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Quantum magnetoconductivity characterization
of interface disorder in indium-tin-oxide films on
fused silica
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Disorder arising from random locations of charged donors and acceptors introduces locali-

zation and diffusive motion that can lead to constructive electron interference and positive

magnetoconductivity. At very low temperatures, 3D theory predicts that the magneto-

conductivity is independent of temperature or material properties, as verified for many

combinations of thin-films and substrates. Here, we find that this prediction is apparently

violated if the film thickness d is less than about 300 nm. To investigate the origin of this

apparent violation, the magnetoconductivity was measured at temperatures T= 15 – 150 K in

ten, Sn-doped In2O3 films with d= 13 – 292 nm, grown by pulsed laser deposition on fused

silica. We observe a very strong thickness dependence which we explain by introducing a

theory that postulates a second source of disorder, namely, non-uniform interface-induced

defects whose number decreases exponentially with the interface distance. This theory obeys

the 3D limit for the thickest samples and yields a natural figure of merit for interface disorder.

It can be applied to any degenerate semiconductor film on any semi-insulating substrate.
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Many descriptions and analyses of disorder in metals and
highly doped semiconductors have appeared in the
literature1–4, partly because degenerate semiconductor

films on semi-insulating substrates are an important part of the
electronics industry. Often the substrate has to be transparent to
visible light, requiring materials such as sapphire or fused silica
(FS). These materials are low cost and stable but can have a
serious effect on the electrical properties of the film since, in
general, their lattices do not match that of the film. Many of the
useful transparent conductive films are oxides, and they include
Ga-doped ZnO (GZO), Al-doped ZnO (AZO), and Sn-doped
In2O3 (ITO)(ref. 5). In studies of GZO films grown by pulsed laser
deposition (PLD), we have found that substrates such as sapphire
or FS generate a nonconductive layer (“dead layer”) of thickness
δd ≈ 20–25 nm in the film next to the interface6. Itagaki et al.
found a similar-sized dead layer for AZO grown on sapphire by
RF sputtering, but they also developed a ZnON buffer layer that
led to a greatly reduced δd (ref. 7). Similarly, for ITO grown on
silicon by PLD, Cleary et al.8 reported a dead layer δd ≈ 14 nm.
All of those cases involved thin films mismatched to their sub-
strates, and a common feature was a mobility μ that decreased
strongly at low thicknesses, especially for d ≤ 50 nm. In contrast,
the electron concentration n tended to be constant over the whole
range d > δd as long as it was properly calculated by taking the
dead layer into account, i.e., n= nsheet/(d− δd), not nsheet/d
(ref. 6). It was found that the variation of μ with d could often be
fitted to an equation μ= μ0/[1+ dμ/(d− δd)], where the values of
dμ and δd gave a measure of interface quality6; in general, how-
ever, such an equation had no clear physical basis. In this work,
we develop a model based on two, well-defined sources of dis-
order: (1) the uniform (U) disorder arising from the random
arrangement of charged donors and acceptors in any highly
doped material; and (2) a nonuniform (NU) disorder generated
by the film/substrate interface. As shown below, this model cor-
rectly predicts magnetoconductivity over a wide range of film
thicknesses, d= 13–292 nm, and temperatures, T= 15–200 K,
and additionally is able to provide a simple, numerical method of
characterizing interface quality.

A convenient way to investigate disorder involves magneto-
conductivity, defined as Δσ(B)= σ(B)− σ(0), where B is the
magnetic-field strength. Classical analysis, ignoring the wave
nature of the electrons, finds that Δσ(B) is negative for non-
degenerate electrons and vanishes for degenerate electrons.
However, quantum analysis of degenerate electrons finds a small
positive contribution to Δσ(B), termed quantum magneto-
conductivity (QMC). The QMC arises from electron waves
encountering a small fraction of loops in their multiple diffusive
scattering paths. Since loops allow traversal in either direction,
and each distance is exactly the same, constructive interference
can occur at the entry point. This constructive interference
increases the probability of loop-type paths, which then decreases
the conductivity σ due to the retrograde motion inherent in a
loop. The magnitude of this effect is typically about −0.001σ, and
is sometimes called “weak localization”2. For this process to
occur, electron phase must be maintained during the interference
event; however, phase can be randomized by a magnetic field or
inelastic phonon scattering. A theory of this phenomenon in
three dimensions has been developed by Kawabata4 and yields the
following equations:

