
Anharmonic Vibrational States of Solids from DFT Calculations. Part
I: Description of the Potential Energy Surface
Alessandro Erba,*,† Jefferson Maul,† Matteo Ferrabone,† Philippe Carbonnier̀e,‡ Michel Reŕat,‡
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ABSTRACT: A computational approach is presented to
compute anharmonic vibrational states of solids from
quantum-mechanical DFT calculations by taking into explicit
account phonon−phonon couplings via the vibrational
configuration interaction (VCI) method. The Born−Oppen-
heimer potential energy surface (PES) is expanded in a
Taylor’s series in terms of harmonic normal coordinates,
centered at the equilibrium nuclear configuration, is truncated
to quartic order, and contains one-mode, two-mode, and
three-mode interatomic force constants. The description of
the anharmonic terms of the PES involves the numerical
evaluation of high-order energy derivatives (cubic and quartic
in our case) with respect to nuclear displacements and constitutes the most computationally demanding step in the
characterization of anharmonic vibrational states of materials. Part I is devoted to the description of the PES. Four different
numerical approaches are presented for the description of the potential, all based on a grid representation of the PES in the basis
of the normal coordinates, that require different ingredients (energy and/or forces) to be evaluated at each point (i.e., nuclear
configuration) of the grid. The numerical stability and relative computational efficiency of the various schemes for the
description of the PES are discussed on two molecular systems (water and methane) and two extended solids (Ice-XI and
MgH2). All the presented algorithms are implemented into a developmental version of the CRYSTAL program.

I. INTRODUCTION

Atomic vibrations are involved in a variety of thermal properties
of finite molecular systems and extended solids. In particular,
thermal properties of materials (such as specific heat, entropy,
thermal expansion, thermo-elasticity, lattice thermal conductiv-
ity, etc.) are strictly connected to the lattice dynamics of the
system.1 Statistical thermodynamics provides the link between
the microscopic atomistic description of the nuclear dynamics
(i.e., the quantum-mechanical vibrational states) and macro-
scopic thermal properties of matter.2

The energy of vibrational states of molecules can be effectively
probed with vibrational spectroscopies such as infrared and
Raman. The same techniques are used to probe those lattice
vibrations of solids where atoms of different lattice cells move in
phase with each other (i.e., phonons at the Γ point of the
Brillouin zone).3 Inelastic neutron scattering can be used to
probe also out-of-phase vibrations (i.e., the so-called phonon
dispersion).4

In the context of standard quantum-mechanical simulations of
materials, the usual way in which the lattice dynamics of the
system is described is by means of the harmonic approximation
(HA) of the Born−Oppenheimer potential energy surface
(PES).5 The HA assumes a quadratic form of the Taylor’s
expansion of the PES in terms of atomic displacements from the

equilibrium configuration and implies a description of the lattice
dynamics in terms of a set of independent quantum harmonic
oscillators. Despite its simplicity, the HA has experienced great
success in the description of lattice vibrations of many classes of
materials,6−11 in particular those without light elements (mainly
hydrogen)12,13 and without strongly anharmonic phonon
modes, such as ferroelectric ABO3 perovskites, for instance.

14−17

At the same time, the limitations of the HA are well known
and, in a solid state context, can be grouped into two classes: (i)
the constant-volume nature of all computed thermal properties
of materials and (ii) the neglected high-order terms of the PES,
which result in the independence of phonon modes. The first
class of limitations is such that the HA is unable to describe the
thermal lattice expansion of the system, as well as its thermo-
elasticity (i.e., thermal dependence of the mechanical response).
Furthermore, at the harmonic level, there is no distinction
between constant-volume and constant-pressure thermodynam-
ic functions (such as the specific heat, for instance). These
limitations can be effectively overcome by using the so-called
quasi-harmonic approximation (QHA), which requires the
evaluation of harmonic phonon frequencies as a function of
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lattice cell volume.18,19 Some of the authors of this paper have
recently developed a fully automated module for the calculation
of quasi-harmonic thermal properties of materials in the CRYSTAL

program.20−26 The second type of limitations is due to neglected
higher-than-second-order terms in the expansion of the PES, so
that the intrinsic anharmonicity of the phonon modes as well as
phonon−phonon couplingsand their effects on vibrational
states (such as Darling−Dennison and Fermi resonances and
phonon combination bands)are in turn neglected, which
results in the approximated description of thermodynamic
properties.27,28 As a further consequence of the lack of cubic
terms of the PES within the HA, phonon lifetimes τ would be
infinite as well as the lattice thermal conductivity of the material.
While several schemes have been developed in the last years to

