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Abstract

We have performed a kinetic study of the electron dynamic relaxation inside aAu film subjected to a subpicosecond laser
pulse. For this purpose, we have developed a time-dependent numerical solution of the Boltzmann equation for the
electrons inside the film considering the collision integrals due to electron–electron and electron–phonon collisions and
a perturbation term due to the laser pulse. Our results show that, after the pulse excitation, electron distributions are very
far from equilibrium. Therefore it is not possible, especially in the first part of the temporal evolution, to describe the
relaxation of the electron distribution through a two-temperature model.
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1. INTRODUCTION

The advance of femtosecond laser technology makes it pos-
sible to create and investigate transient nonequilibrium elec-
tron distribution functions in semiconductors and metals.
These experimental investigations are based on thermomod-
ulation techniques: Femtosecond optical pulses are used to
excite the electron distribution out of equilibrium and sub-
sequently femtosecond probe pulses monitor the transient
changes of optical properties of the sample, such as reflec-
tivity and transmissivity~Schoehleinet al., 1987; Sunet al.,
1994; Del Fattiet al., 1998!. In the weak perturbation re-
gime, the system response is linear and the measured changes
in these optical properties can be related to the electron
distribution function. Direct measurements of the transient
electron distribution excited by a femtosecond laser pulse
can also be performed using photoemission spectroscopy
~Fannet al., 1992!. Such experimental investigations have
shown that, after the femtosecond laser pulse excitation, the
electron distribution is far from equilibrium.

In the theoretical study of the electron relaxation, how-
ever, an instantaneous electron thermalization is generally
supposed and the relaxation of the electron distribution is
described by a two temperature model~Anisimov et al.,

1974; Schoehleinet al., 1987; Fannet al., 1992; Sunet al.,
1994; Del Fattiet al., 1998; Yilbas & Shuja, 1999!. In this
model, electron–electron collisions are assumed to be fast
enough to thermalize the electron gas over a temporal scale
shorter than the laser pulse duration. In this way, the metal
can be described by two coupled subsystems, representative
of the electrons and the phonons, each in local thermo-
dynamic equilibrium at temperatures, respectively,Te and
TL. The energy transfer between the two subsystems occurs
via electron–phonon collisions and its rate is proportional to
Te 2 TL and to the electron–phonon coupling constant. The
time evolution of the two temperatures is thus given by a
system of two coupled nonlinear differential equations de-
scribing the electronic and lattice heat capacities, the heat-
ing due to the incident optical pulse, and the diffusion process
along the energy axis. The nonlinearity of the equations is
due to the dependence of the electron heat capacity on the
electron temperature so that the effect of an increase of
electronic temperature is reflected in an increase of the
thermal-relaxation time.

Actually, in the case of noble metal systems, the screen-
ing of the Coulomb interactions and the Pauli exclusion
principle effect reduce the electron–electron collisional rates
with the consequence of a slower internal thermalization of
the electron gas on a few hundred femtosecond time scale.
Thus, for laser pulse duration of the order of femtosecond,
the two-temperature model cannot be applied as, after the
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pulse, electron–electron collisions have not thermalize the
electron distribution yet. The aim of this work is to study
the temporal evolution of the electron distribution even be-
fore the thermalization. For this purpose, we have per-
formed a kinetic study of the electron dynamic relaxation in
a Au film subjected to a femtosecond laser pulse excitation
through the numerical solution of the Boltzmann equation.

2. THEORETICAL MODEL

The Boltzmann equation for the electrons in the conduction
band of the metal film can be written as
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wheref ~k! is the electron distribution function. In the ap-
proximation of a parabolic and isotropic conduction band,
the Boltzmann equation can be written only in terms of
electron energy:f ~k!5 f ~E!. The first two terms on the right
side are the collision integrals for electron–electron~e–e!
and electron–phonon~e–ph! scattering processes, while the
last term describes the perturbation due to the laser pulse
~electron–photon interaction!. The injected laser energy is
collected by the free electron gas, and we assume a low
perturbative regime to hold, in which the increase of the
electron temperature is a few hundred degrees Kelvin. Due
to the high heat capacity of the lattice, we can suppose that
the lattice temperature remains more or less constant. More-
over, the changes in the phonon occupation numbers can be
considered negligible during the relaxation so that we can
describe the phonon gas by the equilibrium Bose–Einstein
distribution at the initial temperatureT0, during the whole
time evolution. After the laser pulse excitation, energy is
redistributed among the electrons through electron–electron
collisions. Simultaneously, the electron gas loses energy
towards the lattice thanks to electron–phonon collisions.
The metal system studied is gold. This choice is due to the
simple electronic structure of the metal: Since thed bands
lie 2 eV below the Fermi energyEF , gold may be considered
as a free-electron metal for energyEF 6 1.84 eV, where
1.84 eV is the laser energy of the photons considered in the
present study. For this photon energy, the initial nonequilib-
rium electron distribution is created due to an intraband
absorption of the laser pulse without involving inner energy
bands. The absorption of the injected laser energy can be
described as an electron–photon interaction

e~E! 1 g~hn! r e~E 1 hn!. ~2!

