. (52),
applied to a generic analytic function s(x) :Rn→R (we recall that the parentheses indicate the limits
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of application of the included operator, namely, the result is a function and not an operator),(
eL
×
0 u
[
∂j

]
s(x)

)
≡

(
eL0u∂je

−L0us(x)
)

=
(
eL0u∂je

−L×0 u[s(x)]e−L0u
)

=
(
eL
×
0 u
[
∂js(x0(t + u))

] )
=

(
eL
×
0 u
[(
∂js(x0(t + u))

)
+ s(x0(t + u))∂j

] )
=

(
eL
×
0 u
[(
∂jx0k (t + u)

)
(∂ks(x))x=x0(t+u)

]
+ s(x)eL

×
0 u
[
∂j

] )
=

(
eL
×
0 u
[(
∂jx0k (t + u)

)]
eL
×
0 u
[
(∂ks(x))x=x0(t+u)

] )
+

(
s(x)eL

×
0 u
[
∂j

] )
=

(
eL
×
0 u
[(
∂jx0k (t + u)

)]
∂k s(x)

)
+

(
s(x)eL

×
0 u
[
∂j

] )
, (63)

where we have repeatedly used Eq. (40) of Proposition 2. Now, using Eq. (55) in the lhs and in the
last term of the last line of the above equation and from the fact that the function s(x) is generic, the
proof is completed. □

Proposition 4 looks quite formal but actually gives rise to expressions that can be evaluated in
many important cases when the unperturbed equation of motion of the system is “known” (i.e., it
can be solved analytically) or when it enters in convolution expressions with fast decaying kernels,
where it can be approximated by Taylor’s power expansion (see Sec. VI for details).

To give an intuitive interpretation of the meaning of Eq. (59), let us start from the definition of
the operator Ej(u), representing the Lie evolution of the vector field along the Liouvillian and let
us apply it to a generic function s(x) as in Eq. (63). In the third line of this equation, we clearly
see that the operator Ej(u) evolves for a time u the function to which it is applied, then it takes its
derivative in the “j” direction, and, finally, it evolves the result back to the initial time. As the partial
derivative does not commute with the time evolution (driven by the operator L0), at the end we
have a different result with respect to the same partial derivative ∂j applied to the function s(x) at
the initial time. However, Proposition 1 states that the result is again proportional to the differential
of s(x), but, in general, along a different direction. Proposition 4 asserts that this direction and the
rescaling factor depend on the time parameter u and are given by the vector βj k(x; u) of Eq. (59).
Now, looking better to the evolution of the vector field given in Eq. (59), we see that it is again
given by the same process of forward evolution, partial derivative in the j direction and backward
evolution, but now applied to the trajectory x(t + u). A simple unidimensional case should make
clearer the meaning of the β-coefficients: let us assume that N = 1, i.e., the phase space is given
by x ∈R (or a subset of R), and that the vector field for the flux is defined by the quite trivial
differential equation: ẋ = �γ x, from which x0(t + u) = x e�γu. The third line of Eq. (63) says that the
action of the operator E(u) on the function s(x) can be decomposed in the following three steps (see
Fig. 1):

1. s(x)→ g(x; u)≡ s(x0(t + u))= s
(
x e−γu) ,

2. dg(x; u)≡ (∂xg(x; u)),
3. (E(u)s(x))= dg(x eγu; u),

while Eq. (59) says that (note that in this case Assumption C holds true) β(x; u) is given by the
following three steps equivalent to those given above:

1. x→ x0(t + u) = x e�γu,
2. dx(x; u)≡ (∂xx0(t + u))= e−γu,
3. β(x; u)= dx(x eγu; u)= e−γu.

Thus, in this unidimensional linear dissipative case, the Lie evolution does not change the shape of
the partial derivative of s(x) (namely, the β coefficient does not depend on x), but it rescales it by a
decaying factor. In a multidimensional linear case, as in Sec. VI A, the vector field is also rotated by
the Lie evolution [see Eq. (70)].

Note that the second proof of Proposition 4, represented by the lines of Eq. (63), follows quite
straightforward from the definition of the Lie-evolution of the basis of the vector field; thus both the
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FIG. 1. A graphical representation of the three steps corresponding to the Lie evolution of the differential operator ∂x applied
to the function s(x) = exp[�x/2] for the one-dimensional flux defined by the equation ẋ = �γ x (see text for detail).

first proof that exploit Eq. (58) and the previous results of Eq. (54) would seem useless. However,
we have decided to show explicitly the relationships expressed by these equations because often, in
practical cases, it happens that the explicit expressions for some coefficients βj k(x; u) (or for the Lie
evolution of some components of the vector field) are known (e.g., from general conservation laws).
In such cases, Eq. (58) [or Eq. (54)] allow us to obtain the expressions also for the other components
(see Secs. VII A and VII B for examples about that).

VI. APPLYING PROPOSITION 4 TO PROJECTION APPROACHES

Coming back to the main task of the present work, we consider the general dynamical system of
Eq. (21) where we are interested in the statistical behavior of the variables of interest x, induced by the
interaction with the “chaotic” (or uncorrelated, to some extent) variable ξ. To hide the unobserved
variable ξ, we use the projection approach that lead us to Eq. (22), where we insert the explicit
expressions for the unperturbed Liouvillian L0 and the perturbation Liouvillian LI given in Eqs. (15)
and (16), respectively. Then, exploiting Proposition 2 we get [we use ∂jI j = I j∂j + (∂kIk)]

∂

∂t
ρ(x; t)=L0ρ(x; t)

+ ε2∂iIi(x)

{∫ ∞
0

du φ(u) Ij(x0(t − u))eL
×
0 u
[
∂j

]}
ρ(x; t)

+ ε2∂iIi(x)

{∫ ∞
0

du φ(u)(∂kIk(x))x=x0(t−u)

+
∫ ∞

0
du S(u)h(x0(t − u))

}
ρ(x; t), (64)

where we have replaced with infinity the time “t” of integration because we assume that we are
observing the system for times much longer than the relaxation time of the autocorrelation function
φ(u) and of the response function S(u) of the booster.

