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Abstract: A data-based estimation of the wind–power curve in wind turbines may be a challenging task due to the presence of
anomalous data, possibly due to wrong sensor reads, operation halts, malfunctions or other. In this study, the authors describe a
data-based procedure to build a robust and accurate estimate of the wind–power curve. In particular, they combine a joint
clustering procedure, where both the wind speeds and the power data are clustered, with an Earth Mover Distance-based
Extreme Learning Machine algorithm to filter out data that poorly contribute to explain the unknown curve. After estimating the
cut-in and the rated speed, they use a radial basis function neural network to fit the filtered data and obtain the curve estimate.
They extensively compared the proposed procedure against other conventional methodologies over measured data of nine
turbines, to assess and discuss its performance.

1 Introduction
1.1 Motivation

Accurate identification of wind turbine power curve plays a
fundamental role in different applications, such as wind power
assessment and forecasting [1, 2], wind turbine selection, condition
monitoring [3–5], troubleshooting, and predictive control and
optimisation [6, 7]. In practice, the theoretical power captured by a
wind turbine depends, among other things, on the air density,
which is itself a function of temperature, pressure and humidity,
which clearly depend on where the turbine is installed [1]. In
addition, the power curve is basically nonlinear and non-stationary
because of the fluctuating and stochastic nature of the wind
resource, and it also comprises a noise component which represents
all the unavailable microscopic interactions [8]. Finally, the power
curve is affected by the conditions of the turbine and its associated
equipment. For this reason, aging, wear and tear of turbine,
anomalies and faults, blade condition, yaw and pitch
misalignments, controller settings, and so forth, cause the power
curve to depart from actual values [1]. Accordingly, it has been
observed that in a wind farm, power produced by turbines with
identical specifications may significantly differ, even if the wind
speed is the same. This is partly due to the fact that the shadowing
effect of turbines causes this difference as the turbines which
operate in wake of other turbines may get reduced wind speeds.
However, it is also due to factors such as wear, tear, aging, or dirt
and ice deposition on blades, which may vary from turbine to
turbine.

As a matter of fact, the International Electrotechnical
Commission (IEC) technical committee has prepared the
International Standard IEC 61400-12-1 to specify the standard
methodology for measuring the power performance characteristics
of a single wind turbine [9]. This procedure requires simultaneous
measurement of wind speed and power output (for a sufficiently
long duration to create a significant database under varying
atmospheric conditions) [6]. Then, given such a sequence of pairs
of measured wind speeds and corresponding generated power, the
problem of the estimation of the wind turbine power curve, which
is investigated in this paper, becomes that of accurately identifying
the wind–power function.

1.2 State-of-the-art

Generally, the process of the identification of the wind turbine
power curve consists of three steps: (i) a pre-processing step is
required to clean the data of the obvious outliers; we shall denote
this step as filtering; (ii) an intermediate step is required to
accurately identify the cut-in and the rated wind speeds. In fact, the
shape of the power curve heavily depends on such quantities [10].
If the cut-in and the rated wind speeds are exactly known, then the
procedure described in Section 3.1 is not necessary; (iii) finally the
filtered data are fitted to obtain a final curve in each wind interval.
The whole or part of the three steps is included in the following
methods.

Various methods have been widely employed in power curve
modeling and can mainly be divided into two categories as
parametric and non-parametric methods [6, 11–14]. The former
category mainly contains linearised segmented model [15],
polynomial regression [8, 16], maximum principle method,
dynamic power curve, logistic regression [17] and probabilistic
model. On the other hand, the latter one contains copula [18], cubic
spline interpolation, neural network [19], fuzzy logic and data
mining algorithms [20, 21].

In practice, these algorithms are applied with one or both
techniques of filtering and clustering. A fuzzy logic algorithm with
clustering centre is shown to give better performance than a classic
least square method [22]. A Gaussian Process (GP)-based data
filtering technique and artificial neural network are proposed to
model the power curve with independent wind turbines datasets in
which each turbine wind speed is measured by the nacelle
anemometers [23]. A hybrid approach, including parametric
methods with clustering and filtering steps, is proposed to give
better performance than an only parametric method, in which k-
means and k-medoids are both used [24]. When using clustering
techniques, only wind speed datasets are clustered [22] or only
wind power datasets are clustered [24].