Δσ B;Tð Þ ¼ e2

2π2_l Bð Þ ∑
1

N¼0
2 N þ 1þ δ B;Tð Þð Þ1=2� N þ δ B;Tð Þð Þ1=2
h i

� 1

N þ 1
2 þ δ B;Tð Þ� �1=2

ð1Þ

where

δðB;TÞ ¼ l2ðBÞ
4τphðTÞDðTÞ

¼ 3e

4_ð3π2nÞ2=3μphðTÞμtotðTÞB
ð2Þ

Here D(T) is the electron diffusion coefficient, τph is the
inelastic electron–phonon scattering time, and l(B) is a “magnetic
length” defined by l(B)= (ħ/eB)1/2= 25.656 nm at B= 1 tesla, the
field strength used for our measurements. In Eq. 2, we have
modified Kawabata’s formula by setting τph=m*μph/e, and also
by invoking the Einstein relation to get D= (m*)(vf)2(μtot)/3e,
where vf is the Fermi velocity9. It is very important that n and μtot
in Eq. 2 can each be independently determined from the Hall
effect, which involves measurements of only current, voltage, and
magnetic field10. Then, since μph(T) is the only unknown quantity
in Eqs. 1 and 2, its value also is independent of any material
parameters.

At very low temperatures, τph, and thus also μph, will be large
since few phonons are present. In such a case, δ « 1, and Kawa-
bata’s theory4 gives Δσ(B)= 2.908B1/2 S cm−1, true for any
material and independent of temperature. This is a maximum
value of Δσ since μph(T) will always decrease at higher T because
more phonons will be available to scatter electrons. Since B= 1
tesla in our experiments, the theory predicts that Δσ ≤ 2.9 S cm−1,
at any temperature. In earlier studies we verified this prediction in
several different degenerate semiconductor materials, e.g., ZnO,
GaN, β-Ga2O3

9, ZnGa2O4
11, ScN, In2O3, and Si; however, we

eventually realized that it seemed to hold only in samples with a
thickness of about 300 nm or larger. Indeed, for much thinner
films we sometimes have found Δσ » 2.9 S cm−1. This fact sug-
gests that the film/substrate interface may be involved, and
indeed, as mentioned above, much literature attests to the
reduction of measured mobility (μtot) in very thin films on lattice-
mismatched substrates6–8. In contrast, for our growth conditions
of ITO on FS, given below, we find that μtot in the thinnest film
(13 nm) is only about 20% lower than that in the thickest film
(292 nm). On the other hand, Δσ varies about a factor 10 between
these two films. Thus, QMC is a very sensitive and effective way
to study and quantify interface disorder.

In this work, we develop a model for Δσ vs d that quantitatively
explains the apparent violation of Kawabata’s theory in very thin
films. The model is applied to ten ITO films of thickness 13–292
nm and yields three fitting parameters, including ΔσU, the uni-
form component of the disorder. In turn, ΔσU allows calculation
of mobility μph due to inelastic phonon scattering, and μph can be
related to an effective energy of the phonons involved in the
scattering.

Results and discussion
Effects of nonuniform disorder on QMC. Kawabata’s theory,
Eqs. 1 and 2, applies to a degenerate, disordered material in which
the disorder is uniform is the sense that the density of charged
centers, and thus that of the loops, is constant over the whole
volume. We will designate the contribution to Δσ from these
uniformly distributed loops as ΔσU. However, the interface con-
tribution to disorder, ΔσNU, is very nonuniform in the direction
perpendicular to the interface, and in general will decrease rapidly
with distance z from the interface. We postulate that ΔσNU(z)=
ΔσNU(0)[exp(−z/β)] and indeed, such an exponential variation is
reasonable and will turn out to fit the data very well. Here, both
ΔσU and ΔσNU(0) are constants that are related to the density of
the loops and also to their sizes and orientations with respect
to the direction of B. We now model the layer as sheets of
thickness dz parallel to the interface; thus a sheet at distance z
from the interface will have a conductance of Δσ(z)dz= ΔσU{1+
[ΔσNU(0)/ΔσU]exp(−z/β)}dz. It is convenient to define RNU=
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ΔσNU(0)/ΔσU, that is, the ratio of the interface-generated QMC at
z= 0 to the uniform QMC ΔσU, which is independent of the
interface. Since conductances are additive, the measured con-
ductivity Δσ will be the integral of Δσ(z)dz divided by d, giving