The last line of Eq. (64) contains only first order partial derivatives and corresponds to the
deterministic drift (for example, a friction) induced by the feedback of the system of interest on the
booster.3 The second-to-last line is a part of the “noise-induced drift” that appears in Stratonovich
systems because the correlation time of the “noise” (here the booster ξ variable) is not vanishing.
Concerning the previous line (the second one) of the above equation, from Proposition A it contains
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second order derivatives; thus it gives rise to a diffusion process (plus other Stratonovich-like drift
terms for the average evolution of the system of interest variables, of course). Thus, using the defini-
tions in Eqs. (52) and (55) and the main result of Eq. (59), the above equation becomes the following
generalized FPE:

∂

∂t
ρ(x; t)= ∂i(Ci + Γi + Dik∂k)ρ(x; t), (65)

where the diffusion matrix D and the drift vector Γ, induced by the interaction with the external
variable ξ, are given by

Dik = ε
2Ii(x)

∫ ∞
0

du φ(u) Ij(x0(t − u))
(
∂j(x0k (t + u))

)
x=x0(t−u)

(66)

and

Γi = ε
2Ii(x)

{∫ ∞
0

du φ(u)(∂kIk(x))x=x0(t−u) +
∫ ∞

0
du S(u)h(x0(t − u))

}
, (67)

respectively. Equations (65)–(67) are important results because they are the formal transport coef-
ficients of the generalized FPE stemming from the perturbation projection approach applied to the
very large class of dynamical systems given in Eq. (21). At the same time, from Eqs. (66)–(67) it
is possible to establish which are the conditions for standard statistics (Gaussian, canonical, Levy,
thermodynamics, linear Onsager regressions,3,30,31 etc.) to emerge for the system of interest. Thus
Eqs. (66)–(67) can be used to identify the partition of the set of systems into equivalence classes for
the emergence of different kinds of regular and universal statistical properties.

Looking at these expressions for the transport coefficients, we see that they are expressed in terms
of convolutions between the autocorrelation function, for the diffusion coefficients, and the response
function, for the drift coefficients, of the perturbation ξ, with the unperturbed back-time evolution of
functions of the variables of interest. Thus these quantities are all related to the dynamical features
of the booster variable that directly interacts with the system of interest and to the dynamics of the
unperturbed system of interest too, of course. No ad hock external constraints are introduced, as a
given temperature or the canonical or Gaussian equilibrium DF.

Now the question is as follows: How can we solve the expressions in Eqs. (66)–(67) in practical
cases? Usually the information about the perturbing system, (ξ, π) are limited to experimental,
observational, or numerical data. The first case refers to laboratory experiments; thus the correlation
function and the response function of the perturbing system can be obtained as a fit of the data
from targeted experiments. The second case concerns, for example, climatological or geophysical
phenomena, as El Niño/La Niña,32 that are large scale oceanic events induced mainly by the interaction
with the fast atmosphere. Here the correlation function can still be obtained from data observation,
but the response function of the fast atmosphere (for example) can be only obtained by simplified
analytical or numerical models.

The last case refers to formal tractable low order models (LOM), usually derived starting from
complex fundamental differential equations (for example, fluid dynamical “building blocks” equa-
tions) of complex processes,33 reduced to a simplified set of ordinary differential equations for
few variables (for example, the Lorenz models of atmospheric circulation34–38), through a series of
approximations and hypotheses. In this case, the autocorrelation function and the response function
are obtained analytically or by numerical simulations.

It is clear that in general it is not possible to manage so easily the expressions in Eqs. (66)–(67).
Below we present how we can work with them in two representative cases.

A. The linear velocity field case

Let us assume that the unperturbed velocity field can be approximated as being linear: Ci =Cikxk ,
where 1 ≤ i, k ≤ N, and Cik are constants, components of a N ×N matrix that we name C. In this case,
the unperturbed time evolution of the system of interest is a linear function of the initial position,
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x0k (t + u)=Bkl(u)xl, 1 ≤ l ≤N ,

Bkl(0)= δkl, (68)

where Bkl(u) are the components of the matrix B(u) given by

B(u)≡ e−Cu, (69)

from which (
∂j(x0k (t + u))

)
x=x0(t−u)

=Bkj(u). (70)

Just for the sake of simplicity, we also assume that the reaction function h(x) is a linear function of
the system of interest variables: h(x) = hkxk (it is straightforward to generalize the results releasing
this assumption). Using Eqs. (68)–(70) in Eq. (65), we obtain a more standard FPE,

∂

∂t
ρ(x; t)= ∂i(Ri(x) + Gik(x)xk + Dik(x)∂k)ρ(x), (71)

with

Ri(x)≡ ε2Ii(x)
∫ ∞

0
du φ(u)(∂lIl(x))x=x0(t−u), (72)

Gik(x)≡Cik + ε2Ii(x)
∫ ∞

0
du S(u)hl Blk(−u), (73)

Dik(x)≡ ε2Ii(x)
∫ ∞

0
du φ(u) Ij(x0(t − u))Bkj(u). (74)

From Eq. (69), i.e., from the fact that the equation of motion of the system of interest is a system
of linear ODE, it follows that in the above equations the functions Blk(u) can be expressed as linear
combinations, with constant coefficients, of the real and imaginary parts of exp(λiu), where λi,
i = 1, . . ., N, are the eigenvalues of the matrix C [see Eqs. (78)–(79) for the case N = 2].

