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Coherence in Compton scattering at large angles1
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Compton scattering of laser light by an electron beam at large angles, in particular at 90°,
produces coherent hard radiation if the density of the electron beam is high enough. In this
case, the intensity of the scattered radiation is greatly enhanced in a small cone around the
forward direction of propagation of the electron beam. As an example, the production of
1-KeV coherent X rays is discussed.

1. Introduction

In head-on Compton scattering experiments, collective effects arise if the electron bunch
length is shorter than the produced radiation wavelength (Luccio et al. 1990; Pellegrini
1992). In this case, all the electrons radiate in phase and the intensity of the scattered radi-
ation becomes proportional to the square of the electron number.

For optical or shorter wavelengths, this is difficult to achieve in head-on collisions (Fed-
erici et al. 1980; Sandorfi et al. 1983), because typically electron pulses cannot be much
shorter than a few millimeters. However, one can superimpose on the Gaussian electron
distribution a small density modulation that acts as a spatial grating and can be sufficient
to induce coherent contributions in Compton scattering, as it has been discussed earlier
(Luccio et al. 1990).

In the present paper, we examine a different possibility where no density modulation is
involved, but the electron and photon beams cross each other at a large angle. This con-
siderably shortens the interaction region and, under particular circumstances, can lead to
collective effects and to some degree of coherence of the Compton scattered photon beam.

It is important to observe that collective scattering and coherence in the scattered beam
are not necessarily synonymous. If collective scattering occurs, in the electron reference
frame (ERF) the intensity of the scattered beam increases with the square of the number
of electrons involved. However, in the laboratory scattering angles and photon energies
transform according to the Lorentz formulas and in many cases the resulting radiation loses
its spatial coherence, measured by the phase correlation of photons separated at the detec-
tor by some distance of interest. A discussion of the collective emission of synchrotron radi-
ation and its relation to the spatial coherence of the photon is given, for example, in Benard
and Rousseau (1974).

2. Scattering of a light wave by an electron bunch

Let us consider the process of scattering of a plane electromagnetic wave with a system
of Ne electrons initially at rest. In the impulse approximation, the total electromagnetic
field observed at a point r at a large distance from the source is given by (Lipkin 1987)

'Work done in part under the auspices of the U.S. Department of Energy.
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where En is the amplitude radiated by the single scatterer at the position rn, and the
momentum transfer q is

q = k - k'. (2)

k,k' being the vector momentum of the incoming and outgoing photon, respectively. Equa-
tion (1) shows that the intensity | E r | 2 of the radiation obtained from the ensemble of Ne

electrons is enhanced with respect to the intensity due to the single electron by the square
of the charge form factor of the electron distribution (Jackson 1975)

(3)

Equation (1) implies that the scattering process collectively involves all the electrons so
that, after the scattering, the single scatterer wave function does not change so much that
its identity may be established by subsequent measurements. On the other hand, the elec-
trons of a beam pulse are loosely bound to a particular site and the coupling of electrons
on different sites with each other is negligible. Under these conditions, the momentum is
randomly exchanged among all the scatterers and each electron is expected to share, on the
average, the same fraction of the total. This means that the recoil momentum is essentially
delivered to the electron bunch as a whole (Weber 1985). In this case and for large Ne, the
mass of the scatterer becomes so large that the scattering can be considered as a pure Thom-
son process with no energy shift.

If the average spacing between adjacent electrons is much shorter than the wavelength
corresponding to the momentum transfer q, the enhancement form factor of equation (3)
can be approximated by its integral expression

f " r f r (4)
J\

with the normalization condition

f (5)
When the momentum transfer is small enough that q r « l over the entire integration

volume, F(q) = Ne and the cooperative effect of the Ne electrons generates a scattering
intensity N* larger than from a single electron. Conversely, if the wavelength is much
shorter than the average distance between the electrons in the bunch, the exponent of equa-
tion (4) can be large and widely different in value, with the consequence that F(q) can rap-
idly fall toward zero. In this case, the integral approximation (4) fails because the scattering
intensity can never drop below the incoherent contribution expected from the sum of the
squares of the diagonal terms in equation (1). This is what happens in the usual backscat-
tering experiments (Federici et al. 1980), where the enhancement form factor given by equa-
tion (4) vanishes, whereas the intensity expected from equation (1) yields a contribution
proportional to Ne.