1.3 Contribution

The various methods mentioned above are applied together with
one or both techniques of filtering and clustering, while only the
input data of wind speeds or only the output data of wind power
output are used in those techniques. Instead of exploring
information on only input or output data, we explore the
information from both by using the Earth Mover Distance (EMD)
method.
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In this paper, we illustrate a methodology that combines the
three phases of filtering, identification and fitting of the data to
obtain an improved estimate of the power curve. As for the
filtering stage, differently from the literature, we jointly cluster
both the historical data-sets of wind speeds and also their
corresponding generated power. This allows us to retain the most
frequent pairs of wind speeds and power and to discard the unlikely
ones (e.g. occurrences of high generated power when the wind is
weak or absent). For this purpose, we evaluate the distance
between any two clusters as the average l2 error between actual
power measurements and their predictions (by using an Extreme
Learning Machine (ELM)). Then, an EMD filter is designed as the
outcome of a joint optimisation problem where the constraints are
given by the relative frequency of occurrences of wind and power
data. In an iteration process, the probabilities of cluster pairs
related to outliers converge to zero, ensuring the outliers samples
make no contribution to the estimate of the wind turbine power
curve. After the samples are filtered, the cut-in and the rated wind
speeds are identified via a segmented linear regression for each
wind cluster. Finally, a radial basis function neural network
(RBFNN) is used to fit the remaining data within the identified cut-
in and rated wind speeds. Extensive results obtained on real data
measured from nine wind turbines with rated power of 2 MW are
provided to evaluate the performance of the proposed procedure
against other well-established methodologies in wind power
forecasting. Also, the impact of single choices, as for instance the
filtering stage, or the choice of the weights of the ELM, is
evaluated by comparing the results obtained with and without
single steps.

As stated above, the key contributions are threefold:

• An EMD-based filter is designed as an optimisation problem
whose objective function is the sum of weighted squared error
instead of the commonly used mean square error model, where
the weights are included in the solution of the optimisation
problem with constraints determined by both distributions of
input and output data.

• An ELM-based wind turbine power curve model included in the
filter design is applied as a coarse model to make the filter be
more easily implemented and robust.

• A comprehensive comparison and analysis of the proposed
wind–power curve is done by using other conventional methods
as benchmarks and taking into account of different factors such
as the data size and the initial conditions of ELM + EMD-based
filters.

2 Data clustering and filtering
Given the availability of a dataset of pairs of wind and its
corresponding generated power by a wind turbine, wind–power
curve estimation problem corresponds to the task of finding the
mapping function from wind (input variable) to power (output
variable). In this paper, we shall denote such a mapping function as
f.

In the filtering phase, we use the outcome of a plain ELM
identification on the input–output data as an initial condition for
such an estimate of f. ELM is an efficient technique for training a
single hidden-layer feed-forward NN, in that it combines the
advantages of a simple formulation and an extremely fast training

speed [25]. The general structure of an ELM is given in Fig. 1. The
number of the neurons in the hidden layer is denoted as s and the
infinitely differential activation function in the hidden layer is
denoted as ϕ.

Let us further denote K independent observations by
(xk, yk), k = 1, …, K in the dataset, and xk is the explanatory
variable (wind speed), and yk is the response variable (wind power
output). The ELM-based power output yk regarding the wind xk can
be expressed as

yk = f (aα, bα, zα, xk) = ∑
α = 1

s
zαϕ(aαxk + bα) (1)

where α = 1, …, s, aα is the input weight connecting the input
neuron and the α′th hidden neuron, zα is output weight connecting
the α′th hidden neuron and the output neuron, and bα is the bias of
the α′th hidden neuron. The hidden layer parameters aα and bα are
randomly generated and constant. We use the hyperbolic tangent
function as the activation function. For simplicity, since aα and bα
are constant, we shall express (1) as

yk = f (zα, xk) = ∑
α = 1

s
zαgα(xk) (2)

where only the output weights {zα}, α = 1, …, s, need to be
estimated.