The FPE of Eq. (71) is written in the conservative form

∂

∂t
ρ(x; t)= ∂iji, (75)

where the current j is given by ji ≡ (Ri(x) + Gikxk + Dik∂k)ρ(x; t). If the perturbation vector field I
does not depend on x, it is easy to study the conditions for which the divergence of j goes to 0 for t→
∞. If these conditions hold true, in particular, defining D and G as the N ×N matrix with elementsDik

and Gik , respectively, we have the following Gaussian function as the stationary DF:

ρeq(x)=

√
πN

det A exp

(
−

xT Ax
2

)
, (76)

where the N ×N matrix A is defined by the following equation (superscript “T” denotes transposition):

G · A−1 + A−1
·GT = 2D (77)

as it can be directly verified substituting the Gaussian in Eq. (76) in Eq. (71) and using Eq. (77).
To show the importance of the result in Eqs. (71)–(73), we consider a specific application,

namely, the Recharge Oscillator Model (ROM)15,16,39–45 mimicking the El Niño Southern Oscillations
(ENSO),

ζ̇ =−ω T − γζ ζ ,

Ṫ =ω ζ − γT T , (78)

where the ζ = x1 and T = x2 variables refer to the depth of the thermocline of the West Equatorial
Pacific Ocean and to the Sea Surface Temperature (SST) of the East Equatorial Pacific Ocean,
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respectively. In this case, the eigenvalues of the matrix C are λ± = �Γ/2 ± iΩ, where Γ ≡ γζ + γT

and Ω=
√
ω2 + γζγT −

Γ2

4 , from which

Bζζ (u)= e−
Γ
2 u
[
cos(Ω u) +

Γ

2
sin(Ω u)
Ω

]
,

BζT (u)=−e−
Γ
2 u

√
Ω2 +

Γ2

4
sin(Ω u)
Ω

,

BTζ (u)=−BζT ,

BTT (u)= e−
Γ
2 u
[
cos(Ω u) −

Γ

2
sin(Ω u)
Ω

]
. (79)

Note that if Γ2/4 > ω2 + γζγT , in the above equations we must substitute the trigonometric functions
with the corresponding hyperbolic ones. Both the thermocline depth and the SST are subjected to
a fast forcing by the interaction with the atmosphere, mainly due to the Madden Julian Oscillations
(MJO) and the Westerly Wind Burst (WWB).33,46–49 These can be represented as multiplicative
perturbations to the ROM.32,50,51 Considering the dynamics of the atmosphere as the generic “rest of
the system” identified by the booster variable ξ and the other “irrelevant” variables π as in Eq. (21),
we can write

ζ̇ =−ω T − γζ ζ − ε Iζ (T )ξ,

Ṫ =ω ζ − γT T − ε IT (T )ξ,

ξ̇ =F(ξ, π),

π̇ =Q(ξ, π), (80)

where the interaction vector field (Iζ (T ), IT (T )) depends on the anomalous temperature T as

Iζ (T )=−(Kζ + αζT ),

IT (T )=−(KT + αT T ), (81)

in the emulation of an enhanced air-sea coupling as SST anomalies increase (see, for example,
Ref. 17). Comparing the above equation with that of Eq. (21), we see that here the reaction term h(x)
is vanishing.

The goal is to describe the statistics of the ENSO, represented by the variables (ζ , T ) perturbed
by the atmosphere as in the above equation. Usually, for the sake of simplicity, the perturbation
ε Iζ (ζ , T )ξ of the thermocline depth is not considered,32,50 but thanks to the results of this paper it
is easy to take into account also this contribution. From Eqs. (80)–(81), we have

L0 =ω∂ζT + γζ∂ζ ζ − ω∂T ζ + γT∂T T ,

LI =−∂ζ ε(Kζ + αζT ) − ∂T ε (KT + αT T ). (82)

Through the Zwanzig projection approach we arrive to the result of Eqs. (71)–(74) in which
∂iGik(x)xk =L0 [because h(x) = 0], I(x) is in Eq. (81) and ζ0(t − u)=Bζζ (−u)ζ + BζT (−u)T ,
T0(t − u)=BTζ (−u)ζ + BTT (−u)T . Thus, we get

∂

∂t
ρ(ζ , T ; t)=

{
L0 + ∂ζ

(
Rζ (T ) + Dζζ (t)∂ζ + DζT (t)∂T

)
+∂T

(
RT (T ) + DTζ (t)∂ζ + DTT (t)∂T

)}
ρ(ζ , T ; t), (83)

where

Rζ ≡ ε
2(αζ + αT )(Kζ + αζT )

∫ ∞
0

du φ(u), (84)

RT ≡ ε
2(αζ + αT )(KT + αT T )

∫ ∞
0

du φ(u),
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Dζζ ≡ ε
2(Kζ + αζT )

∫ ∞
0

du φ(u)

×
{[

KT + αT (BTζ (−u)ζ + BTT (−u)T )
]
Bζζ (u)

+
[
Kζ + αζ (BTζ (−u)ζ + BTT (−u)T )

]
BζT (u)

}
,

DζT ≡ ε
2(Kζ + αζT )

∫ ∞
0

du φ(u)

×
{[

KT + αT (BTζ (−u)ζ + BTT (−u)T )
]
BTζ (u)

+
[
Kζ + αζ (BTζ (−u)ζ + BTT (−u)T )

]
BTT (u)

}
,

DTζ ≡ ε
2(KT + αT T )

∫ ∞
0

du φ(u)

×
{[

KT + αT (BTζ (−u)ζ + BTT (−u)T )
]
Bζζ (u)

+
[
Kζ + αζ (BTζ (−u)ζ + BTT (−u)T )

]
BζT (u)

}
,

DTT ≡ ε
2(1 + αT T )

∫ ∞
0

du φ(u)

×
{[

KT + αT (BTζ (−u)ζ + BTT (−u)T )
]
BTζ (u)