In general, if 70(q) is the Compton intensity per unit solid angle expected for a single
electron, the total intensity generated by Ne electrons can be written as

(6)
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and can never fall below the corresponding incoherent contribution

/# c (q )=A^/o (q ) , (7)

which represents the lowest value that the scattered intensity can have.

3. Electron and photon densities

Let us explicitly discuss the case of Compton scattering of photons by an electron beam,
when the two beams interact at 90° in the laboratory (figure 1) (Luccio & Miceli 1994). This
case has also been recently discussed in (Kim et al. 1992, 1994), where it has been proposed
for the production of very short X-ray pulses. The aim of the present paper is to show that
under these circumstances, when the electron density is high enough, collective effects arise.

For simplicity, assume to have a parallel beam pulse of Ne electrons traveling at a
speed 0c along the z-axis and having the density distribution described by

Pe,L =
dN, 2a},

(27r)
(8)

The subscript L stands for LAB frame of reference and ox, ay, and aZiL represent the
electron bunch dimensions in the x and y (transverse) and z (longitudinal) directions.

A laser beam of wavelength \L propagates along the x-direction and is focused right
on the electron trajectory, with an elliptical spot size of half axes r\ and £ along the z- and
y-axes, respectively (figure 1). The minimum values for 77 and £ are limited by the momen-
tum/position uncertainty principle and therefore the laser beam cannot be focused down
to linear sizes less than \L/2ir. In these extreme conditions of maximum focusing, the
momentum distribution becomes substantially isotropic. Nonetheless, a Gaussian-like mo-
mentum distribution will always be assumed in the present paper.

The propagation law for Gaussian beams ensures that the positions and angles of the
photon trajectories are completely noncorrelated at the waist location (xL = 0). This
allows the laser photon density (brightness) in the LAB frame to be factored in the follow-
ing way

FIGURE 1. In the LAB frame, a laser beam of elliptical cross section IHJ£ interacts with an electron
beam of cross section iroxoy at 90°. Photons are scattered at a small angle to the direction of the
e-beam.
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dNn,
Pph.L —

with the definitions

Pph.O —

dxLdyLdzLdtdm

W

(9)

(10)

= —-j (zL -xLtandLsm<l>L)2 + —^ (yL - xLtan6Lcos<t>L)2,

and (all quantities defined in the LAB)

W — laser power [watt], c = speed of light,
hw = laser photon energy [joule],
kL — 2w/\L = laser photon wave vector [cm~'],
kx,L = kLcos6L,

I = s\ndLcos(t>L, m = sindLsm<t>L.

The angles of the incoming laser beam (in the LAB frame) dL,<j>L are defined in figure 2.
Because collective effects do not depend on the reference frame, we have chosen to per-

form the calculations in the ERF (variables with no subscripts), because in that frame the
description of the process is simpler. This is due to the fact that in the ERF, the incoming
and scattered wavelengths are equal. In the ERF, with the Lorentz transformations

x = xL, y = yL, z = y(zL- @ctL), ct = y(ctL -

the electron density of equation (8) becomes

pe(x,y,z) =
dNe _

dxdydz (2ir)3/2,

(ID

(12)

In the absence of energy dispersion, this expression describes a completely stationary
Gaussian pulse of length az = yazL.

Unfortunately, for the photon density the situation is much more complicated. Owing
to the divergence, the monochromaticity is lost under the Lorentz transformation (equa-

FIGURE 2. Definition of the angles of the incoming laser beam.
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tion 11), and in the ERF frame the laser beam appears to be decomposed in a many-beam
system with different frequency components.