determine the cubic interatomic force constants needed to
compute the lattice thermal conductivity,29−34 less effort has
been put in the characterization of the PES up to fourth order
and in the corresponding description of anharmonic vibrational
states of solids by taking full account of phonon−phonon
couplings. In this respect, a few notable exceptions are
represented by (i) the self-consistent phonon theory
(SCPH)35 as implemented by Tadano,36,37 where relevant
cubic and quartic terms of the PES are selected through
compressive sensing38 (ii) the vibrational self-consistent field
(VSCF) approach39 as implemented for solids by Monserrat et
al.,40,41 where one- and two-mode terms of the PES are obtained
from fitting the energy computed in rich 1D and 2D grids of
nuclear configurations (only recently, analytical forces have been
used to improve the numerical stability and efficiency of the
fitting procedure of the PES, see ref 42), (iii) the self-consistent
ab initio lattice dynamics (SCAILD) method,43 (iv) the
stochastic self-consistent harmonic approximation
(SSCHA),44 and (v) Parlinski’s modified version of the previous
two approaches.45 Most of the above-mentioned anharmonic
approaches take into account phonon−phonon couplings
within a mean-field approach.
In this two-part paper, we present the first implementation of

the vibrational configuration interaction (VCI) methodbased
or not on a reference VSCF solutionto determine anharmonic
vibrational states of solids by taking phonon−phonon
interactions into full account. In a molecular context, a hierarchy
of well-assessed methodologies exists for treating mode−mode
couplings, which reflects the hierarchy of methodologies used in
the description of dynamic electron correlation in electronic
structure theory:46,47 the VSCF approach,39 where vibration
modes interact through a mean-field potential; vibrational
perturbation theory truncated at the nth order (VPTn), where
the reference state is given by VSCF;48,49 the vibrational
coupled-cluster approach (VCC)50 and VCI, where mode−
mode couplings are treated exactly (at least in the full-VCI
limit).51−57

In Part I, we discuss the expansion of the PES of a solid in
terms of its harmonic normal modes, and we illustrate four
different methods to compute its high-order anharmonic terms.
The numerical description of the PES from static density
functional theory (DFT) calculations indeed represents the
most delicate and computationally expensive step in the
anharmonic treatment of vibrational states of materials. In this
study, the PES is truncated to quartic order and contains one-,
two-, and three-mode interatomic force constants. Different
numerical approaches are presented, all based on a grid
representation of the PES in the basis of the normal coordinates,
that require different ingredients (energy and/or forces) to be

evaluated at each point (i.e., nuclear configuration) of the grid.
Different algorithms are explored to compute the high-order
energy derivatives: energy fitting and finite differences. The
numerical stability and relative computational efficiency of the
various schemes is discussed on two molecular systems (water
and methane) and two extended solids (Ice-XI and MgH2).
In Part II,58 we illustrate formal aspects of the VSCF and VCI

methods, and we present their implementation for solids. The
correctness of the implementation is documented through
comparison of available computational and experimental results.
The convergence of the configuration-interaction expansion is
explicitly discussed, and theoretical approaches to improve its
convergence illustrated. Furthermore, the effect of the exchange-
correlation functional of the DFT and the basis set used in the
description of the PES on the computed anharmonic vibrational
states of molecules and solids is explicitly discussed. All the
presented algorithms have been implemented into a devel-
opmental version of the CRYSTAL17 program.59,60

II. FORMAL ASPECTS

In the following, we discuss some formal aspects of vibrational
states of molecules and solids, where, in the case of solids, we
restrict our attention to Γ-point vibration modes. However, let
us note that, by working in terms of a supercell of the primitive
one, vibrationmodes of solids proper of different k-points can be
folded back to theΓ-point. The starting point of our anharmonic
vibrational description is represented by the harmonic
approximation according to which the nuclear dynamics of the
system is described in terms of a set ofM independent quantum
harmonic oscillators, whose corresponding normal coordinates
are Q1,Q2,···,QM ≡ Q.
Within the Born−Oppenheimer approximation, vibrational

states are determined by solving the nuclear Schrödinger
equation, which, in terms of normal coordinates, reads

EQ Q( ) ( )s s sΨ = Ψ (1)

where Ψs(Q) is the vibrational wave function of the sth
vibrational state and Es the corresponding energy. By setting the
rotational angular momentum to zero and by neglecting
rotational coupling effects, the Hamiltonian operator in eq 1
can be written as

Q
V Q

1
2

( )
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M
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2
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= (2)

where V(Q) is the usual Born−Oppenheimer potential energy
surface (PES) in the basis of mass-weighted normal coordinates.
As discussed in the Introduction, the description of the potential
term in the Hamiltonian above is a computationally challenging
task. Here, we expand the PES in a Taylor’s series centered at the
equilibrium nuclear configuration as follows:
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where ωi is the harmonic frequency of the ith vibration normal
mode and where ηijk, ηijkl, and ηijklm are cubic, quartic, and fifth-
order force constants, respectively

E
Q Q Qijk

i j k

3
η = ∂

∂ ∂ ∂

i

k

jjjjjjj
y

{

zzzzzzz (4)

E
Q Q Q Qijkl

i j k l

4
η = ∂

∂ ∂ ∂ ∂

i

k

jjjjjjj
y

{

zzzzzzz (5)