Δσ dð Þ ¼ 1
d

Zd

0

ΔσU 1þ RNU exp �z=β
� �� �

dz ¼ ΔσU 1þ RNUβ

d
1� exp � d

β

� �� �� 	

ð3Þ
Below we will determine the parameters ΔσU, RNU, and β by

fitting Δσ(d) vs d at several different temperatures.

Comparison of our 3D model with an alternative 2D model.
Our present model assumes 3D QMC for all the samples, even the
13-nm one. But suppose that 2D QMC is more appropriate for
such thin layers, and a change from 3D to 2D accounts for part or
all of the observed increase in Δσ for thinner layers. We must
begin our consideration of this question by examining the various
“lengths” that might be important in thin-film conductivity
analysis. (1) The size of the electron is about 2π/kf(n) ≈ 2.46 nm;
(2) the elastic-scattering mean free path may be written as λelas(n,
μtot)= (ħ/e)(3π2n)1/3μtot, ≈ 6–7 nm, depending on μtot; (3) the
“magnetic length”= (ħ/eB)1/2= 25.7 nm at B= 1 tesla. For our
samples, these three lengths are not significantly dependent on
temperature, and therefore the 13- and 26-nm samples may
possibly be expected to have some 2D character. We first note
that kfλelas ≥ 16 for our samples, and indeed it is required that
kfλelas » 1 for the validity of a perturbation theory such as
Kawabata’s. (This relationship should not be confused with the
Ioffe-Regel criterion, kfλelas= 1, which applies to the metal-
insulator transition point in heavily-doped semiconductors such
as ITO2. In that case, kfλelas » 1 denotes metallic behavior, pri-
marily defined by finite (non-zero) conductivity as T → 0, which
indeed holds for our ITO samples, as seen below.) Another
length, the inelastic-scattering mean free path, given by λinelas(n,
μtot)= (ħ/e)(3π2n)1/3(μtotμph)1/2, is less than 292 nm for T > 20 K,
and less than 13 nm at about 200 K. Thus, from these length
considerations, we would guess that the 292-nm sample might be
3D-like above 20 K, and most of the other samples, 3D-like above
200 K. However, we can be much more definitive about the 3D
nature of the 292-nm sample, as shown below.

To proceed further, we must deal with an established 2D
theory, and an obvious choice is that presented by Hikami,
Larkin, and Nagaoka (HLN)12. This theory is cast in terms of a
parameter “aτε” where a= 4DeB/ħ and τε represents the
dominant form of inelastic scattering, whether electron–electron,
electron–phonon, or spin–orbit scattering. For doped semicon-
ductors, with typical concentrations n ~ 5 × 1020 cm−3, a factor
100× less than that of metals (n ~ 5 × 1022 cm−3), phonon
scattering will be dominant. Indeed, we find that our
electron–phonon scattering formula, Eq. 4, well describes the
temperature dependence of our QMC data, as shown earlier9. We
then set τε= τph, and will for convenience define the

μphðTÞ ¼
4πε0 3=πð Þ1=3_3n1=3T sinh2

Tph

2T


 �
ekT2

ph m*ð Þ2 ε0=ε1 � 1ð Þ
ð4Þ

associated mobility as μph= eτph/m*. This term then fits into δ(B,
T), Eq. 2 of the present paper, and gives by far the dominant
temperature dependence in δ(B,T) since n and μtot(T) are nearly
flat. For comparison with HLN’s 2D theory, we consider the very
low temperature data, for which δ « 1. For our 292-nm sample, Δσ
(B,T), with B= 1 tesla in our experiments, is plotted in Fig. 1.