It can be shown that, under the Lorentz transformation, equation (9) becomes

dN
ph =7(1 -

Equations (10) and (13) state that for each value of ( and m in the LAB, the photon den-
sity in the ERF system appears to be concentrated in a cylindrical volume almost perpen-
dicular to the y-z plane and sweeping across the pulse (equation 12) at the speed j8c. But,
because the Lorentz transformation acts differently on the spatial coordinates and the pho-
ton momenta, we obtain the interesting result that the photons inside each cylinder appear
to travel in a direction almost parallel to the z-axis. In addition, because the Lorentz com-
pression factor 7 squeezes the cylinder along the z-direction, the laser light collides only
against a tiny slice of the electron bunch.

The shape of this slice, specified by e~
T{x-y-z-<-m), defines the volume of the electron

pulse over which the integration of the form factor (equation 4) must be performed. For
each specified value of 2 and m, the form factor becomes

F(q,l,m) = jjj Pe(x,y,z)e-re""dxdydz. (14)

Because for the incoming (nonprimed quantities) and the outgoing (primed quantities)
photons in the ERF is

= y(kL-0kz,L)

k'x = k cos 8

k'v = k sin 0 cos <t>

L k'z = A:sin0sin</> (15)

the components of the momentum transfer of equation (2), in terms of the scattering
angles 0 and <f> (defined in the ERF system as it has been done in figure 2 for the LAB sys-
tem), are

= kx- y(kL - PkZiL)cos6

= ky- y(kL - 8 cos

- (kL - Pkz,L)sin8sin<t>].

(16)

The integral of equation (14) is straightforward but not immediate. Following the defi-
nitions given in the Appendix, one obtains

where

S F(q = 0) = -i j - ^ - —
2 oxoyoz uvj

(17)

(18)

is the number of electrons contained in the illuminated volume.
Even though these electrons can only be a tiny fraction of the total number of electrons

in the bunch, they backscatter in phase because they have been selected in a region of lin-
ear dimensions along the z-axis of the same order of the photon wavelength. Therefore,



172 G. Giordano et al.

depending upon the number of electrons that can be packed in one wavelength (i.e., the
bunch density), the scattered intensity can be significantly higher than the usual incoher-
ent contribution.

4. Scattered intensity

The total Compton intensity that results from the incoherent interaction between the two
beams follows from the usual definition of the luminosity and can be written as

(21M Q\L I I I Gil

didTH =COTh 4i JJl p^dxdydz = c°™ T, ^o 7 ( 1" w i W o ' <19>
where aTh (= 0.66 10~24 cm2) is the Thomson scattering cross section. The same expres-
sion yields the total intensity generated by a single electron located at (x = y = z = 0)

di0 du rrr do, - '"f"'2
, . , - caTh ~r S(0)pphdxdydz = coTh—- pph<oy(\ - &m)h(t,m)e 2" .

dtdm 4-K JJJ 4ir

~°°'+0° (20)

It is interesting to notice that equation (20) can also be interpreted as an electron-to-
photon conversion efficiency. Indeed, if the laser is not strongly focused on the electron
beam (i.e., rj, £ > \L/2TT), by integrating equation (20) over f,m and time, one obtains

which is the number of photons generated over the whole energy spectrum by one single
electron that crosses a laser beam at 90°.

For a practical case, with a CO2 laser, equation (21) yields an electron-to-photon effi-
ciency given by

£ ^ = 4.1 X 10- ' 6 • • 1 " " " J , (22)

With £ = 25 urn and a laser power of 60 J/100 ps, this efficiency becomes ~ 10%. This
laser power is close to the record value already reported in the literature in single-shot oper-
ation (Ginzburg et al. 1983a). The impact that this observation has in the field of high energy
colliders has been discussed at length in (Ginzburg et al. 1983b).