2.1 Earth mover distance

EMD was firstly proposed to solve transportation problems, and
then it became widely used as a distance measure in image retrieval
[26, 27]. The original problem can be formalised as a linear
programming problem: Let P = {(p1, wp1), …, (pm, wpm)} be the first
signature with m clusters, where pi is the cluster representative and
wpi is the weight of the cluster; Q = {(q1, wq1), …, (qn, wqn)} be the
second signature with n clusters, where qj is the cluster
representative and wqj is the weight of the cluster; and D = {di j} be
the ground distance matrix, where di j is the distance between
clusters pi and qj and denotes the cost of moving a unit from cluster
pi to qj. Specifically, two signatures P and Q can be viewed as two
datasets, and they are grouped into m and n clusters, respectively.

A transportation flow T = {ti j} is to be found, with the flow ti j
between pi and qj, that minimises the overall cost [26, 27], as

min ∑
i = 1

m

∑
j = 1

n
ti jdi j, (3)

subject to the constraints

ti j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (4)

∑
j = 1

n
ti j ≤ wpi, 1 ≤ i ≤ m, (5)

∑
i = 1

m
ti j ≤ wqj, 1 ≤ j ≤ n, (6)

∑
i = 1

m

∑
j = 1

n
ti j = min ∑

i = 1

m
wpi, ∑

j = 1

n
wqj . (7)

2.2 EMD-based filter

Now we show how the EMD-based theory previously recalled can
be applied in practice in our case. In the EMD formulation, two
signatures of P and Q are two sets of clusters. In our optimisation
problem, the input set X = {xi} is treated as the clustered set of

Fig. 1  ELM structure
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wind speeds and the output set Y = {yj} is treated as that of wind
power outputs of each wind turbine. A Self-Organising Map
(SOM) is an unsupervised learning algorithm introduced by
Kohonen, and it can project high-dimensional patterns onto a low-
dimensional topology map for data visualisation and data
properties exploration [28]. SOMs learn to cluster data based on
similarity, topology, with a preference of assigning the same
number of instances to each class [29]. A one-dimensional SOM is
applied to cluster the wind speed dataset X and the wind power
output dataset Y into m and n clusters, respectively, and the
probability histograms of clusters xi and yi are denoted as {wxi} and
{wyi}. So they satisfy the following condition that:

∑
i = 1

m
wxi = 1, ∑

j = 1

n
wyj = 1. (8)

As two clustering procedures are conducted independently for the
wind speeds and the power outputs, any data pair (x, y) has
clustering class labels (i, j) representing wind speed x with a class
label i and power output y with a class label j, with m × n possibly
different clusters. Let us denote by Ki j the number of the data
samples (xk

i , yk
j) in each cluster pair (xi, yj), 1 ≤ i ≤ m, 1 ≤ j ≤ n

and 1 ≤ k ≤ Ki j. di j is defined as distance for pair cluster (i, j) as
follows:

di j = 1
Ki j

∑
k = 1

Ki j

∥ yk
j − f (xk

i) ∥2, (9)

where function f refers to the ELM modelled mapping function in
(1). Thus, substituting (2) and (9) into (3), the EMD-based
optimised problem can be expressed as

min
zα, ti j

∑
i = 1

m

∑
j = 1

n
ti j

1
Ki j

∑
k = 1

Ki j

∥ yk
j − ∑

α = 1

s
zαgα(xk

i) ∥
2

, (10)

subject to the constraints

0 ≤ ti j ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (11)

∑
j = 1

n
ti j ≤ wxi, 1 ≤ i ≤ m, (12)

∑
i = 1

m
ti j ≤ wyj, 1 ≤ j ≤ n, (13)

∑
i = 1

m

∑
j = 1

n
ti j = min ∑

i = 1

m
wxi, ∑

j = 1

n
wyj = 1. (14)

It can be noticed that the optimisation problem is a non-linear
programming problem with constraints, and sequential quadratic
programming (SQP) is applied to solve it.