+
[
Kζ + αζ (BTh(−u)ζ + BTT (−u)T )

]
BTT (u)

}
. (85)

From the above expressions, we deduce that the diffusion terms of the FPE are second order poly-
nomials in ζ , T with constant coefficients (the subscripts i, j stand for the subscripts ζ or T ),

Dij =D(0)
ij + D(1)

ij h + D(2)
ij T + D(3)

ij hT + D(4)
ij T2. (86)

Using then in Eqs. (85)–(86) the explicit results for the Bij coefficients given in Eq. (79), we get that
the terms D(k)

ij are linear combination of the real and of the imaginary parts of the Laplace transform
of the auto-correlation function φ(t) evaluated at the point, in the complex plane, corresponding to
the eigenvalues λ± = �Γ/2 ± iΩ of the unperturbed ROM. It is clear that in general, with second
order polynomials as diffusion coefficients of the FPE, the stationary DF shall not be Gaussian, but
(if it exists) typically it will be skewed with some kurtosis values and power law tails. Kurtosis and
skewness of the histogram of the frequency of the SST anomalies during El Niño/La Niña phenomena
are actually obtained from observations.32 Moreover, in general, it shall not be possible to get the
analytic expression of such stationary DF. However, just from the fact that the diffusion coefficients
are second order polynomials of the system of interest variables, we can get closed first order ODE
for the moments. In fact, it is straightforward to verify that from the FPE of Eqs. (83)–(86), we get
a system of first order ODE for the nth moments that does not involve moments of higher order.
For example, the equation of motion for the average of ζ and T is given by a couple of first order
linear ODE, i.e., it corresponds to a forced dumped oscillator. This fact can be used to get easily
all the relevant statistical information of the ENSO, but this is beyond the scope of the present
paper.

There are of course many other cases of systems that can be treated in a similar way, for example,
connected RLC electric circuits, mechanical rotors supported by magnets,52 just to cite a couple of
them.

B. The large time scale separation case

If there is a large time scale separation between the slow dynamics of the system of interest and
that of the fast perturbing (ξ, π) system; there are methods that allows us to obtain a FPE for the part
of interest, usually by averaging the fast variables with some adiabatic procedure that introduces, by
hand, decorrelation assumptions among high order cross moments of the slow and fast systems (see,
for example, Refs. 53–55). Because the results in Eqs. (65)–(67) hold true regardless of the time scale
assumption, they can be used for a rigorous and systematic power expansion procedure in terms of
the time scale of the booster.
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For fast booster we mean that the autocorrelation function φ(t) and the response function S(t) of
ξ decay in a short time, compared to the typical time scale of the dynamics of x. Thus, in Eqs. (66) and
(67), we can use the Taylor expansions in the parameter u of

(
∂j(x0k (t + u))

)
x=x0(t−u)

and of x0k (t − u)

around u = 0 and take only the first power terms,(
∂j(x0k (t + u))

)
x=x0(t−u)

= δjk − (∂jCk)u + Ch(∂h∂jCk)u2

−
(
(∂jCh)(∂hCk) + Ch(∂j∂hCk)

) u2

2
+ . . . .

= δjk − (∂jCk)u +
(
Ch(∂j∂hCk) − 2(∂jCh)(∂hCk)

) u2

4
+ . . . (87)

and

x0k (t − u)= xk + Ck u − (Ch(∂hCk))
u2

2
+ · · · . (88)

Inserting these expressions in Eqs. (66)–(67) we get [for the sake of simplicity we assume that, as
it is the case for linear Hamiltonian interactions, the perturbation vector field I does not depend on
x and the reaction term h(x) is a homogeneous linear function of the variables of interest, namely,
h(x) = hk xk]

Dik = ε
2Ii Ij

(
δjkτ − (∂jCk) η2 +

(
Ch(∂j∂hCk) − 2(∂jCh)(∂hCk)

) κ3

4

)
(89)

and

Γi = ε
2Ii hk

(
xk ϑ + Ck β

2 − (Ch(∂hCk))
θ3

2

)
, (90)

where the decay time τ of the autocorrelation function is defined as

τ ≡
1
φ(0)

∫ ∞
0

φ(u)du, (91)

the decay time ϑ of the susceptibility χ(t)≡ ∫
t

0 S(u)du is defined as

ϑ≡

∫ ∞
0

(
1 −

χ(u)
χ(∞)

)
du, (92)

and the times (with possibly complex imaginary values) η, β, κ, and θ are defined as

η2 ≡
1
φ(0)

∫ ∞
0

φ(u)u du, β2 ≡

∫ ∞
0

(
1 −

χ(u)
χ(∞)

)
u du, (93)

κ3 ≡
1
φ(0)

∫ ∞
0

φ(u)u2 du, θ3 ≡

∫ ∞
0

(
1 −

χ(u)
χ(∞)

)
u2 du, (94)

respectively. We see in Eq. (90) that the first term of the power expansion of the drift coefficient Γi is
linear on the variables of the system; thus it introduces oscillations and additional frictions (positive
or negative) on the system of interest, while the contribution of the second and third terms is more
complicate and strongly system-dependent. Concerning the diffusion coefficients in Eq. (89) that
stem from our main result on the Lie evolution of differential operators, we see that the first order
in the power expansion looks quite trivial; it is a standard diffusion term as that of a white noise
forcing, while the other terms of the series can contribute in locally enhancing or depressing the
diffusion, depending on whether their signs are positive or negative, respectively. For example, if
the perturbation field I has only one non-vanishing component, the second order contributions to the
diagonal elements of the diffusion matrix vanish for both symplectic and cosymplectic systems of
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interest while the off-diagonal terms are very easy to calculate and depend mainly on the symmetric
property of the system (or on the structure constant of the Lie algebra).