E
Q Q Q Q Qijklm

i j k l m

5
η = ∂

∂ ∂ ∂ ∂ ∂

i

k
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y

{

zzzzzzz (6)

The inclusion of anharmonic (i.e., higher than quadratic)
terms in the potential (eq 3) therefore implies the evaluation of
high-order energy derivatives with respect to atomic displace-
ments. These high-order energy derivatives have to be
computed numerically, which makes the description of the
PES a computationally demanding task. For this reason, it
proves crucial to devise (i) effective strategies to truncate the
expansion of the PES in eq 3 so as to include only those terms
contributing significantly to the description of the vibrational
states of the system and (ii) efficient algorithms for the
numerical evaluation of the high-order energy derivatives in eqs
4−6. We discuss details of both aspects below.
IIA. Truncation of the PES. When working in terms of a

Taylor expansion of the potential of the type given in eq 3, it is a
common practice in molecular anharmonic calculations to
truncate it after the fourth order as in most cases neglected
higher-order terms would produce little corrections to the
vibrational states, and at the same time, they would lead to a
dramatic increase in the computational cost (higher than fourth-
order terms are however needed in some strongly anharmonic
systems).61 Here, we adopt the same strategy, and thus, we
include only terms up to fourth order in the PES (namely, we use
a 4T representation of the potential). Within a 4T
representation, the PES can be further truncated by considering
only those force constants involving a maximum of n distinct
modes (namely, a nM representation of the potential). By
combining the two truncation strategies introduced above, a
1M4T representation of the PES would require the evaluation of
the next force constants

i M,iii iiiiη η ∀ ∈ (7)

This representation of the PES neglects two-mode couplings
and almost always results in a wrong description of the
vibrational states. A popular representation of the potential is
the 2M4T one, which includes all two-mode coupling force
constants

i M

i j M

,

, , , ,
iii iiii

ijj iij iiij ijjj iijj

η η

η η η η η
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∀ < ∈ (8)

Analogously, the 3M4T representation of the PES includes
the following terms:

i M

i j M
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,
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,

iii iiii

ijj iij iiij ijjj iijj

ijk iijk

η η

η η η η η

η η
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∀ < ∈
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Here, we work in terms of 2M4T and 3M4T representations
of the PES as given in eqs 8 and 9, respectively. We have
implemented into the CRYSTAL program four different
algorithms to describe the 2M4T potential and two different
algorithms to describe the 3M4T potential, which we illustrate
below.

IIB. Numerical Evaluation of High-Order Force Con-
stants. The cubic and quartic force constants entering the
expansion of the PES discussed in Section IIA have to be
evaluated numerically. Two different approaches can be used in
this respect (fitting and finite differences), which both require
the evaluation of the energy (and forces) on a grid of points (i.e.,
displaced atomic configurations). The numerical evaluation of
such high-order energy derivatives is a rather delicate computa-
tional task, whose stability with respect to the adopted grid of
points has to be carefully addressed. In particular, the numerical
stability of the description has to be discussed in terms of
number of points, interval explored, and type of ingredients
available at each point (energy alone or energy and forces).
We have developed and implemented four different numerical

approaches to compute those terms of the PES required to get a
2M4T representation, which we discuss in detail below.
Different approaches are characterized by a different numerical
stability, accuracy, and computational cost. All these aspects are
addressed in this paper. In order to get two-mode terms, for each
pair of modes (Qi,Qj), a grid of points is needed where the

Figure 1. 2D grid of points defining the nuclear configurations that need to be considered in the evaluation of the adiabatic PES in its 2M4T
representation for the four different schemes discussed in Section IIB: (a) energy finite differences (Scheme 1), (b) energy fit (Scheme 2), (c) EGH
finite differences, two points (Scheme 3), and (d) EGH finite differences, four points (Scheme 4). Different colors correspond to different quantities
computed for each nuclear configuration: only energy (green), energy and forces (blue), and energy, forces, and Hessian (red). The axes are in units of
frequency-scaled normal coordinates: Qi i iξ ω∝ .
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energies (and forces, for some approaches) are computed. The
shape of this grid is illustrated in Figure 1 for the four different
schemes that we describe. The first two schemes only require the
evaluation of the energy at each displaced nuclear configuration,
while the last two combine information from the energy and
forces.
IIB1. Scheme 1: Energy Finite Differences. In this scheme,

originally proposed by Lin et al.,61 all the terms of the PES in eq 8
are obtained from finite differences of the energy computed on
the grid illustrated in Figure 1a. For each pair of modes (Qi,Qj),
the corresponding cubic and quartic force constants are
obtained from the following expressions:

s
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( 2 2 )iii
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where s h/i iω= and s h/j jω= are the adaptive steps among

the points of the grid along the Qi and Qj normal coordinates
(see below for more details on how the h step is defined) and
where Ea,b is the energy computed at a nuclear configuration
displaced by asiQi + bsjQj from the equilibrium one. For those
terms of the PES involving only one mode, a more compact
notation is used where Ea is the energy of a nuclear configuration
displaced by asiQi from the equilibrium one. For a systemwithM
normal modes, the total number of points to be considered in
the definition of the PES with this scheme is given by