For the sake of comparison, we now formulate the same
problem as it is usually solved in the literature, where the mean
squared error (MSE) is used as the optimisation objective function
with certain constraints or regularisers in neural network (NN) and
support vector regression (SVR). MSE can be expressed in the
general form as

MSE = 1
K ∑

k = 1

K
∥ yk − f (xk) ∥2, (15)

where K is the total number of sample pairs. Considering our
notation, it can be rewritten as

MSE = 1
K ∑

i = 1

m

∑
j = 1

n

∑
k = 1

Ki j

∥ yk
j − f (xk

i) ∥2

= ∑
i = 1

m

∑
j = 1

n Ki j
K

1
Ki j

∑
k = 1

Ki j

∥ yk
j − f (xk

i) ∥2 = ∑
i = 1

m

∑
j = 1

n Ki j
K di j

(16)

in which ∑i = 1
m ∑ j = 1

n Ki j = K. Comparing (16) to (10), we can
notice that now

ti j = Ki j
K . (17)

Thus, it can be noted that in the conventional approaches where the
MSE is minimised, the values of ti j are fixed and equal to the
relative frequency of occurrences of wind/power pairs in the
dataset. This implies that also outliers, though with low weight,
contribute to the estimate of the power curve. On the other hand, in
our case, the EMD-based filter can display all the clusters of
datasets with their specific importance index and, most
importantly, it filters out the outliers. In fact, in the training
process, the ti j corresponding to the outlier clusters diminish to
zero.
 

Remark: We used here a one-dimensional SOM to separate
wind speeds and power data into m and n clusters, respectively.
The one-dimensional weights of the SOM network can be
interpreted as the centroids. However, in principle, other clustering
methods may be used as well, as the K-means method. The
selection of the optimal values of m and n is a critical step. Here,
we used the popular Calinski–Harabasz index [30] for this purpose.
According to this index, we obtained m = n = 40 for both wind
speeds and power outputs in our datasets.

For the sake of clarity, Fig. 2 shows the weights of the SOM
clustering method for a wind turbine when m = 40. The wind data
shown in Fig. 2 correspond to the first wind turbine of the case
study that will be described in more detail in Section 4.1. It can be
noted that the centroids are distributed more densely in the wind
speed interval of higher probability.

3 Power curve modelling
In the previous section, we described how the dataset could be
cleaned from candidate outliers. In this section, we now describe
how the filtered dataset can be fitted to obtain a power curve for
each wind turbine. In particular, we are interested in modelling the
power curve between the cut-in and the rated speeds. Roughly
speaking, this is the most interesting part of the power curve, as the
generated power is expected to be practically zero for wind speeds
smaller than the cut-in speed, and constant as the rated power
capacity for wind speeds greater than the rated speed (and smaller
than the cut-out speed).

Fig. 2  Wind histogram for the dataset of Turbine 1: the red circles refer to
the centroids of wind speed clusters obtained by the one-dimensional SOM
method
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3.1 Identification of the cut-in and the rated speeds

Piecewise linear functions are used to approximate the wind–power
relationship for each wind cluster, similarly as a linearised
segmented model [11]. In practice, one would expect the slope of
such linear functions to be close to zero when the wind speed is
lower than the cut-in speed, and then again when it is higher than
the rated speed. Each piecewise linear function can be expressed as

pk = βkwk + ek, (18)

where pk represents the wind power corresponding to the wind
speed wk in the k′th wind speed cluster. As m clusters are acquired
by the one-dimensional SOM described in the last section, we have
m affine functions overall. Parameters βk and ek are computed by
simple linear regression for each wind cluster.

Let us consider again the data of the first turbine in our datasets.
As 40 clusters are used in the one-dimensional SOM, thus 40 slope
values for each cluster and 39 boundaries for any 2 adjacent
clusters are obtained. All the identified slopes and actual wind
speed values are displayed in blue and red curves, respectively, and
the identified cut-in speed and the rated speed are highlighted in
two parallel lines in Fig. 3. It can be noted that 40 clusters are used
in the one-dimensional SOM and the slope starts increasing from
the 6th cluster and dropping to zero from the 33th cluster.
Therefore, the cut-in speed is selected as the average SOM weights
between the 5th and the 6th clusters and the rated speed is selected
as the average SOM weights between the 32th and the 33th clusters
in a similar way. In detail, the identified cut-in speed is 2.99 m/s
and the obtained rated speed is 11.23 m/s in this case study.