VII. THE SPECIAL CASES OF HAMILTONIAN (SYMPLECTIC OR CO-SYMPLECTIC)
SYSTEMS WITH ONE PARAMETER-DISSIPATION

Our result in Eq. (59) can be simplified for some particular classes of systems that, for their
fundamental importance, deserve to be separately treated. One of them is the set of the Hamiltonian
co-symplectic systems, possibly also subjected to a linear non-conservative force (e.g., friction), such
as Volterra gyrostats,20–22 spin systems interacting with magnetic fields, the inviscid or the dissipative
Euler equation, or some low order model approximations of the Navier-Stokes (NS) equations,19–22

including, for example, the famous Lorenz system.23,56,57 Another very important and large class
is that of the ordinary symplectic two-dimensional systems subjected to some linear friction or
explosive force, as, just to quote a few examples among so many, the “ubiquitous” Duffing oscillator,
the celebrated recharge oscillator mimicking the El Niño Southern Oscillation (ENSO),14–16,32 or
the usual picture of a chemical reaction process in a solvent, where a particle (the reactant) reacts
escaping from a potential well by jumping over a barrier of height Eb.6,11,58,59

In both these special cases, to solve the unperturbed Lie evolution of the basis (∂1, . . ., ∂N ) of
the vector space, it is convenient to use a slightly different procedure with respect to that of Sec. V,
taking advantage of the energy conservation of the co-symplectic/symplectic part of the flux.

A co-symplectic/symplectic structure of the unperturbed velocity field, where linear non-
Hamiltonian terms are also present, means Ci = �J i,l (∂lH) + γixi, namely,

ẋi = Ji,l (∂lH) − γixi = {xi, H }PB − γixi 1 ≤ i ≤N , (95)

where

H ≡ α
x2

N

2
+ U(x1, x3, . . . , xN−1) (96)

is the Hamiltonian, which here we assume to be quadratic at least for one of the variables (here labeled
as xN ) and J i,l is a skew-symmetric tensor that defines the following generalized Poisson Brackets (f,
g are smooth enough functions RN→R),

{f , g}PB = (∂if )Jil(∂lg), (97)

for which the Jacobi identity can be written as19

Jil∂lJjk + Jjl∂lJki + Jkl∂lJij = 0. (98)

Notice that in a right tensor notation we should distinguish between contravariant and covariant parts
of the tensor, using superscript Latin indexes and subscript indexes, respectively, but here, for the
sake of simplicity, we do not make this distinction.

In these cases, the divergence of the vector field of velocities is equal to the sum of the coefficients
of the non-Hamiltonian terms: ∂iCi =

∑
i γi (see Subsection VII B for a discussion about that), which

means that we are under Assumption C.
The symplectic/co-symplectic structure of the equation of motion makes conservative (in the

sense that preserves the energy value) the corresponding flux; in fact, Ḣ = {H, H}PB = 0. As we
stated above, this is actually the key ingredient of the present procedure and it is exploited with the
following change of variables,

x̃1 = x1

...

x̃N−1 = xN−1,

E = α
x2

N

2
+ U(x1, x2, . . . , xN−1), (99)
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i.e., we replace the last variable (namely, the one that enters in the Hamiltonian through a quadratic
term) with the energy E. From this we have the reverse relations,

x1 = x̃1

...

xN−1 = x̃N−1,

xN =
√

2(E − U(x1, x2, . . . , xN−1))/α, (100)

and (1 ≤ i ≤ N � 1)

∂i = ∂̃i + (∂̃iU(x̃1, . . . , x̃N−1))∂E ,

∂N = α xN (x̃1, . . . , x̃N−1, E)∂E , (101)

where xN (x̃1, . . . , x̃N−1, E)≡
√

2(E − U(x̃1, . . . , x̃N−1))/α and ∂̃i ≡
∂
∂x̃i

.
We callG the Liouvillian operatorL0 = ∂iCi after this transformation of variables. The counterpart

of Eq. (52), i.e., the Lie evolution of the new basis of the vector field along the Liouville operator,
after the above change of variables, is

E1(u)≡ eL
×
0 u[∂1]= eG

×u
[
∂̃1 + (∂̃1U(x̃1, . . . , x̃N−1))∂E

]

...

EN−1(u)≡ eL
×
0 u[∂N−1]= eG

×u
[
∂̃N−1 + (∂̃N−1U(x̃1, . . . , x̃N−1))∂E

]
,

EN (u)≡ eL
×
0 u[∂N ]= eG

×u[xN (x̃1, . . . , x̃N−1, E)∂E]= xN (x̃1, . . . , x̃N−1, E; t − u) eG
×u[∂E], (102)

where xN (x̃1, . . . , x̃N−1, E; t − u)≡ (e−G
+uxN (x̃1, . . . , x̃N−1, E)) is, as usual, the unperturbed back-time

evolution of the xN variable. From now on, for simplicity, we shall omit the “tilde” on the new
variables x̃i.

Here we shall discuss separately the two main cases cited at the beginning of the present section.
We shall start from the second one, i.e., where the dimension N of the space of the states of the system
is 2 and then we shall address the case where N is odd. In general, if N is even, an old theorem that is
credited to Darboux says that a transformation of variables (at least locally) that makes J = Jc exists,
with

Jc ≡ *
,

0N/2 IN/2

−IN/2 0N/2

+
-
, (103)

where 0N /2 is an N /2 × N /2 matrix of zeros and IN/2 is the N /2 × N /2 unit matrix. The subscript
c of Jc indicates that the system is written in terms of canonical coordinates. Thus for N even the
co-symplectic dynamics is equivalent to just symplectic.