N M
M

1 4 12
2scheme1 = + +

i
k
jjj

y
{
zzz

(15)

where “1” is the equilibrium configuration on which the Hessian
is evaluated to get the harmonic vibration modes, 4M are those
nuclear configurations that are obtained by displacing the atoms
only along one normal coordinate, and the last term counts the
number of nuclear configurations obtained by displacing atoms
along two normal coordinates. In particular, the binomial factor
in eq 15 counts the number of independent pairs of modes
within the set of M modes, and 12 is the number of displaced
points per pair.
IIB2. Scheme 2: Energy Fit. Also, this scheme, as the previous

one, requires only the energy to be evaluated at the different
nuclear configurations explored. The grid of points used within
this scheme is sketched in Figure 1b. This scheme consists of
computing the energy on the grid and then in best-fitting those
values to the function below
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All the terms of the 2M4T representation of the PES in eq 8
can thus be obtained from the coefficients above as

c c c c c6 , 2 , 24 , 6 , 4iii iij iiii iiij iijj7 8 10 12 14η η η η η= = = = =
(17)

Let us stress that, in principle, the c1 and c2 coefficients should
be null as they correspond to the forces acting on the atoms at
the equilibrium configuration. Moreover, the c5 coefficient
should also vanish because it represents a mixed second energy
derivative in the basis of the normal modes (where the Hessian
takes a diagonal form). By deleting the corresponding terms in
the function (eq 16), constraints on the forces and Hessian
would be applied. Here, we prefer to keep those terms so as to
cope with possible small numerical inaccuracies in the geometry
optimization process. For a system with M normal modes, the
total number of nuclear configurations to be considered in the
definition of the PES with this scheme is given by

N M
M

1 8 12
2scheme2 = + +

i
k
jjj

y
{
zzz

(18)

IIB3. Scheme 3: EGH Finite Differences (Two Points). In
order to further reduce the number of points in the grid to be
explicitly explored, one has to introduce some additional
information at some of the nuclear configurations. By computing
the analytical gradients at some configurations (only those
where atoms are displaced along one normal coordinate at a
time), an effective finite difference scheme has been devised,61

which is called EGH from the different ingredients it requires:
energy, gradients, and Hessian. Figure 1c shows the points
needed for each pair of modes (Qi,Qj), where some nuclear
configurations only require the energy to be evaluated while
others require energy and gradients. The Hessian matrix is
computed just at the equilibrium nuclear configuration to get the
harmonic normal modes and frequencies. For each pair of
modes, all the terms of the 2M4T representation of the PES in eq
8 can be obtained from the following finite difference relations:
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where Ea,b has the same meaning as above, and where Ga,b
i is the

gradient with respect to Qi computed at a nuclear configuration
displaced by asiQi + bsjQj from the equilibrium one (analogously,
Ga,b
j is the gradient with respect to Qj computed at the same

nuclear configuration). For those terms of the PES involving
only one mode, a more compact notation is used whereGa

i is the
gradient with respect to Qi of a nuclear configuration displaced
by asiQi from the equilibrium one.
In the expressions above to compute ηiii and ηiij, we useG0

i and
G0,0
j that are the first energy derivatives with respect toQi andQj

at the equilibrium nuclear configuration, respectively. In
principle, these quantities should be null, but we still include
them here in order to take into account possible small numerical
inaccuracies in the geometry optimization process leading to the
equilibrium configuration.
For a systemwithM normal modes, the total number of points

to be considered in the definition of the PES with this scheme is
therefore given by

N M
M

1 2 2
2scheme3 = + +

i
k
jjj

y
{
zzz

(24)

The number of points required with this scheme is as low as it
gets. At the same time, 2M points are now characterized by a
larger cost as the additional evaluation of the forces is required.
However, as we discuss later, the additional cost of the forces at
an already considered nuclear configuration is lower than that of
a calculation of the energy on a new nuclear configuration, which
makes this scheme particularly efficient computationally.
IIB4. Scheme 4: EGH Finite Differences (Four Points). Along

the lines of the previous scheme, we have derived expressions to
compute the different terms in the 2M4T potential from finite
differences of energy and forces evaluated on a richer grid of
points, as sketched in Figure 1d. This scheme requires the forces
to be evaluated at all the considered nuclear configurations. By
following the same conventions introduced for the previous
scheme, the expressions are the following:

s
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+

− − − − −

(29)

Also, in this case, the first energy derivatives with respect to
normal modes at the equilibrium configuration are explicitly
used in the expressions 26 and 27 for the same reasons discussed
above. This scheme is expected to ensure a higher numerical
stability on the computed terms of the PES than the previous
one (this is discussed in Section III) but at the same time is
characterized by a computational cost that is about twice that of
the previous one. Indeed, for a system with M modes, the

number of nuclear configurations to be explicitly explored is
given by

N M
M

1 4 4
2scheme4 = + +

i
k
jjj

y
{
zzz

(30)