Note that the low-T data, for which δ « 1, are very close to
Kawabata’s prediction, i.e., Δσ(low-T)= 290.8 S m−1. This num-
ber involves no material parameters and is not adjustable in any

way. Because Δσ vs T agrees so closely with 3D theory, we are
justified in using Eqs. 1 and 2 to calculate μph(T), representing the
inelastic phonon scattering mechanism, as described above. This
same scattering mechanism must of course be incorporated in
any 2D theory applied to the same sample, including the HLN
theory. Fortunately, their parameter “aτε” can be written in terms
of our parameter δ (Eq. 2) as (aτε)−1= (2/3)δ. (The “2/3” arises
from the change from 3 to 2 dimensions and is unimportant in
the subsequent calculations.) HLN give a formula (their Eqn. 19)
for aτε » 1 (or δ « 1): Δσ2D= (e2/2π2ħ)ln(1/δ), where e2/2π2ħ=
1.233 × 10−5 S, the unit of quantum conductance. To convert the
units in Δσ2D from S to S m−1, we divide by 292 × 10−9 m, and
the result is plotted in Fig. 1. The fit is not very good and there are
no undetermined parameters that could make it better. However,
we can go one step further by comparing 2D and 3D for the 13-
nm sample, which should give a much better fit to the HLN
formula than was found for the 292-nm sample. As shown in the
inset of Fig. 1, the 2D fit at 13-nm thickness is not better than that
at 292-nm, but actually much worse; therefore, the large increase
of Δσ in thinner samples cannot be attributed to a switch from 3D
character in the thicker samples to 2D in the thinnest ones.

Temperature and thickness dependence of mobility and sheet
concentration. Figure 2 presents the sheet concentration nsq and
mobility μtot vs thickness d at room temperature for all ten ITO
samples. The utility of an nsq vs d plot is to show the variation of
the volume concentration n vs d, since n is just the slope of nsq vs
d; also, the intercept on the abscissa gives the dead layer thick-
ness, δd. The slope gives n= 5.65 × 1020 cm−3, nearly constant
with thickness down to that of the thinnest layer, only 13 nm.
Furthermore, δd < 1 nm, far lower than, e.g., values found for Ga-
doped ZnO on sapphire or on FS6. Finally, μtot is high and also
nearly constant at about 38 cm2 V−1 s−1, again unusual for
lattice-mismatched growth. Thus, the present set of samples is
ideal for this study.

Figure 3 displays temperature dependences of the resistivity ρ0
(B= 0), mobility μtot, and concentration n, for the thickest (292
nm) and thinnest (13 nm) layers. First note that n is constant in
both layers, showing good degeneracy, and the values of n differ
by only 3% in magnitude. Secondly, ρ0 and μtot each have about a
20% difference between their respective values in thick and thin
layers, although it would normally be much larger in typical
lattice-mismatched systems. But the most astonishing difference

Fig. 1 Temperature dependence of magnetoconductivity. Closed red
squares: experimental Δσ data in units of S m−1 for 292- and 13-nm layers.
Dashed blue curved lines: predictions of 2D theory, normalized to 292 nm in
main plot and 13 nm in inset. Dashed black straight line: Δσ= 290.8 Sm−1,
the Kawabata 3D prediction at very low T.
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involves the values of Δσ, differing by a factor 10 at low
temperatures. This huge effect on Δσ in very thin films is the
subject of this study and will be shown to arise from interface
disorder.

However, it also reveals that QMC is a very sensitive probe of
interface effects, much more so than that of other electrical
properties, such as n and μ.

Figure 4 shows plots of Δσ vs d at temperatures of 15, 30, 50,
80, and 150 K. (Other measurements of Δσ vs d, not shown to
avoid clutter, are at 20, 40, 60, 70, 100, and 130 K). Each curve is
fitted to Eq. 3, σ(d)= ΔσU{1+ [RNUβ/d][1 – exp(−d/β)]}, where
ΔσU represents the uniform disorder arising mainly from the
randomness of the donors, and RNU= ΔσNU(0)/ΔσU, i.e., the ratio
of the nonuniform disorder at z= 0 to the uniform disorder,
which is constant everywhere. At B= 1 tesla, fits of Δσ(d) vs d at