3.2 RBFNN-based power curve modelling

After having identified the cut-in and the rated speeds, only the
wind–power pairs having wind speed in the interval of our interest
are considered to model the wind–power curve. Let us again denote
K independent observations by (xk, yk), k = 1, …, K in the dataset,
and xk is the explanatory variable (wind speed), and yk is the
response variable (wind power output). A Gaussian non-linear
regression model is used [31]

yk = f (xk) + εk, k = 1, …, K, (19)

where f (xk) can be expressed as a linear combination of s radially
symmetric non-linear basis functions ϕα(x):

f (xk) = ∑
α = 1

s′
wαϕα(xk) + w0 . (20)

Each basis function forms a localised receptive field in the input
space, and the most commonly used radial basis function is the
Gaussian basis

ϕα(x, μα, γ) = exp(−γ∥ x − μα ∥2), α = 1, …, s′, (21)

where μα is the centre of the radial basis function for the unit α, 1/γ
is the width parameter and ∥ ⋅ ∥ is the Euclidean norm. MSE is
applied as the loss function in a Gaussian kernel-based NN. The
number of centroids s′ and the window width 1/γ is reciprocally
related, because lower window width implies that each centroid has
less contribution than others, and thus more centroids are needed.
The hyperparameters of γ = 10 and s′ = 60 are acquired in our
dataset by grid search by means of 5-fold cross-validation [32],
when RBFNN is used together with EMD to construct an RBFNN 
+ EMD-based filter. For the consistency and fairness for
comparison, we also use the same number of neurons in hidden
layer in ELM + EMD-based filter, namely s = 60. As we are
interested in the power curve modelling within the interval between
the cut-in speed and the rated speed, the centroids used in RBFNN
for the RBFNN + EMD-based filter falling in the interval are used
as the centroids for the RBFNN in the fitting phase, and the

number of these centroids is naturally the number of neurons (e.g.
in our case, s′ = 48 in the fitting phase). As the centroids are kept
the same in the interval, the hyperparameter γ = 10 as well.

4 Evaluation
4.1 Data description

In our case study, we consider a wind farm that contains nine
turbines, where each turbine has a nominal power of 2 MW. The
dataset contains 103,309 samples with a time resolution of 10 min
for each wind turbine. Each sample consists of a wind speed
measured at hub height, and its corresponding measured power. We
used 70% of the total samples to estimate the wind–power curve
(training dataset). Then, we used the remaining 30% to compare
different strategies (test dataset). In particular, note that, obviously,
the test set is not clustered nor filtered. All the data samples
corresponding to the first turbine are presented in Fig. 4. Note that
many outliers can be seen even by just visual inspection (e.g.
occurrences of large wind speeds and their corresponding very
small power generation). Such samples should be carefully handled
when modelling the wind turbine power curve.

4.2 Performance indices

The three most commonly used evaluation metrics for this
application are the MSE, the mean absolute error (MAE) and the
mean absolute percentage error (MAPE)

MSE = 1
N ∑

k = 1

N
∥ pk − pk′ ∥2, (22)

MAE = 1
N ∑

k = 1

N
pk − pk′ , (23)

Fig. 3  Slopes of piecewise linear functions of Turbine 1: the blue-dotted
line indicates the slope curve of any two neighbouring clusters; the red-
dotted line refers to the actual wind speed corresponding to each cluster

 

Fig. 4  Pairs of the normalised wind speed and its corresponding
normalised wind power for Turbine 1
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MAPE = 1
N ∑

k = 1

N pk − pk′
pk

, (24)

where pk and pk′ denote the normalised actual power output and the
normalised predicted power output, respectively (both of them are
normalised by dividing by the nominal power), N is the size of the
test dataset. Note that the MAPE error (24) is not well defined
when the actual power at the denominator has too small values. To
avoid numerical issues, only for the computation of the MAPE, we
have excluded samples when the normalised actual power is
smaller than 10−4.