IIB5. 3M4T Representation of the PES.Here, we discuss how
we can compute the additional terms of the PES needed to get a
3M4T representation, as given in eq 9, namely, ηijk and ηiijk. It
turns out that these three-mode terms can be evaluated quite
effectively from EGH finite difference expressions. We show
below how these three-mode terms of the PES can be computed
from a slightly modified version of the Scheme 3 discussed above
and from the Scheme 4 as such for the 2M4T representation.
By exploiting the information provided by the computed

forces, both ηijk and ηiijk can indeed be computed from the same
set of nuclear configurations explored in the 2M4T description
of the PES, without the need to explicitly explore nuclear
configurations obtained by displacing atoms along three distinct
modes. Figure 2 shows the 2D grid of points required for each
pair of modes to get the three-mode terms with the two EGH
schemes that we have implemented.

The comparison of panel (a) of Figure 2 with panel (c) of

Figure 1 shows that, in order to get three-mode terms, Scheme 3

is modified in such a way to compute the forces also at mixed

displaced configurations and not only at those obtained by

displacing along only one normal coordinate. Once all the pairs

of modes have been considered, and the corresponding nuclear

configurations explored, with this approach (modified Scheme

3) the three-mode terms are evaluated as

s s
G G G G G

G G

1
2

(2

)

ijk
i j

i i i i i

i i

0,0,0 0,0, 1 0,0,1 0, 1,0 0, 1, 1

0,1,0 0,1,1

η = − − − +

− +

− − − −

(31)

Figure 2. 2D grid of points defining the nuclear configurations that
need to be considered in the evaluation of the adiabatic PES in its 3M4T
representation for the two EGH schemes discussed in Section IIB: (a)
EGH finite differences, two points (Scheme 3) and (b) EGH finite
differences, four points (Scheme 4). Different colors correspond to
different quantities computed for each nuclear configuration: energy
and forces (blue) and energy, forces, and Hessian (red). The axes are in
units of frequency-scaled normal coordinates: Qi i iξ ω∝ .
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where here Ga,b,c
i is the gradient with respect toQi computed at a

nuclear configuration displaced by asiQi + bsjQj + cskQk from the
equilibrium one. Note that, as anticipated above, there are no
nuclear configurations to be explored where a, b, and c are all
nonzero at the same time, so that we can still work in terms of 2D
grids.
Three-mode terms of the PES can also be obtained from

Scheme 4 discussed above for the 2M4T representation (Figure
2b and Figure 1d) coincide). Indeed, it turns out that, when
working with the Scheme 4, the evaluation of the three-mode
terms ηijk and ηiijk can be seen as a zero-cost byproduct. Once all
the pairs of modes have been considered, with this approach
(Scheme 4) the three-mode terms are evaluated as
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We discuss the computational cost of these different schemes
in Section IIB7 below.
IIB6. Step Size. The accuracy of the finite difference

expressions used for Schemes 1, 3, and 4 above clearly depends
on the step size h used in the definition of the corresponding 2D
grid of points. Similarly, the accuracy of energy-fitting Scheme 2
depends on the amplitude of the explored interval in the
definition of the grid. We discuss the numerical stability of the
different schemes with respect to the value of the step size h in
Section III. Here, we discuss the type of step size that we use. In
principle, two different strategies can be used: (i) a fixed step size
for all modes and (ii) an adaptive step size based on the
curvature of the PES at the equilibrium configuration. We refer
to the comprehensive review by Lin et al. for an overview of the
many different proposals in this respect, in a molecular
context.61 In a solid state context, the use of a fixed step size
might become problematic as it can probe very unbalanced
energy changes along vibration modes characterized by very
different vibration frequencies. In solids, vibration frequencies
typically span 3 orders of magnitude, from a few tens of cm−1 to a
few thousands of cm−1. Adaptive, mode-specific steps therefore
represent the best choice to ensure a balanced description of
high-order terms of the PES.
In our implementation, we define the 2D grids presented in

Figures 1 and 2 in terms of dimensionless harmonic frequency-
scaled normal coordinates

Qi i iξ ω∝ (35)

By definition, for each vibrationmode, when ξ is equal to 1 the
harmonic potential energy coincides with the fundamental
vibration energy level of the harmonic oscillator. We refer to ξ =
±1 as to the “classical amplitude” of the harmonic oscillator. See
Figure 3 for a graphical definition of this quantity. Here, we

express the step size h and in general the explored interval of
atomic displacements in units of ξ. As an example, by setting h =
1 for all modes, we would actually displace atoms differently
along different normal modes. Along each normal mode, atoms
would be displaced to such an extent to produce a change in the
corresponding harmonic potential energy equal to the
fundamental vibration energy level.