each temperature yield ΔσU, RNU, and β. It turns out that β=
6.15 ± 0.6 nm for all samples, nearly independent of temperature
and thickness, while both ΔσU and RNU decrease as temperature
increases. The temperature independence of β occurs because the
spatial distribution of loops is fixed. However, the ability of the
loops to affect conductivity, represented by ΔσU and ΔσURNU, is
temperature dependent because the strong inelastic phonon
interactions at higher temperatures destroy the constructive
electron-wave interference more completely. Besides temperature
dependences we must also consider the thickness dependences of
ΔσU and ΔσNU. At a given temperature, ΔσU remains constant as
d is increased, but ΔσNU continuously decreases because of the
[1 – exp(−d/β)] term, until at some thickness, designated as d*,
ΔσNU < ΔσU. The value of d* is given by solving [RNUβ/d*][1 –
exp(−d*/β)]= 1, but for practical purposes, d* ≈ RNUβ. Its
significance is that, for d > d*, the surface is far enough away
that it is basically unaffected by the interface damage propagating
upward. Thus, d* serves as a useful figure of merit for a layer/
substrate interface. It is expected that homoepitaxial layers should
have a good interface and thus a small d*, and we have found this
to generally be true. Also, a good buffer layer7 should make d*
smaller. For T= 15, 80, and 150 K, d*= 300, 122, and 76 nm,
respectively. A reasonable fit to all of the d* values up to 150 K
gives d*(T) ≈ [330e−T/42+ 63] nm. For temperatures much
higher than 150 K, e.g., 300 K, the first term is negligible so that
d* ≈ 63 nm. This rough value of d* might suffice as a first
estimate of the required thickness of ITO on FS to minimize
surface disorder for a device operating at room temperature.

Determination of mobility related to inelastic phonon scat-
tering. To investigate interfaces by QMC, only conductivity
measurements are necessary, not Hall-effect measurements.
However, to study the phonons responsible for inelastic scatter-
ing, represented by μph, we must also know n and μtot (obtained
from the Hall effect) so that the only unknown in Eq. 2 is μph. It is
worth noting that the interface disorder is not expected to greatly
affect the phonon spectrum itself, but its nonuniformity can affect
our ability to study it via Kawabata’s theory, which requires
uniformity. In short, only the uniform portion, ΔσU, is subject to
his theory. (In earlier studies9,11,13 of μph in various materials, we

Fig. 3 Temperature dependence of resistivity, volume concentration,
mobility, and magnetoconductivity. Carrier concentration n: open red
squares, 13 nm sample; open blue circles, 292 nm sample. Mobility μ:
closed red squares, 13 nm; closed blue circles, 292 nm. Resistivity, ρ0:
dashed red line, 13 nm; dashed blue line, 292 nm. Magnetoconductivity Δσ:
red solid line, 13 nm; blue solid line, 292 nm. At low temperatures, Δσ has
by far a stronger thickness dependence than that of n, μ, and ρ0.

Fig. 4 Magnetoconductivity vs thickness at various temperatures. Solid
symbols, experimental values of magnetoconductivity Δσ; solid lines,
theoretical fits of symbols to Δσ (d)=ΔσU{1+ [RNUβ/d][1 – exp(−d/β)]}.
Red circles, 15 K; green triangles, 30 K; black triangles, 50 K; dark blue
squares, 80 K; light blue circles, 150 K. Dashed line, Δσ= 2.908 S cm−1,
which is the theoretical maximum QMC for uniform disorder.

Fig. 2 Sheet carrier concentration and mobility as a function of thickness
at room temperature. The slope of sheet carrier concentration nsq (solid
blue circles) vs thickness d is the volume carrier concentration n (solid blue
line), which is nearly constant at 5.65 × 1020 cm−3. The mobility μ (solid
red squares) is about 38 cm2 V−1 s−1 and only a weak function of d.
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fortunately used very thick samples because, as seen in Eq. 3, the
uniform component of disorder ΔσU then becomes the dominant
term.) From ΔσU in the present samples we determine μph for T
= 15–150 K and the results are shown in Fig. 5. For comparison,
we also plot μtot for the 292-nm sample. Clearly, μph is strongly
temperature dependent, as would be expected, but it does not
greatly influence the temperature dependence of μtot, because
μph−1 « μtot−1over the whole range. The magnitudes of ΔσU(T) at
all temperatures are consistent with Kawabata’s limit, i.e., Δσ(d) ≤
2.9 S cm−1, and they also lead to reasonable values of μph.