4.3 Performance comparison

We now use the training data to obtain different wind–power
curves by adopting many different methodologies, and then
compared the ability of such curves to explain the (unfiltered and
uncleaned) test data. In particular, we want to assess the
importance of the filtering step, and we want to compare
parametric (i.e. 4-degree polynomial regression) fitting algorithms
and non-parametric (i.e. RBFNN) fitting algorithms on both the
full speed range (i.e. from a wind speed equal to zero up to the cut-
out speed) and on the specific interval of our interest (i.e. between
the cut-in speed and the rated speed). In the fitting phase, we first
use RBFNN, a special artificial NN (ANN). For the sake of
comparison, we also consider other shallow ANNs of three layers,
i.e. a feedforward NN (FNN) and an ELM as benchmarks. The
transfer function of the hidden layer of such FNN is a hyperbolic
tangent sigmoid function that is mathematically equivalent to the
hyperbolic tangent function used for the hidden layer in ELM in
both filtering and fitting phases described in Section 2. To show the
performance of the proposed filtering technique, we use GP
filtering for comparison, as proposed in [23]. All methodologies,
and their corresponding abbreviations, are listed in Table 1. More
specifically, the first part of the abbreviation indicates whether the
methodologies are compared over the full (f-) or the single interval
(i-) of wind speeds. The second part indicates whether a filter is
used in the pre-processing step and whether RBFNN, ELM or GP
have been used for this purpose. Finally, the last part of the
abbreviation regards the fitting step, and whether a polynomial
regression, RBFNN, FNN or ELM is used. In addition, to be fair
for the comparison among three ANNs (i.e. RBFNN, FNN, or
ELM) in the fitting phase, the same number of neurons in the
hidden layer is used (i.e. the number is 48 according to our
datasets).

4.3.1 Importance of the filtering step: The importance of the
filtering step can be also evaluated by visual inspection by
comparing Fig. 5 (no filtering), and Fig. 6, where the filtered
samples are shown in red. In particular, the fitting curve of f-
RBFNN in Fig. 5 performs very poorly for wind speeds greater
than the rated speed.

Results of all algorithms in both the training and the test set for
the first turbine are reported in Table 2. From the table, it is
possible to appreciate again that any time the filtering step is
employed, the performance is better than the same methodology
without the filtering step. On the other side, the use of RBFNN in
the filtering phase provides slightly better results than those of GP
and ELM (in conjunction with EMD). This can be explained by the
fact that RBFNN gives higher priority to the data in the
neighbourhood (selected by the centroids) than other data samples
(including outliers), while GP uses all the datasets. As for ELM,
the randomly generated weights of the edges connecting the first
two layers can only capture coarse input features. Moreover, the
performances of ELM + EMD-based filter and GP filter are similar.
Considering the lower computational overhead of ELM + EMD-
based filter (see in Section 5), we are interested in discussing its
properties in the following.

4.3.2 ANNs outperform polynomial regression: From Table 2,
it is also possible to observe that in general ANNs systematically
outperform PolyReg (i.e. polynomial regression). The results of

RBFNNs, FNNs and ELMs applied in the fitting phases are similar,
provided that an appropriate filtering step is applied first. This
result seems to suggest that non-parametric methods may be more
convenient than parametric ones for this specific fitting application.
Also, while the test error is in general greater than the training error
(e.g. because test data are not filtered), still the errors remain very
close. This seems to suggest that the models had been well trained,
and no overfitting or underfitting issues have been encountered.

As the performances of all three ANNs used in the fitting phase
are similar, we only use RBFNN as an example of ANN in the
following analysis.

4.3.3 Sensitivity on the initial conditions of the ELM + EMD-
based filter: The ELM + EMD-based filter behaves in a stochastic
way as the weights of the edges connecting the input layer and
hidden layer are generated randomly. We tested that the
randomness of the algorithm did not have an impact on final
results, by computing the performance indices for ten different
runs, starting from ten different (randomly generated) initial
conditions. Results for the first turbine are displayed in Table 3. 
Both polynomial regression and RBFNN perform similarly and
consistently with various weights of ELM.

Table 1 Power curve modelling methods
Speed
range

Filter Fitting Abbreviation

full NO PolyReg f-PolyReg
full NO RBFNN f-RBFNN
full NO FNN f-FNN
full NO ELM f-ELM
full — RBFNN + 

EMD
f-RBFNN + EMD

interval NO PolyReg i-PolyReg
interval NO RBFNN i-RBFNN
interval NO FNN i-FNN
interval NO ELM i-ELM
interval ELM + EMD PolyReg i-ELM + EMD + PolyReg
interval ELM + EMD RBFNN i-ELM + EMD + RBFNN
interval ELM + EMD FNN i-ELM + EMD + FNN
interval ELM + EMD ELM i-ELM + EMD + ELM
interval RBFNN + EMD PolyReg i-RBFNN + EMD + PolyReg
interval RBFNN + EMD RBFNN i-RBFNN + EMD + RBFNN
interval RBFNN + EMD FNN i-RBFNN + EMD + FNN
interval RBFNN + EMD ELM i-RBFNN + EMD + ELM
interval GP PolyReg i-GP + PolyReg
interval GP RBFNN i-GP + RBFNN
interval GP FNN i-GP + FNN
interval GP ELM i-GP + ELM
 