A. The two-dimensional dissipative oscillator

In the two-dimensional standard Hamiltonian case with friction, we have J = Jc with I1 = 1, and
from Eqs. (96)–(95) we see that x2 = v is the impulse, x1 = x is the coordinate of the system, and
U(x) is the potential [we set α = 1 and we define U ′ ≡ (∂xU)],

ẋ =−Cx = v ,

v̇ =−Cv =−U ′(x) − γv . (104)

Thus L0 =−v∂x + U ′(x)∂v + γ∂vv that, after the change of variables in Eq. (99), becomes

G≡−v(E, x)∂x + γv(E, x)∂E v(E, x), (105)

with x2(E, x1)= v(E, x)≡
√

2(E − U(x)). This particular case is not so trivial as it would look at first
sight because, as we have already stressed in the Introduction, standard Zwanzig projection approaches
as those in Refs. 3, 11, and 55 do not directly face the problem of solving the Lie evolution of
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differential operator as it is developed in the present paper. For that they are limited to Hamiltonian or
nearly Hamiltonian cases, i.e., where γ is vanishing or almost vanishing. The general case was recently
successfully faced for the first time in Ref. 2, where the Lie evolution of the differential operator
∂v along the unperturbed Liouvillian was introduced and solved by using an original procedure.
Here we report the main steps of this approach. In terms of the (x, E) coordinates, Eq. (102) is
rewritten as

eL
×
0 u[∂v]= v0(t − u)EE(u), (106)

where the operator EE(u) is defined as the Lie evolution of the operator ∂E ,

EE(u)≡ eG
×u[∂E]. (107)

By a direct calculation we obtain

G×[∂E]=−
1

v(E, x)2
(G − γ) − γ ∂E . (108)

Taking the time (u) derivative of Eq. (107) and using Eq. (108) we obtain

d
du
EE(u)=−γEE(u) −

1

v2
0 (E, x; t − u)

(G − γ), (109)

where v2
0 (E, x; t − u)≡ (v0(E, x; t − u))2. The formal solution of Eq. (109) is straightforward,

EE(u)= e−γu ∂E − e−γu*
,

∫ u

0
du′eγu′ 1

v2
0 (E, x; t − u′)

+
-
(G − γ). (110)

Thus, using Eq. (100) to go back to the original x = (x, v) variables, we have

Ev(u)≡ eL
×
0 u[∂v]=

e−γu v0(t − u)
v

∂v − e−γuv0(t − u)*
,

∫ u

0
du′eγu′ 1

v2
0 (t − u′)

+
-
(L0 − γ). (111)

Equation (111) is an interesting result because in the rhs the coefficients of the vector field do not
involve partial derivatives of the trajectories as in the general result of Eq. (59). However, as it is
illustrated in Appendix A, it is also possible to put this result in a more compact form that, depending
of the specific case, could be easier to deal with,

Ev(u)≡ eL
×
0 u[∂v]=−e−γu(∂v x0(t − u))∂x + e−γu(∂x x0(t − u))∂v . (112)

This is precisely the result we can find in Ref. 2. Now, to obtain the corresponding expression for the
Lie evolution of ∂x, we exploit the system of ODE for the Ei operators in Eq. (54), for the present
specific case of Hamiltonian oscillator, defined by Eq. (104). Thus we have

d
du
Ex(u)= − (U ′′(x))x0(t−u)Ev(u), (113)

d
du
Ev(u)= γEv(u) − Ex(u). (114)

Using just Eq. (114), we obtainEx(u)= γEv(u)− d
duEv(u) that, with Eq. (112), gives the explicit result

for Ex(u),

Ex(u)≡ eL
×
0 u[∂x]= e−γu(∂v v0(t − u))∂x − e−γu(∂x v0(t − u))∂v . (115)

Comparing Eqs. (112) and (115) with Eq. (55) we have

βx x(x, v; u)= e−γu(∂v v0(t − u)), βx v(x, v; u)=−e−γu(∂x v0(t − u)),

βv x(x, v; u)=−e−γu(∂v x0(t − u)), βv v(x, v; u)= e−γu(∂x x0(t − u)). (116)
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Equation (116) is a simplified result, with respect to the more general one in Eq. (59), which applies
to the two-dimensional Hamiltonian, with friction, case (for example, the Duffing oscillator).

Notice that, using directly the general result in Eq. (59) applied to the present two-dimensional
system in Eq. (104), without passing to the energy variable as done here above, we get

βx x(x, v; u)= (∂x x0(t + u))x=x0(t−u), βx v(x, v; u)= (∂x v0(t + u))x=x0(t−u),

βv x(x, v; u)= (∂v x0(t + u))x=x0(t−u), βv v(x, v; u)= (∂v v0(t + u))x=x0(t−u). (117)

These are expressions much more complicate than that in Eq. (116), at least formally. Of course it is
also possible to start from the general expressions of Eq. (117) and arrive directly to the simplified
ones of Eq. (116) (see Appendix B).

B. The co-symplectic odd-dimensional case

For odd N we assume that J depends linearly on x: J il = cilmxm, where the coefficients cilm must
satisfy the following requirements (1 ≤ k, i, j, m, l ≤ N):

cilm =−clim (118)

0= cklmcijl + cjlmckil + cilmcjkl (119)

to make J skew-symmetric and for the Jacobi identity to hold, respectively. These coefficients are
the structure constants of the Lie algebra generated by the generalized Poisson Brackets given in
Eq. (97),

{f (x), g(x)}PB ≡ ck
il xk(∂if (x)) (∂lg(x)). (120)

Note that Assumption C means (∂j∂iCi) = 0, i.e., the divergence of the velocity vector field is constant
on the phase space of the system. From the dynamical systems defined in Eq. (95), we have that if the
co-symplectic part of the flux preserves the volume in the phase space, thus Assumption C is satisfied;
in fact, we have ∂iCi =