On the other hand, to fully understand μph we must include all
of the phonons responsible for the electron–phonon scattering.
That is a very difficult problem because of the large number (80)
of phonon branches in In2O3. However, a different approach,
introduced earlier9, is to calculate a single effective phonon
energy, Eph(T)= kTph(T), that produces the required scattering at
temperature T. The calculation involves three steps: Step 1, fit Δσ
(d,T) vs d, Eq. 3, to get ΔσU(T); Step 2: solve ΔσU(μph,T) for
μph(T) in Eqs. 1 and 2; Step 3: solve μph(Tph,T) for Tph in Eq. 4.
The results are shown in Fig. 6, and the calculated values of Eph
cover an energy range of 7–76 meV over the temperature range
15–150 K. There is no certainty that the Eph vs T curve can be

extended beyond 150 K, but if so, we can fit it with Eph= 137[1 –
exp(−T/172)] –4.17, which leads to Eph= 109 meV at 300 K.

The reasonableness of these phonon energies can be addressed
by investigating their origin, the phonon density of states (DoS),
via DFT. For comparison, in a simple semiconductor such as
GaN, with two atoms in the unit cell, only one phonon is
dominant for scattering electrons at room temperature, a
longitudinal optical phonon of energy 93 meV. For more
complicated semiconductors, such as Ga2O3 with ten atoms in
the unit cell, or In2O3 with eighty, many phonons take part in the
scattering process. Approximate14 as well as first-principles15,16

calculations of electron–phonon scattering in Ga2O3 have been
carried out but only for the perfect crystal, in which symmetry
considerations are very important. In a disordered crystal, such as
that considered here, symmetries are broken, and the DoS of all
phonons, shown in Fig. 7, becomes relevant. Note that the range
of the effective phonon energies determined by QMC is very
similar to the range of phonon energies calculated by DFT.
However, we would expect a broadening and smoothing of the
perfect-crystal DoS due to disorder, discussed below.

The lowest energy structures of In2O3 are cubic bixbyite, with
two atomic arrangements:17 In2O3-I, which has space group No.
199, eight formula units per unit cell, three types of In and two
types of O; and In2O3-II, which has space group No. 206, eight
formula units per unit cell, two types of In and one type of O
atoms. In agreement with ref. 17. our DFT calculations find that
these two structures have similar total energies, within 10 meV of
each other. In addition, the total energies of In substituted by Sn
(SnIn+1) are similar in the two phases for models with one Sn
atom per crystallographic cell (80 atoms, i.e., Sn density of 9.76 ×
1020 cm−3) as well as one Sn atom per primitive cell (40 atoms,
i.e., Sn density of 1.95 × 1021 cm−3). We find that the phonon
density of states for these model defects has minimal broadening
by comparison to that of the pristine material. This can be
understood from the small difference between the atomic masses
of In and Sn (111.8 a.u. vs 118.7 a.u.) and the small difference
between their atomic numbers (49 vs 50), suggesting that Sn has a
relatively small effect on the elastic constants. This situation is
different from that of degenerately Si-doped β-Ga2O3 and
ZnGa2O4, where Si differs significantly from Ga both in mass

Fig. 5 Temperature dependence of total mobility and phonon-related
contribution. Black triangles: total Hall mobility μtot measured for 292-nm-
thick sample. Red squares: calculated mobility μph due to inelastic
electron–phonon scattering.

Fig. 6 Temperature dependence of effective phonon energy. Symbols,
calculated values of Eph at temperature T. Solid line, fit to Eph(T)= a[1 – exp
(−T/b)]+ c, where a= 137 meV, b= 172 K, and c=−4.17 meV.