In this way, a non-Fermi distribution is created with energies
up to the pump photon energy above the Fermi level. Sup-
posing the density of states of gold almost constant in the
vicinity of the Fermi level, the electron distribution change
for instantaneous excitation and small perturbation can be
written ~Sunet al., 1994!
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is a constant which depends on the laser energyEV absorbed
per unit volume and on the state densityD~EF ! at the Fermi
energy. If the photon absorption cannot be considered in-
stantaneous andtL is the laser pulse length, the change in the
distribution function is
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Concerning the electron–electron collision term, we must
take into account any two-particle collision that occurs.
Moreover, since the Coulomb potential has a long range,
each binary interaction cannot be uncoupled from the inter-
action among the nearby ones. In the Thomas–Fermi theory
of screening, such a problem has been solved considering
each electron–electron interaction as a two-particle inter-
action with a screening Coulomb potential~Ziman, 1960;
Ashcroft & Mermin, 1976; Snokeet al., 1992!

He–e~ Sr1, Sr2! 5
e2

e 6 Sr1 2 Sr26
exp~2 Sq06 Sr1 2 Sr26!, ~6!

where 10 Sq0 represents the screening length. Its value
ranges between the Pines expression~Ziman, 1960!
10~0.353rs

102RF ! where RF is the Fermi radius andrs 5
~304pne!

103 ~measured in Bohr units! and the inverse of the
Debye lengthlD.

The change of the distribution function due toe–e colli-
sion can be written
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which includes the squared magnitude of the matrix element
M for e–e interaction, which depends only on the momen-
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tum exchangeSq5 Ok2 Ok25 Ok12 Ok3 and which can be written,
in the first order perturbation theory, as

M~ Sq!2 5 6^ Ok, Ok16He–e6 Ok2, Ok3&62

5 * 4pe2

eV
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Sq2 1 Sq0
2 *

2

. ~8!

The factor 304 in Eq. ~7! takes account of the fact that if
electrons have the same spin, then the scattering processes
which are identical except for an exchange of the particles in
the final states will contribute only once. For a given setOk,
Ok1, Ok2, and Ok3, only three out of the four possible collisions

events are distinguishable. Equation~7! involves an integral
over 12 momentum dimensions. In the energy space, sup-
posing a parabolic and isotropic conduction band, this inte-
gral can be reduced to two over three energies and the change
of the energy distribution functionf ~E! can be written~Snoke
et al., 1992!
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where GI ~E! and GO~E! are the rate of scattering in and
scattering out of electrons in the energy stateE. In equilib-
rium conditionsGI ~E! 5 GO~E!.

The explicit expressions ofGI ~E! andGO~E! are
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and the explicit expression of the square root of the scatter-
ing amplitude is~Snokeet al., 1992!
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Considering a small amount of laser energy absorbed in
such a way to consider small lattice temperature changes
and due to the fast decay of high-energy electrons by
electron–electron collisions, the electron–phonon collision
rate can be introduced in the relaxation time approximation
~Sunet al., 1994!

Sdfk
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D

e–ph
5

f0,k 2 fk
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, ~14!

wheref0,k is the equilibrium electron distribution after the
pulse, which, due to the hypothesis of the small change
between the initial and final lattice temperature, can be put
equal to the initial electron distribution.tp is the character-
istic time of electron–phonon collisions and it can be calcu-
lated from the two-temperature model obtaining

tp 5
Ce

G
, ~15!

whereCe andG represent, respectively, the electron thermal
capacity and the electron–phonon coupling constant~Sun
et al., 1993!. In the weak perturbation regime, we can use
tp 5 1 ps~Sunet al., 1993!.

After making explicit the collisional integrals in Eq.~1!,
the next step is to numerically solve the Boltzmann equa-
tion. We have discretized the conduction band energy into
constant steps. The electron distribution time evolution is
calculated for each time stepdt from Eqs.~3!, ~5!, ~9!, ~14!,
and

f ~E, t 1 dt! 5 f ~E, t ! 1 dtF df ~E!

dt *
e–e

1
df ~E!

dt *
e–ph

1 F~E, t !G.

~16!

3. RESULTS

In the following test case calculations, we have used the
values reported in Table 1 for the different quantities that
enter in the Boltzmann equation. Before the laser perturba-
tion, the sample is considered in equilibrium condition at
T5300 K, so that the initial electron distribution is a Fermi–
Dirac one. The value of the screening length chosen is 23
108 cm21, between the value predicted by the Pines expres-
sion~Ziman, 1960! ~1.583108 cm21! and the inverse of the
Debye length atT 5 300 K ~2.033 109 cm21!. First of all,

Table 1. Values used in test case calculations.

ne electron density 5.93 1022 cm23

hn photon energy 1.84 eV
T0 initial temperature 300 K
f0 initial distribution Fermi–Dirac
10q0 screening length 23 108 cm21

tp e–ph characteristic time 1 ps
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we have performed our calculations considering an instan-
taneous photonic absorption and neglecting electron–phonon
interactions in order to analyze only the effect of electron–
electron collisions over the distribution.