IIB7. Computational Cost of Different Schemes.We discuss
the numerical stability of the different schemes introduced in the
previous pages to describe high-order terms of the adiabatic PES
in Section III. Here, we discuss their relative computational cost.
The left panel of Figure 4 reports the total number of nuclear
configurations that explicitly need to be explored in the
construction of the PES (in the 2M4T and 3M4T
representations) as a function of the number of vibration
modes M one considers. The four lines correspond to the four
numerical schemes introduced in Section IIB. The two lines
corresponding to Scheme 1 and Scheme 2 look almost
undistinguishable on the plot because, despite being charac-
terized by a different number of points for single-mode
configurations (4 versus 8, respectively), they require the same
number of points for two-mode configurations (12 per pair of
modes). The latter clearly dominate the scaling of the total
number of configurations as a function of M because of the
binomial factors in eqs 15 and 18. The two EGH methods,
Scheme 3 and Scheme 4, require a much smaller number of
nuclear configurations and are characterized by a much more
favorable scaling withM because of the smaller prefactor (2 and
4, respectively) of the binomial term in eqs 24 and 30. In
particular, Scheme 3 requires a number of configurations that is
exactly half of that of Scheme 4.

Figure 3. Two quantum harmonic oscillators as a function of the
normal coordinates Qi and Qj (left panels) and as a function of the
frequency-scaled coordinates ξi and ξj (right panels). When ξ =±1, the
harmonic potential energy equals the energy of the fundamental
vibration state of the harmonic oscillator.
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In the different methods, not all nuclear configurations are
characterized by the same computational cost (note that here by
computational cost we mainly refer to the time needed to
perform the calculation). This is due to the fact that, depending
on the adopted scheme, some configurations require only the
evaluation of the energy (i.e., the solution of the SCF
procedure), while others require the additional evaluation of
the analytical forces. Depending on the particular system one
studies, the evaluation of the forces can have a different cost
relative to the SCF (see discussion in Section III). Here, we
consider the worst case scenario in which the evaluation of the
forces takes as much as 50% of the time needed to complete the
SCF and compute the energy (in Section III, we show that much
lower factors, down to 20%, are obtained for many small
molecular systems). Within this assumption, the right panel of
Figure 4 reports the computational cost of the different schemes
for the description of the PES as a function of M. The cost is
normalized to that of a single-point SCF calculation (i.e., the
cost of one SCF calculation is set to 1). We clearly see that
Scheme 3 (without and with inclusion of three-mode terms) is
by far the most computationally efficient, implying a much lower
computational cost than Scheme 4 (by a factor of about 2) and
Schemes 1 and 2 (by a factor of about 5). From this preliminary
analysis on the computational cost of the different schemes,
Scheme 3 clearly represents the ideal choice. In Section III, we
discuss the numerical stability and accuracy of the various
schemes in order to check whether or not Scheme 3 can be safely
used as a default choice in the mapping of the adiabatic PES.

III. NUMERICAL ASPECTS
An essential prerequisite to the reliable description of
anharmonic vibrational states in molecular and periodic systems
is the availability of accurate and stable numerical approaches for
the evaluation of high-order terms in the expansion of the
adiabatic PES in eq 3. The stability and relative performance of
the different numerical schemes illustrated in Section IIB for the
description of the PES are discussed below. In particular, we
investigate the following: (i) How much is each numerical

scheme stable with respect to the investigated range of atomic
displacements used in the definition of the 2D grids of points
illustrated in Figures 1 and 2? (ii) Do the different numerical
schemes provide consistent descriptions of the various terms of
the PES? (iii) What terms of the PES (cubic, quartic, one-mode,
two-mode, etc.) are the most sensitive to the numerical
parameters used in their evaluation?
Four systems are considered: twomolecular (water, H2O, and

methane, CH4) and two extended crystalline materials (MgH2
magnesium hydride and low-temperature proton-ordered phase
of water ice, Ice-XI) Figure 5. For the two molecular systems,

water and methane, a 6-31G* basis set is used, and all their
vibration modes are considered (i.e.,M = 3 for water andM = 9
for methane in the construction of the PES). Within the 2M4T
representation of the potential, this corresponds to a total
number Nη of cubic and quartic force constants of 21 and 198,
respectively.MgH2 is a tetragonal crystal with the rutile structure
(space group P42/mnm) and with 6 atoms/cell. Ten vibration
modes (M = 10) are considered in the definition of the PES,
which were selected so as to span the whole spectrum of lattice
vibrations (the smallest having a vibration frequency of 210
cm−1 and the largest of 1295 cm−1). In its 2M4T representation,
the PES consists of Nη = 245 cubic and quartic force constants.
An 8-511G* basis set is used,62 in combination with a shrinking

Figure 4. (Left) Total number of nuclear configurations to be explored in the construction of the PES (in the 2M4T and 3M4T representations) as a
function of the number of vibration modes M of the system. The four lines correspond to the four numerical schemes introduced in Section IIB.
(Right) Computational cost of the different schemes for the description of the PES as a function ofM; the cost is normalized to that of a single-point
SCF calculation (i.e., the cost of one SCF calculation is set to 1).