Fig. 7 Theoretical phonon density of states for In2O3 and effective
phonon energies at 15, 150, and 300 K. Solid red line: phonon density of
states (DoS) for perfect-crystal In2O3 calculated by density functional
theory (DFT). Vertical dashed lines: effective phonon energy Eph calculated
from quantum magnetoconductivity (QMC) at temperatures 15 and 150 K,
and estimated at 300 K. Note that the ranges of energies determined by
DFT and QMC are quite similar.
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(28.08 a.u. vs 111.8 a.u) and in atomic number (14 vs 49).
Therefore we considered additional sources of phonon broad-
ening. A prevalent point defect driven by degenerate doping of
In2O3 is known to be the oxygen interstitial Oi

17, which acts as a
compensating center. We find that the phonon density of Oi

−2

has a significant broadening especially in the lower part of the
spectrum. In addition, we find that the main peaks in the phonon
spectra of pristine In2O3-I are shifted by a few meV relative to
those of In2O3-II and have different widths. Given that these two
phases are equally likely to form, we expect the resulting spectral
function for electron–phonon scattering to be an average of these
two densities of states, resulting in additional broadening.

A final requirement of the usefulness of QMC and Eq. 3 is that
it be applicable to other degenerate films on other semi-insulating
substrates. Although we have only recently begun looking at other
layer/substrate systems, previous unrelated programs over a two-
year period had involved Ga-doped ZnO (GZO) layers of various
thicknesses grown on fused silica in the same PLD system as that
used for the present ITO growths. The 15-K QMC results of the
GZO samples are plotted in Fig. 8 along with those of the 15-K
ITO samples shown above in Fig. 4. The fitting parameters of the
GZO are ΔσU= 1.26 S/cm, RNU= 6.40, and β= 30.5 nm, to be
compared with those of the ITO, ΔσU= 1.33 S/cm, RNU= 44.9,
and β= 6.68 nm. Interestingly, the differences in RNU and β
between ITO and GZO are very large, but the difference in d*=
RNUβ, 195 nm for GZO and 300 nm for ITO, is only a factor 1.5.
These results demonstrate that interface damage can propagate
far into the film by having either a large initial value (high RNU, as
in ITO), or a large decay value (high β, as in GZO). Both are
important when considering the best substrate material, or
designing an appropriate buffer layer.

Conclusions
We have developed a model to explain an apparent strong vio-
lation of Kawabata’s 3D theory of quantum-based magneto-
conductance in degenerate semiconductors, which states that Δσ
(B) ≤ 2.908B1/2 S cm−1, independent of material or temperature.
We find that this theory holds well for films of thickness d= 300
nm or greater, but not for much thinner films. The Kawabata
theory implicitly assumes uniform disorder, ΔσU, which would be

expected from the random locations of large densities of charged
donors and acceptors. However, thin films require a substrate for
stability and the film/substrate interface can introduce a non-
uniform disorder, ΔσNU(d), into the film. Our model includes
both uniform and nonuniform types of disorder and was tested
with films of ITO, d= 13–192 nm, grown on fused silica by PLD.
Electron–phonon scattering theory predicts effective phonon
energies Eph of 7 meV at 15 K, and 76 meV at 150 K. An extension
of the scattering theory beyond 150 K, not necessarily justified,
predicts Eph= 109meV at 300 K. Density functional theory pre-
dicts a DoS with an energy range ≈ 3–107 meV, showing rea-
sonable correlation with the QMC-derived Eph. Support for the
general applicability of our Δσ vs d model, Eq. 3, comes from
excellent fits to another material, GZO on fused silica. Finally, we
considered an alternative model for the observation that very thin
films can have a value of Δσ above the maximum permitted by
Kawabata’s 3D theory. This alternative model suggested that the
thinnest samples should be treated as 2D, not 3D. However, a
direct comparison of 3D and 2D theories showed that the latter
gave poor fits to all samples and thus could not explain the
observed phenomena.