Fig. 5  Non-filtered data of Turbine 1: the stars correspond to the original
pairs of normalised wind speed and its corresponding normalised power;
the red line displays the non-accurate f-RBFNN model of non-filtered data
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4.3.4 Generalisation of the results: We have generalised the
obtained results by implementing the proposed method on all nine
the turbines. Given the small geographical size of the overall wind
farm, all nine the turbines provided similar results. Also, the same
hyperparameters were used for all turbines (e.g. 40 clusters for
both the wind and the power datasets for all turbines). The results
shown in Table 4, for the specific comparison between a
polynomial regression fitting strategy and the RBFNN, show that
the results already given for the first turbine, can be in fact
extended to all the other turbines as well. 

4.3.5 Sensitivity on the size of the training dataset: Finally, we
also analysed the sensitivity of the size of the training dataset.
Given that the original size of the training data is rather large
(72,316 samples), we compared the performance for four different
sizes of the training dataset, corresponding to K = 72, 316, K /10,
K /100 and K /1000, respectively. The results are presented in
Table 5, as the mean of ten different implementations to average
out stochastic effects. It can be noticed that the indices of the test
errors in both methods present three levels according to the size of
the training dataset: the size of K belongs to the first level where all
the indices are significantly better than those of other two levels,
especially MSEs; the size ranging from K /10 to K /100 falls into
the second level where all the indices are practically constant
(about 30% worse than before in terms of MSE); when the size is

Fig. 6  Filtered wind power samples by ELM + EMD-based filter of
Turbine 1: blue stars represent the original and non-filtered samples, red
stars represent the filtered samples, and the two black lines represent the
identified cut-in and rated wind speeds

 

Table 2 Power curve modelling comparison for the dataset of Turbine 1
Methods Training error Test error

MSE MAE MAPE MSE MAE MAPE
f-PolyReg 0.0113 0.0562 0.9594 0.0110 0.0558 0.9260
f-RBFNN 0.0093 0.0385 0.3028 0.0092 0.0386 0.3356
f-FNN 0.0092 0.0381 0.2752 0.0093 0.0384 0.3287
f-ELM 0.0095 0.0418 0.5521 0.0094 0.0418 0.5559
f-RBFNN + EMD 0.0150 0.0713 0.9658 0.0147 0.0710 0.9675
i-PolyReg 0.0066 0.0377 0.2816 0.0069 0.0383 0.2572
i-RBFNN 0.0066 0.0377 0.2838 0.0069 0.0383 0.2583
i-FNN 0.0066 0.0378 0.2686 0.0069 0.0384 0.2435
i-ELM 0.0066 0.0377 0.2838 0.0069 0.0383 0.2582
i-ELM + EMD + PolyReg 0.0014 0.0259 0.2067 0.0071 0.0377 0.2619
i-ELM + EMD + RBFNN 0.0014 0.0259 0.1987 0.0071 0.0377 0.2553
i-ELM + EMD + FNN 0.0014 0.0257 0.1631 0.0071 0.0379 0.2351
i-ELM + EMD + ELM 0.0014 0.0259 0.1957 0.0071 0.0377 0.2531
i-RBFNN + EMD + PolyReg 0.0013 0.0251 0.2154 0.0070 0.0379 0.2572
i-RBFNN + EMD + RBFNN 0.0013 0.0251 0.1991 0.0070 0.0379 0.2470
i-RBFNN + EMD + FNN 0.0012 0.0248 0.1694 0.0070 0.0384 0.2347
i-RBFNN + EMD + ELM 0.0013 0.0251 0.1981 0.0070 0.0379 0.2464
i-GP + PolyReg 0.0015 0.0267 0.2500 0.0070 0.0346 0.2547
i-GP + RBFNN 0.0014 0.0262 0.2674 0.0070 0.0375 0.2660
i-GP + FNN 0.0014 0.0261 0.2317 0.0070 0.0375 0.2433
i-GP + ELM 0.0014 0.0264 0.2290 0.0070 0.0377 0.2415