Figure 5. Atomic structure of the four systems used in this study: (a)
water molecule, H2O, (b) methane molecule, CH4, (c) crystal of
magnesium hydride, MgH2, and (d) low-temperature, proton-ordered
phase of water ice, Ice-XI.
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factor of 8, which corresponds to sampling over 75 symmetry-
irreducible k-points in the first Brillouin zone. Ice-XI belongs to
the orthorhombic Cmc21 space group and contains 12 atoms/
cell (four water molecules). A subset of 12 vibrationmodes (M =
12) is identified in the definition of the PES (not the full set of
modes to reduce the computational time), which were chosen to
span the whole spectrum of lattice vibrations (the smallest
having a vibration frequency of 274 cm−1 and the largest of 3226
cm−1). More specifically, these 12 modes were selected so as to
cover the different types of lattice vibrations of ice: four
“translations”, three “librations”, two “bending”, and three
“stretching”modes. In the 2M4T representation, in this case, the
PES has Nη = 354 force constants. An 8-411G* basis set is
used,63 in combination with a shrinking factor of 4, which
corresponds to sampling over 21 symmetry-irreducible k-points
in the first Brillouin zone. All calculations are performed with the
B3LYP hybrid functional of the density functional theory. The
effect of the adopted basis set and DFT functional on the
description of the anharmonic vibrational states of these systems
are explicitly investigated and discussed in Part II of our study.
We start by investigating the numerical stability of the four

schemes illustrated in Section IIB for the evaluation of the high-
order terms of the PES. In particular, we address their stability
with respect to the amplitude I of the explored range of atomic
displacements in the definition of the 2D grids of points in
Figures 1 and 2. As discussed in Section IIB6, the step size h and
displacement range amplitude I are given in units of the
‘“classical amplitude”’ of the harmonic oscillator. For each
scheme and for each investigated system, the values of the force
constants of the 2M4T representation of the PES obtained with I
= 0.9 (see Figure 1 for a graphical definition of I) are arbitrarily
chosen as an internal reference. In order to discuss the impact of
I on the computed values for the force constants, the following
mean absolute deviation I|Δ̅| (in %) is defined for each scheme
and system considered

N
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x

N
x
I

x
I

x
I

1

0.9

0.9∑ η η
η

|Δ̅| =
′

| − |
| |

×
η =

′ =

=

η

(36)

where the sum runs over the Nη′ force constants of the PES
whose absolute value is larger than 30 cm−1 and where ηx

I are the
values of force constants computed by exploring an amplitude I
in the definition of the grids as in Figure 1.
The mean absolute deviation introduced in eq 36 is reported

in Figure 6 as a function of I, where each panel corresponds to a
different scheme in the evaluation of the PES. For each scheme,
the four systems introduced above are considered. All schemes
are relatively stable with respect to the explored range of atomic
displacements, with specific features listed below: (i) The two
schemes based only on the energy (Schemes 1 and 2) tend to be
less stable than the others when small values of I are used in the
definition of the grid (indeed, when small atomic displacements
from the equilibrium nuclear configuration are performed, the
energy alone is unable to fully catch the high-order terms of the
PES). (ii) The two EGH schemes that use both energy and
forces computed at displaced configurations (Schemes 3 and 4)
are characterized by a higher numerical stability with respect to I.
(iii) For each scheme, the gray area in Figure 6 highlights the
range of displacements within which the scheme shows
deviations below 3% for all systems and can be used as an eye-
guide (Schemes 3 and 4 are characterized by a wider gray area of
stability than Schemes 1 and 2). (iv) The description of the PES
of methane and Ice-XI (red and green lines, respectively) turns

out to be extremely stable with respect to the explored interval I
for all methods, while the description of the PES of the water
molecule and the MgH2 crystal is more sensitive to I.
In Figure 6, we analyzed the overall numerical stability of the

different schemes in the description of the 2M4T representation
of the PES. Different types of force constants (cubic versus
quartic, one-mode versus two-mode) are characterized by
different numerical stabilities. We illustrate this aspect by
referring to Figure 7, where the numerical stability of the four
schemes in the description of the different terms of the PES of
Ice-XI is reported as a function of I. Results are shown only for
Ice-XI as the considerations to be made below are common to all
investigated systems. For each scheme, four sets of force
constants are considered: cubic 1M (ηiii for all modes), quartic
1M (ηiiii for all modes), cubic 2M (ηiij and ηijj for all pairs of
modes with i < j), and quartic 2M (ηiiij, ηijjj and ηiijj for all pairs of
modes with i < j). Figure 7 reports mean absolute deviations I|Δ̅|
(in %) with respect to reference calculations at I = 0.9. The four
panels in the figure have different vertical scales so that a
horizontal gray line is drown at a 3% deviation as an eye-guide to
help reading relative values. We see that, overall, as already
discussed from Figure 6, Scheme 4 is the most numerically
stable, followed by Scheme 3, while the two schemes based only
on the energy (Schemes 2 and 1) are less stable. In particular we