Finally, from equations (6) and (20), if we assume an isotropic differential cross section,
the total intensity collectively generated by the Ne electrons of the bunch becomes

^ T = T ^ l*o|2Pp*.o7U - &m)h(t,m) f e"^2 rffl, (23)
dtdm 4TT J4ir

where the integration must be performed over the whole solid angle.
Both equations (19) and (23) represent two time pulses emerging from the interaction

region with standard deviations that differ by V2, as they should. However, while the first
photon pulse is isotropically diffused over the whole solid angle, the second is contained
in a very narrow cone, whose axis direction depends on (l,m). The ratio between coher-
ent and incoherent flux at (t,m) is

« w O v dINh r. •«*

3{(f,m) = —-ĵ  =Foe~^ . (24)

dl'™

and, according to equations (6) and (7) reduces to unity outside the cone of coherence.
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5. Contribution from the central laser photons (0L = 0)

To understand what the situation would be like in a real experiment, one has to add up
the contributions (equation 23) over all possible values of £ and m. It is illustrative to con-
sider the contribution that comes from the solid angle

Afl =4TTsin2!A0t (25)

concentrated in a small angular region around the direction 6L = 0, where the formalism
just described appreciably simplifies. In this direction, following the Appendix, the form
factor of equation (17) becomes

(
( 2 6 )

Aside from the trivial case qx = qy = qz = 0, this expression is strongly peaked at the
values

Qx = qy = 0, qz = -2f3ykL, (27)

and in practice vanishes everywhere else. Therefore, it describes a photon pulse of length
ffjA/2/3 that propagates (in the ERF) along the direction specified by equation (16) for

c o s 0 = - , 4> = ^. (28)
7 2

According to equation (27), the x- and ^-components of the momentum remain un-
changed and the z-component changes sign. This means that the direction where the coher-
ence builds up is obtained by reflecting the direction of the incoming photon momentum
on a plane perpendicular to the z-axis. Going back to equation (23), the integration over
the solid angle yields

i (29)
4ir

Let us now integrate equation (23) over the region (equation 25) and then over time. With
the definition of a of equation (10), one obtains the total number of photons coherently
generated by the collision of the whole electron pulse against the laser photons, selected
in the cone defined by equation (25)

Ncoh = 11J1 ^_L^IN •>•< ) sin2 i Ae i — ) e v ZL_ (30)

This expression validates the simple interpretation that all the electrons confined in the
illuminated area radiate in phase, and hence the emitted radiation adds up as the square
of their number. The obtained intensity is determined by the Thomson cross section and
is confined to the diffraction limited solid angle

uv = 1 (XL/y)2

q\

along the direction defined by equation (28).
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The total number of photons that would be expected from a purely incoherent scatter-
ing and in the same solid angle is

Flu y £ 2 + Q1 VTJ2 + 7 ffj ^

and therefore the coherent/incoherent ratio at dL = 0 becomes

^^ . (33)

This ratio is an optimum when

* = 1 = ff, = * ^ , (34)

with g(>l) a coefficient reflecting the difficulty of achieving in practice a diffracted lim-
ited laser beam.

In this case, because az = yazL, equation (33) reduces to

i) (35)
°Z,L \ 4 7 2 / IT

Equation (35) explicitly shows that the coherent enhancement is proportional to the linear
density of electrons in the bunch and to the scattered wavelength \L/4y2. Equation (33)
also shows that 9? strongly depends on the ratio between laser waist and wavelength.

6. Numerical estimates

We are now in the position to work out some crude numerical estimates of the expected
rates. Let us assume, for argument's sake, to have an electron bunch with the following
features (Villa 1988)

TV =5.10", e = 1 0 - 7 m - r a d , az L = 3 mm (10 ps)
(36)

E = 7.47 MeV, 7 = 14.6

and a Nd:YAG laser pulse (1.06 /xm) of 10 mJ/100 ps focused to a spot size

* = 1 = 8 - r = 0.21 /im, (*=1.2) . (37)
2ir

With the emittance value quoted in equation (36), it should be possible also to focus the
electron beam to the same spot size. The coherent enhancement, from equation (35) results

9? = 249.