∑
i γi = constant. However, unlike in the case of standard symplectic fluxes,

where the Liouville theorem always holds true, for co-symplectic fluxes that is not obvious, in fact,
using the antisymmetric properties of cilm with respect to the first two indexes [see Eq. (118)], the
request of vanishing divergence of the velocity vector field gives (∂j cili∂lH) = 0, i.e., involves also
the third index of the structure constants. As it is clear from Eqs. (118)–(119), in general, the structure
constants do not necessarily possess defined symmetry properties upon the exchange of all indexes,
i.e., including the third one. However in general semi-simple Lie algebras can, by a coordinate change,
be brought into a form in which the structure constants are completely antisymmetric,60 such as for
SO(3) symmetric systems or fluid theories in Eulerian variables. Therefore, we assume that we are
working with the right coordinates for which the structure constants are completely antisymmetric
and thus the Liouville theorem holds true for the co-symplectic part of the flux: cili(∂lH) = 0. Namely,
for γi = 0, we have L0 = ∂iCi =Ci∂i =−L+

0 . Given that, to simplify the discussion, without loss of
generality, we limit ourself to the SO(3) case, i.e., N = 3, where the structure constants correspond
to the values of the Levi–Cività symbol: cklm = �εklm. Thus, we have

Ci = ε iklxl(∂kH) + γixi, (121)

i.e., more explicitly, using the Hamiltonian in Eq. (96)

ẋ1 =−C1 = − x3 (∂2U(x1, x2)) + x3 αx2 − γ1x1,

ẋ2 =−C2 = − x3 αx1 + x3 (∂1U(x1, x2)) − γ2x2,

ẋ3 =−C3 = − (∂1U(x1, x2)) x2 + (∂2U(x1, x2))x1 − γ3x3, (122)

from which (I recall that here, if we set γi = 0, we have L0 = ∂iCi =Ci∂i)
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L0 = x3((∂2U(x1, x2)) − αx2))∂1

+x3(αx1 − (∂1U(x1, x2)))∂2

+((∂1U(x1, x2)) x2 − (∂2U(x1, x2))x1)∂3

+γ1∂1 x1 + γ2∂2 x2 + γ3∂3 x3 (123)

that, after the change of variables in Eq. (99) (still omitting the “tilde” on the new variables x̃i),
becomes

G=Gc+γ1∂1 x1 + γ2∂2 x2 + +γ1(∂1U(x1, x2))∂E x1 + γ2(∂2U(x1, x2))∂E x2

+γ3α x3(x1, x2, E)∂E x3(x1, x2, E), (124)

where Gc is the Liouvillian operator of the conservative part of the flux, written in the new (x1, . . .,
xN�1, E) coordinates, i.e.,

Gc ≡G|γi=0 = x3(x1, x2, E)((∂2U(x1, x2)) − α x2))∂1

+x3(x1, x2, E)(αx1 − (∂1U(x1, x2)))∂2

+((∂1U(x1, x2)) x2 − (∂2U(x1, x2))x1)∂3. (125)

By a simple calculation, we obtain the analogous of Eq. (108),

G×[∂E]=−
1

x3(x1, x2, E)2
(Gc + γ3α x3(x1, x2, E)∂E x3(x1, x2, E) − γ3) − γ3 ∂E . (126)

From the previous equation we see that we can repeat the steps of Subsection VII A [Eqs. (108)–(111)]
only if γ2 = γ3 = 0; thus we make this assumption and we arrive to a result that is the counterpart of
Eq. (111),

E3(u)≡ eL
×
0 u[∂3]=

e−γ3u α x3(t − u)
x3

∂3 − e−γ3ux3(t − u)*
,

∫ u

0
du′eγ3u′ 1

α x2
3(t − u′)

+
-
(L0 − γ3). (127)

The explicit expressions for E1(u) and E2(u) can be found, as in the case of the standard dissipative
oscillator of Subsection VII A, inserting the above result in the simple ODE for theEi operators given
in Eq. (54), where the velocity field Ci is given in Eq. (121). We do not go ahead in that here.

VIII. CONCLUSIONS

In this paper, we show how and in which cases, using a perturbation projective approach, we can
obtain a generalized FPE (second order differential operator) for the DF of the subpart of interest of
a general class of dynamical systems. The result is based on some propositions, here specified and
demonstrated, about the Lie evolution of first order differential operators, along general Liouville
operators. In particular, the diffusion-like coefficients of this generalized FPE are here obtained and
given in terms of analytic expressions thanks to the central result in Eq. (59) that expresses the
Lie-evolution of the vector field in the tangent bundle of the state space of the system.

Thus, with this work, we can shed some light on the problem of the emergence of regular
regression laws and standard statistical mechanics on nature. Actually, the explicit formal results
for the transport coefficients of this generalized FPE allow us to establish which are the conditions
for the emergence of standard statistics (Gaussian, canonical, Levy, thermodynamics, linear Onsager
regressions,3,30,31 etc.) for the system of interest.

Notice that, while usually the projection procedure is applied to Hamiltonian “microscopic”
systems, where dissipation and diffusion are related by the fluctuation dissipation theorem and stem
from hiding the many and fast degrees of freedom,7,9,10,54,61–64 the results of the present paper allow
us to generalize the procedure to the much broader class of non-Hamiltonian systems. Moreover we
show that under Assumption C, for the Lie time evolution along generic Liouvillians, we recover
an effective antisymmetric property of the Liouvillian operator, i.e., L is equivalent to −L+ as for
Hamiltonian fluxes, a fact that could be used also for an eigenvalue/eigenvector approach to the Lie
evolution of operators.
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Thus the applications of our results are not limited to the field of foundation of Statistical
Mechanics and Thermodynamics. Some examples are classic or quantum dissipative rotators, spin
systems interacting with magnetic fields,65,66 as Landau-Lifshitz systems in micromagnetism,67 and
many others among which an important class belongs to the field of geophysical fluid dynamics. In
fact, while the Navier-Stokes (NS) equations in the simplest inviscid flow approximation become the
Euler equation of motion, i.e., a pure conservative co-symplectic dynamical system, more in general,
the NS equations contain dissipative terms and thus cannot have a pure Hamiltonian representation.
Actually, they can be approximated by a set of coupled nonlinear ordinary differential equations,
called low-order models (LOM) in the form of coupled Volterra gyrostats.20–22 These systems belong
to the class treated in Sec. VII B. An interesting large scale Geophysical phenomenon that can be
approached in this way is the El Niño-Southern Oscillation (ENSO),32 a naturally occurring event in
the tropical Pacific that has global impacts of great relevance to society. The ENSO stems form the
weak interaction between the dissipative Pacific Equatorial Ocean and the forcing atmosphere.