Figure 6. Numerical stability of the four schemes discussed in Section
IIB for the description of the PES (in its 2M4T representation) with
respect to the amplitude I of the explored range of atomic displacements
in the definition of the 2D grid of points. See Figure 1 for a graphical
definition of the grids and of I. For each scheme, four systems are
considered: molecules of water and methane and the MgH2 crystal and
Ice-XI crystal. The plots report the mean absolute deviation I|Δ̅| (in %)
of the computed high-order (cubic and quartic) force constants with
respect to a reference calculation at I = 0.9. See eq 36 for an exact
definition of this quantity. For each scheme, the gray area highlights the
range of displacements within which the scheme shows deviations
below 3% for all systems.
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observe that, while cubic force constants (dark and light blue
lines for one-mode and two-mode, respectively) are very stable
in all the four schemes (with deviations always below 2% in the
whole explored range for I), quartic force constants are way
more sensitive to the adopted displacement amplitude I when
only the energy is computed at displaced nuclear configurations.
This becomes particularly critical for the one-mode ηiiii terms
that show the largest deviations for Schemes 1 and 2.
So far, we have discussed the internal stability of each scheme

with respect to the amplitude of the explored range of atomic
displacements. Now, we want to investigate whether or not the
different numerical schemes provide a consistent description of
the PES. To do so, we fix the value of I to 0.9, we take Scheme 4
as an arbitrary reference (this scheme is also expected to be the
most accurate as it uses information on the forces at many
displaced configurations), and we compute the following mean
absolute deviation of the computed force constants with respect
to the other schemes S = 1, 2, 3
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This quantity is reported in Table 1, where we can see the
following: (i) Different schemes provide a very consistent
description of the PES for all systems with deviations larger than
3% only in two cases (both referring to the MgH2 system). (ii)
The EGH Scheme 3 provides a description of the PES that is
very close to that obtained with the more expensive Scheme 4,
with deviations always below 3% for all systems. (iii) Methane
turns out to be the most stable system (with deviations among
different schemes never exceeding 1.1%), followed by Ice-XI
(with deviations never exceeding 1.8%), water, and MgH2.

Very similar results (not shown) are obtained for any values of
0.7 ≤ I ≤ 1.3. These results are very encouraging as they overall
confirm the possibility of getting a stable and reliable description
of the high-order anharmonic terms of the PES with the
numerical schemes presented in Section IIB. In particular, the
EGH Scheme 3 (the one characterized by the lowest
computational cost, as documented in Figure 4) is found to be
very stable with respect to I and at the same time to provide very
consistent values with respect to the most accurate Scheme 4.

IV. CONCLUSIONS AND PERSPECTIVES
Formal and computational aspects related to the description of
high-order anharmonic terms (cubic and quartic) of the Born−
Oppenheimer potential energy surface (PES) of solids, as
obtained from DFT calculations, have been presented. The PES
is here truncated after the fourth order and in such a way to
contain all one-mode, two-mode, and three-mode terms. Four
different numerical approaches (as implemented in the CRYSTAL

program), based on a grid representation of the PES in the basis
of harmonic normal coordinates, have been illustrated. Two
simple molecular systems (water, H2O, and methane, CH4) and
two solids (the low-temperature proton-ordered phase of water
ice, Ice-XI, and magnesium hydride, MgH2) have been used to
test the different methods in terms of numerical stability,
accuracy, and computational efficiency.
All methods are found to be sufficiently stable with respect to

the explored range of atomic displacements and to provide a
consistent description of the different terms of the PES. This is
particularly so for cubic terms while quartic terms, and in
particular one-mode ones, are more sensitive to the step size
used in the definition of the grid. We have identified one
promisingmethod (the “‘two-point EGH”’ scheme) that ensures
a good numerical stability and, at the same time, is characterized
by a reduced computational cost. It is a finite-difference method
working on a minimal grid of points, which uses both the energy
and forces computed at selected nuclear configurations.
As a future development, we plan on exploiting the point-

symmetry of the lattice in the evaluation of the anharmonic
terms of the PES, which is expected to drastically reduce the
computational cost of this step of anharmonic calculations. In
Part II,58 we present formal and computational aspects of the
VSCF and VCI methods to compute anharmonic vibrational
states of solids from the representation of the PES illustrated in
the present paper (Part I).
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Table 1. Mean Absolute Deviation S|Δ̅| (in %) of Force
Constants in 2M4TRepresentation of PES as Computed with
Schemes 1, 2, and 3 (S = 1, 2, 3) with Respect to Scheme 4a

Molecules Solids

Scheme H2O CH4 MgH2 Ice-XI

1 2.6 0.5 5.6 1.8
2 1.5 0.7 3.3 1.4
3 2.5 1.1 2.9 1.6

aCalculations are performed with I = 0.9 in all cases. Values are given
for each scheme for the four systems here considered.
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