 

Table 3 Sensitivity of the initial random weights of ELM + EMD-based filter on the dataset of Turbine 1
i-ELM + EMD + PolyReg i-ELM + EMD + RBFNN

Training error Test error Training error Test error
Run MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE
1 0.0012 0.0237 0.2487 0.0062 0.0355 0.2810 0.0012 0.0237 0.2372 0.0062 0.0355 0.2710
2 0.0015 0.0274 0.1823 0.0076 0.0388 0.2367 0.0014 0.0273 0.1795 0.0076 0.0387 0.2273
3 0.0015 0.0278 0.2448 0.0078 0.0385 0.2786 0.0015 0.0274 0.1654 0.0078 0.0385 0.2295
4 0.0014 0.0264 0.2534 0.0078 0.0386 0.2810 0.0013 0.0260 0.1768 0.0078 0.0384 0.2291
5 0.0014 0.0262 0.2351 0.0077 0.0384 0.2553 0.0014 0.0259 0.1864 0.0077 0.0384 0.2314
6 0.0014 0.0260 0.2039 0.0070 0.0375 0.2554 0.0014 0.0260 0.2327 0.0070 0.0375 0.2765
7 0.0013 0.0263 0.2433 0.0079 0.0387 0.2737 0.0013 0.0261 0.1812 0.0079 0.0386 0.2315
8 0.0013 0.0248 0.2323 0.0061 0.0356 0.2617 0.0013 0.0248 0.2364 0.0061 0.0357 0.2632
9 0.0013 0.0256 0.1660 0.0077 0.0391 0.2236 0.0013 0.0255 0.1672 0.0077 0.0389 0.2243
10 0.0013 0.0247 0.2318 0.0064 0.0359 0.2582 0.0013 0.0247 0.2342 0.0064 0.0360 0.2588
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around K /1000, the MSE becomes too high, meaning that the size
of the dataset is too small to support a polynomial regression or a
NN model.

4.3.6 Comparison of the computational cost of the
filters: Both the ELM + EMD-based filter and the RBFNN + EMD-
based filter have been applied in our proposed method. ELMs
randomly generate the weights of the first layer in the former filter,
while RBFNNs are applied with the basis centres chosen by the
SOM clustering algorithm in the latter one. The computational
costs of two filters are compared with the size of the training
dataset K = 72, 316 in the filtering phase by using MATLAB
(R2017b) on a 2.8-GHz Intel Core processor, and the elapsed time
was 1456.65 s for RBFNN + EMD-based filter and 569.35 s for
ELM + EMD-based filter. In contrast, the computation cost of GP
filter is 3554 s as GP filtering involves high-dimensional matrix
operations. Accordingly, it can be seen that the ELM + EMD-based
filter is far less computationally demanding than the RBFNN + 
EMD one, specifically reducing more than half computation cost of
the RBFNN + EMD one.

5 Conclusion
In this paper, we have described a novel procedure consisting of
three steps to build a robust wind power curve for wind turbines:
first, one-dimensional SOMs were used to cluster wind and power
data into different groups, respectively, and then ELM + EMD-
based filter was used to filter out the data that poorly explained the
wind–power curve. We then identified the cut-in and the rated
speed, as the wind speeds before which, and after which, the
generated power is practically constant. Finally, we used RBFNN
to fit the remaining data in the wind interval of interest. We have
provided extensive results to compare the outcomes of different
choices for different steps. In particular, we have focused on the
importance of the filtering step, and the superiority of the RBFNN
(or other ANNs in general) over other polynomial fitting
algorithms. Specifically, the performance of our proposed ELM + 
EMD-based filtering method is similar to that of the benchmark of
GP filtering, while the computational cost of our method is far
lower than that of GP filtering.

Typical applications of the estimated wind–power curves
include wind power assessment and forecasting, and online
monitoring for earlier detection of incipient faults. In principle,
more accurate wind–power curves would have a beneficial impact
on both applications. We are currently starting investigating such

lines of research, and we are interested in quantifying the gained
advantage of an improved power curve estimation for both the
aforementioned applications.
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