Figure 1a and b show the electron distribution as a func-
tion of the electron energy during the temporal evolution in
such conditions. In this case, the laser energy absorbed per
unit volume~EV! has been fixed to 40 J0cm3 ~2.5 3 1020

eV0cm3!. As we can see, the electron distribution is strongly
nonthermal in the first part of the evolution. Moreover, en-
ergy losses due to the electron–electron collisions are faster
for electrons with higher energy, and after about some tens
of femtoseconds, the high energy tail of the distribution is
reduced and the distribution tends to concentrate close to the
Fermi level. This is in line with the expression of the relax-
ation time due to electron–electron collisions obtained from
the theory of Fermi liquid~Ashcroft & Mermin, 1976; Pines
& Nozieres, 1996!,

te–e 5
1

K~E 2 EF !2 , ~17!

whereK is a constant depending on the particular metal. As
you can see, the higher the electron energy, the shorter the
relaxation time.

In Figure 1b, it is shown that the relaxation of the elec-
trons near the Fermi level is much slower. This is essentially
due to the screening of the Coulomb potential and to the
Pauli principle effect, which strongly reduce the relaxation
probability near the Fermi level.

The electron distribution can be considered in equilib-
rium at about 800 fs. This numerical result agrees with the
theoretical value of the electron–electron thermalization time
obtained by Fermi-liquid theory under the random-phase
approximation, characterized by the following expression
~Tas & Maris, 1994!:

tT ' net0

EF

EV

, ~18!

where

t0 5
128

p2M3vp

~19!

andvp is the plasma frequency,EV the laser energy absorbed
per unit volume, andEF the Fermi energy~5.53 eV for Au!.
The value predicted by Eq.~18! in our condition is 720 fs,
which is very near to the value of the thermalization time
obtained from Fig. 1b. The expression of Eq.~18! is correct
if the density of the electron excitation is very low with
respect to the electron density. This is a good approximation
in our calculation asEV 5 2.531020 eV0cm3, hn 51.83 eV,
and assuming that each photon is instantaneously absorbed
by electrons, the number of initial excited electrons is 1.363
1020 cm23 which is two orders of magnitude lower than the
electron density in the conduction band~5.93 1022 cm23!.

Figures 2a and b are for the same condition of Figure 1,
but with an increasedEV, that is 56 J0cm3 ~3.53 1020 eV0
cm3!. As we can see, the relaxation is faster than the previ-
ous case. Here, the distribution can be considered in
equilibrium already att5600 fs. This result is confirmed by
expression~18!, which shows an inverse proportionality
betweentT andEV.

In the last calculation, we consider both electron–electron
and electron–phonon collisions and impose photonic absorp-
tion lasting 180 fs,EV 5 40 J0cm3 and an initial Fermi–
Dirac distribution atTe5300 K~Fig. 3!. As we can see from
Fig. 3a, the distribution rises until the energy pumping is
active~in the graph, untilt 5 0 fs!. In Fig. 3b, it can be noted
that only for t 5 1700 fs does the distribution reach the
equilibrium condition at a temperatureTe5 630 K, which is
lower than the final temperature in Fig. 1b, obtained without

Fig. 1. Temporal evolution of the electron energy distribution function considering only electron–electron collisions and an istanta-
neous photonic absorption. The initial electron distribution is a Fermi–Dirac atTe 5 300 K and the laser energy absorbed per unit
volumeEV is 40 J0cm3.
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considering the thermal relaxation between electrons and
lattice ~adiabatic condition!. The effect of thee–ph pro-
cesses is to reduce the kinetic energy of the electrons and to
restore the local equilibrium condition between electrons
and lattice.

4. CONCLUSIONS

The solution of the Boltzmann equation has pointed out
some important characteristics of the electron relaxation
dynamic in a Au target under a subpicosecond laser pulse.
The short laser pulse creates nonthermal initial electron
distributions and through the numerical solution of the Boltz-
mann equation, one can follow their temporal relaxation.
Considering onlye–e collisions, relaxation times are of the
order of some hundreds of femtoseconds due to the Pauli
principle effect and to the screening Coulomb potential which
reduce the probability ofe–e collisions. This result shows

thate–ecollisions thermalize the electron gas over a tempo-
ral scale greater that the femtosecond laser pulse. Therefore,
for such short laser pulse, the two-temperature model is
inadequate to describe the relaxation of the electron distri-
bution and the heat transfer between electrons and phonons.
Considering also the electron–phonon collisions, relaxation
times increase to the order of picoseconds as electrons need
more time to reach the local equilibrium condition with the
lattice.
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Fig. 2. Temporal evolution of the electron energy distribution function
considering only electron–electron collisions and an istantaneous photonic
absorption. The initial electron distribution is a Fermi–Dirac atTe5 300 K
and the laser energy absorbed per unit volumeEV is 56 J0cm3.

Fig. 3. Temporal evolution of the electron energy distribution function
considering both electron–electron and electron–phonon collisions and a
photonic absorption lasting 180 fs. The initial electron distribution is a
Fermi–Dirac atTe 5 300 K and the laser energy absorbed per unit volume
EV is 40 J0cm3.
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