Methods
Sample growth. Ten ITO films, of thicknesses 13, 26, 37, 62, 74, 109, 149, 217, 242,
and 292 nm (measured by spectroscopic ellipsometry), were deposited in a Neocera
(Neocera LLC, 10000 Virginia Manor Rd # 300, Beltsville, MD 20705 USA) Pioneer
180 pulsed laser deposition system with a KrF excimer laser (Coherent COMPex
Pro 110, λ= 248 nm, 10 ns pulse duration). The chamber base pressure was 2.66 ×
10−6 Pa and a deposition pressure of 1.3 Pa was utilized with a 5% O2 /95% Ar gas
mixture. Double-side-polished, 2-inch-diameter, fused-silica substrates were heated
by a backside heater to 300 °C and rotated during deposition. The laser operated at
a pulse frequency of 30 Hz and an energy density of 2.6 J cm−2 measured at the
target, which was 50-mm in diameter, 6-mm thick, 99.99%-pure, and composed of
90-wt%-In2O3 and 10-wt%-SnO2. The target-to-substrate distance was 50 mm with
a 45° laser angle of incidence to the target. Although these samples were not
measured by X-ray diffraction (XRD), previous ITO growths by PLD on Si, in the
same apparatus and under nearly identical conditions, were studied by XRD and
found to be polycrystalline, even down to 10-nm thickness8. Similarly, Kim et al.18

grew ITO on plastic (PMMA) by RF sputtering at 70 °C and found amorphous
growth for d < 80 nm but polycrystalline growth for thicker samples, with domi-
nant orientations of (222), (400), (440), and (622).

Hall effect, QMC. Hall effect and conductivity measurements were carried out in a
LakeShore (LakeShore Cryotronics, Inc., 575 McCorkle Blvd, Westerville, OH
43082 USA) 7500 system over a temperature range T= 10–320 K, and at magnetic-
field strengths B= 0 and 1 tesla. At each value of T, the automated system pro-
duced values of mobility μ(T), carrier concentration n(T), and resistivities ρ0(T) (at
B= 0), and ρB(T) (at B= 1 tesla). The experimental values of Δσ(B,T) were cal-
culated from Δσ(B,T)= ρB(T)−1− ρ0(T)−1, and the experimental values of μtot(T)
and n(T) were given directly by the apparatus. Thus, by fitting the experimental Δσ
(B,T) to the theoretical expression in Eqs. 1 and 2, the term μph(T) in Eq. 2 is the
only unknown and was determined by solving Eq. 1 as a transcendental equation.

Effective phonon energy calculation. The conversion of μph(T) to an effective
energy kTph(T), representing all of the phonons responsible for the inelastic scat-
tering at that temperature, was accomplished by solving Eq. 4 as a transcendental
equation. This equation has been published elsewhere9 and is a somewhat modified
version of a first-order variational calculation due to Howarth and Sondheimer19.
For In2O3, we use the values ε0= 9.0, ε∞= 4.0, andm*= 0.30m0

20. Because Eq. 4 is
only an approximation, we present kTph(T) also as an approximation, and a more
accurate analysis will require additional scattering theory. Nevertheless, the con-
tinuous dependence of the effective phonon energy has been interpreted as a
mixing between the polar optical modes and nonscattering modes due to the large
number of disordered donor sites21. The latter produce a particularly strong
phonon mixing effect in complex oxides like β-Ga2O3 and ZnGa2O4, which have
many, closely-spaced phonon branches13. A similar effect is found here for ITO by
first-principles calculations, which show an interplay of mixing from Sn sites, In
vacancies, and ITO polymorphism21.

Density functional theory. The total phonon density of states was calculated for
the perfect crystal, ignoring disorder from all causes. For that we used the Quantum
Espresso software package22, which included DFT for lattice structure, and density
functional perturbation theory23 for lattice dynamical properties (DFPT). We used
ultrasoft pseudopotentials with the PBEsol exchange-correlation potential24, a

Fig. 8 Thickness dependence of magnetoconductivity in different
materials. Comparison of interface quality for different materials, Sn-doped
In2O3 (ITO) and Ga-doped ZnO (GZO), grown by the same method (pulsed
laser deposition) on the same substrate material (fused silica) using the
same apparatus. Squares, ITO. Circles, GZO. Solid lines, fits to Δσ (d)=
ΔσU{1+ [RNUβ/d][1 – exp(−d/β)]}. The figure of merit, d*= RNUβ, is 300
nm for ITO and 195 nm for GZO.
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plane-wave cut-off of 125 Ry, and a 16 × 16 × 8 Monkhorst-Pack k-point grid for
structure relaxation with a convergence criterion of 1 mRy/a.u. The Brillouin Zone
sampling for lattice dynamical properties consisted of an 8 × 8 × 8 k-point grid for
the electrons and a 4 × 4 × 4 q-point grid for phonons.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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