The contribution that comes from the central region of the beam (equation 25) with
AdL = 10° corresponds to a total yield of 5 x 106 coherent photons per pulse (equation 30),
concentrated in a solid angle of 2.7 x 10~4 sterad (equation 31), and centered around the
direction 6 = 87.1°, <$> = 90° (equation 28), practically parallel to the electron beam, in
the ERF system. This means that if the repetition rate is of the order of 1 KHz, one can
have (in the LAB) 1 keV highly collimated coherent photons at the rate of 5 x 109/s.
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Equation (35) shows that the number of electrons that contribute to coherent emission
is, in this example

Ne — = 2.3 x 105,
°Z,L

with X = \L/2y2 the scattered photons' wavelength. A g-dependent form factor

critically determines the actual coherent yield.

7. Conclusion

We claim that coherent effects arise in Compton scattering at large angles (in particu-
lar, at 90°), when the laser beam is strongly focused on the electron trajectory and the elec-
tron density is sufficiently high. These conditions can be achieved with present-day lasers
and electron high-gradient, low-emittance linacs (Villa 1988, 1990). In particular, we have
demonstrated that the central part of the laser beam generates a coherent beam of pho-
tons in a narrow cone very well defined in the ERF system, with an intensity several hun-
dred times higher than the corresponding incoherent yield. This coherent radiation
propagates in the LAB practically along the electron beam direction and can be easily
selected with a suitable collimator.

Moreover, also in the case when one is not interested in the coherence properties of the
radiation, collective effects will enhance the scattering yield, in comparison with the ordi-
nary backscattering case.

Finally, one has to bear in mind that a complete picture of the radiation pattern can only
be obtained by a numerical study of the form factor integral appearing in equation (23),
with similar techniques as used to calculate the incoherent backscattered intensity (Tang
etal. 1993a,b).
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APPENDIX

With the following positions

sin2</>L\] tan 6L sin 4>L

& = —y 2

B=1-\^ + i , ) ,

C = K ^ + ^ ) ' G = 0cE,
tan 6L cos <t>L „

(A.I)

the integral of equation (14) of the text becomes

fff «-#
JJJ

(2TT)3 /

j

:, J,z) = Ax2 + By2 + Cz2 + Dxy + Exz + Fzt + Gx/ + //r2, (A"2)

q-r = qxx + qyy + qzz.

The quadratic form appearing in this expression can easily be diagonalized with the lin-
ear transformation

x' = ux + ly + mz, y' = fz, z' = vy + oz, (A.3)

where

(A.4)

(A.5)

(A.6)

f —

and one has

/'(X.J'.Z)

where

/c

= Uo-

G/

2M'

£ 2

4v4

f x ' ) 2 -

V n -

(£>£)2

\6A2v2'

Hyo + y'

Ft la
2f + 2

E

24A

)2 + (Zo "f

uvf

, v —

DE

4Av'

-z')2 + i>o2 + ;

/

2«t;

D2

4A

Gt.

The integral of equation (14) is thus reduced to the form

7T7V2
(2TT)3/2 oxoy

„, . , f e-,̂ ,v. 3 ( X ^ ' Z ) dxdydz,
d(x',y',z')

• = Uo.J'o.Zo). r ' s (x ' . y . z ' ) , (A.7)

qx lo) — vm co 1 1 /
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Because the Jacobian of the linear transformation equation (A.3) is

d(x,y,z) _ _1_
d(x',y',z') ~ uvf

equation (A.7) becomes

4ri 7 e e
2J oxayaz uvf

which coincides with equation (18) of the text.

(A.8)

(A.9)