The application of the results of the present paper to some of the cases above cited is an issue
on which we are currently working.

APPENDIX A: TWO DIFFERENT EXPRESSIONS FOR THE LIE EVOLUTION OF ∂v
Here we demonstrate how to arrive to Eq. (112) from Eq. (111).
In the first term of the rhs of Eq. (111) we use the following identity:

v0(t − u)=L+
0x0(t − u)

= v∂xx0(t − u) − U ′(x)(∂vx0(t − u)) − γv(∂vx0(t − u)), (A1)

and we obtain

eL
×
0 u[∂v]= e−γu 1

v
{v(∂xx0(t − u))

−(U ′(x) + γv)

(∂vx0(t − u)) + v v0(t − u)*

,

∫ u

0
du′eγu′ 1

v2
0 (t − u′)

+
-






∂

∂v

+ e−γu


v v0(t − u)*

,

∫ u

0
du′eγu′ 1

v2
0 (t − u′)

+
-




∂

∂x
. (A2)

To simplify the above expression, we prove the following equality:

(∂vx0(t − u)) + v v0(t − u) *
,

∫ u

0
du′eγu′ 1

v2
0 (t − u′)

+
-
= 0. (A3)

For non-energy conserving systems of interest, i.e., for γ , 0, this is a not trivial result. To this aim, we
start noticing that the functions f 1(u) ≡ v0(t + u) and f2(u)≡ (∂vx0(t + u)) are independent solutions
of the following ordinary second order differential equation (SODE):

f̈ (u) + γ ḟ (u) + U ′′(x0(t + u))f (u)= 0, (A4)

where the dot over the function f means here a derivative respect to the time variable u. From the
solutions f 1(u) and f 2(u) of this SODE, we get the Wronskian

W (u)≡ f1(u)ḟ2(u) − ḟ1(u)f2(u)

= v0(t + u)(∂vv0(t + u)) − v̇0(t + u)(∂vx0(t + u)). (A5)

The Abel’s theorem for the Wronskian applied to Eq. (A4) gives

Ẇ (u)=−γW (u). (A6)

Then, using the obvious initial condition W (0) = v , we get directly the explicit expression for the
Wronskian

W (u)= v e−γu. (A7)
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Introducing the function z(u)≡ f2(u)/f1(u)= (∂vx0(t + u))/v0(t + u) we have

ż(u)=
W (u)

f 2
1 (u)

=
e−γ u

v2
0 (t + u)

, (A8)

i.e.,
(∂vx0(t + u))
v0(t + u)

= z(u)= v *
,

∫ u

0
du′e−γu′ 1

v2
0 (t + u′)

+
-
. (A9)

Making the change u→ �u in the previous equation we arrive to Eq. (A3). At the end, the expression
for Ev(u) in Eqs. (112) is obtained by inserting Eq. (A3) into Eq. (A2). □

APPENDIX B: A SIMPLIFIED EXPRESSION FOR THE COEFFICIENTS
OF THE LIE EVOLUTION OF THE BASIS OF THE VECTOR FIELD

To show that from Eq. (117) we can directly arrive to the simplified Eq. (116), we start rewriting
the latter as

eγu(∂v x0(t + u))=−eL
+
0 u(∂v x0(t − u)), (B1a)

eγu(∂v v0(t + u))= eL
+
0 u(∂x x0(t − u)). (B1b)

Now, if we apply the exponential Liouville operator exp(L+
0u) to Eq. (A3), we get

−eL
+
0 u(∂vx0(t − u)) = eL

+
0 u

[
v v0(t − u)

∫ u

0
du′eγu′ 1

v2
0 (t−u′)

]

= v0(t + u)v
∫ u

0
du′eγu′ 1

v2
0 (t−u′+u)

= eγuv0(t + u)v
∫ u

0
dθe−γθ 1

v2
0 (t+θ)

,

(B2)

where in the last integral term of the above equation we make the change of variable θ = u � u′. If
we compare the above result with Eq. (A9), Eq. (B1a) is demonstrated.

We have now to show that also Eq. (B1b) holds true. For that we take into account the following
obvious identity:

v0(t − u)=L+
0x0(t − u)≡ v (∂xx0(t − u)) + v̇ (∂vx0(t − u)) (B3)

from which

(∂xx0(t − u))=
v0(t − u)

v
−
v̇

v
(∂vx0(t − u)), (B4)

and let us apply the time shift operator exp(L+
0u) to the above equation,

eL
+
0 u(∂xx0(t − u)) =

v

v0(t + u)
−
v̇0(t + u)
v0(t + u)

eL
+
0 u(∂vx0(t − u))

=
v

v0(t + u)
+
v̇0(t + u)
v0(t + u)

eγu(∂vx0(t + u)),
(B5)

where, in the last row of the above equation, we have exploited Eq. (B1a). From Eq. (B5), using
both exp(γu) = v/W (u) [see Eq. (A7)] and the definition of the Wronskian in Eq. (A5), we get
Eq. (B1b). □
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