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Thrombolysis is recommended for reperfusion following acute ischemic stroke (AIS), but its effects on stroke-
associated injury remain to be clarified. Here, we investigated the effects of recombinant tissue plasminogen
activator (r-tPA) on neutrophil pathophysiology in vitro and in a case–control study with AIS patients submitted
(n = 60) or not (n = 30) to thrombolysis. Patients underwent radiological and clinical examination as well as
blood sampling at admission and after 1, 7 and 90 days. In vitro, 30-min incubation with 0.1–1 mg/ml r-tPA
induced neutrophil degranulation in different substrate cultures. Pre-incubation with kinase inhibitors and
Western blot documented that degranulation was associated with activation of PI3K/Akt and ERK1/2 pathways
in Teflon dishes and PI3K/Akt in polystyrene. In thrombolysed patients, a peak of neutrophil degranulation
products (matrix metalloproteinase [MMP]-9, MMP-8, neutrophil elastase and myeloperoxidase), was shown
during the first hours from drug administration. This was accompanied by serum augmentation of protective
tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. An increased rate of haemorrhagic transformations
on day 1 after AIS was shown in thrombolysed patients as compared to non-thrombolysed controls. In conclu-
sion, r-tPA treatment was associated with in vitro neutrophil degranulation, indicating these cells as potential
determinants in early haemorrhagic complications after thrombolysis in AIS patients.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The degranulation of neutrophil toxic products has been not only
shown as a useful defense mechanism against bacterial infections, but
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such as MMP-9 and MMP-8), neutrophil elastase (NE), and
myeloperoxidase (MPO), are stored in different neutrophil granules
prone to be released on demand [2]. Once released and activated, such
enzymes are able to digest collagen and other matrix proteins, thus
promoting structural and functional impairment of inflamed tissues.
The unbalance between neutrophil granule products and endogenous
inhibitors (such as the tissue inhibitors of metalloproteinase [TIMPs])
may lead to irreversible injuries and increase disability, as largely re-
ported for rheumatoid arthritis [3], atherosclerosis [4] and myocardial
infarction [5]. Concerning acute ischemic stroke (AIS), the potential
detrimental role of neutrophils is less proven. A large amount of
non-specific neutrophil products were shown to be involved in
neurovascular injury following experimental AIS [6–11]. For instance,
serum levels of MMP-9 were suggested as predictors of post-stroke
poor functional outcome in human beings [12–16]. However, the cellu-
lar source of this gelatinase in the early phases after AIS remains to be
identified. On the other hand, incubation with recombinant tissue
plasminogen activator ([r-tPA], the drug approved for the early
re-establishment of cerebral reperfusion after ischemia) [17,18] was
associated with in vitro neutrophil degranulation [19,20]. However,
in vitro mechanistic insights on r-tPA-triggered intracellular pathways
and the potential clinical relevance of r-tPA-induced neutrophil degran-
ulation in AIS patients remain unexplored. Among different early com-
plications associated with thrombolysis in which neutrophil
degranulation might play a pathophysiological role, we focused on AIS
hemorrhagic transformations [21,22], which range from of 1.7% to 13%
of thrombolysed patients [23,24]. In addition, this translational study
aims at investigating the potential degranulating activity of r-tPA and
downstream activation of intracellular pathways in vitro on human
neutrophils cultured on different substrate cultures. Finally, we
performed a set of clinical observations in a case–control study with
AIS patients in order to verify if thrombolysis was associated with an
early serum peak of neutrophil products and accompanied by an
increased rate of complications.
2. Methods

2.1. Human primary neutrophil isolation and culture

Neutrophils were obtained from 10 healthy volunteers after in-
formed consent. The local ethical committee approved the investigation
protocol that was conformed to the principles outlined in the Declara-
tion of Helsinki. Human neutrophils were isolated from heparinized
venous blood by dextran sedimentation followed by centrifugation on
Ficoll-Hypaque (from Cedarlane Laboratories Ltd. [Ontario, Canada])
density gradient, as previously described [25]. The neutrophil isolation
protocol was completed in 2 h from the blood sampling. Neutrophils
resuspended in culture medium (serum-free RPMI 1640 medium
containing 25 mmol/l Hepes) were N97% pure, as determined by mor-
phologic analysis of Giemsa-stained cytopreparations (from Merck
[Darmstadt, Germany]). Then, human neutrophils (5 × 105 cells per
well) were cultured in the presence or absence of 10 ng/ml phorbol-
12-myristate-13-acetate (PMA, positive control from Sigma-Aldrich,
Buchs, Switzerland) [26], or different doses (up to 1 mg/ml) of r-tPA
(Boehringer, Ingelheim, Germany) [19] for 30 min at 37 °C in a humid-
ified atmosphere 5% CO2 in Teflon dishes (to maintain cell suspension
mimicking circulating conditions and to avoid any potential adhesion)
or in adherence to polystyrene plates. In selective experiments, cells
were 30 min pre-incubated in the presence or absence of different con-
centrations of intracellular kinase inhibitors LY294002 [PI3K inhibitor:
0.1, 1 and 10 μM from Sigma], U0126 [MEK inhibitor, 0.1, 1, 10 μM
from Biomol Research Laboratories, Inc., Plymouth Meeting, PA], and
SB203580 [p38 MAPK inhibitor, 0.1, 1, 1 μM from Biomol Research
Laboratories, Inc.], and then, stimulated in the presence or absence of
0.1 mg/ml r-tPA.
2.2. Neutrophil product measurements in serum and
neutrophil supernatants

Levels of MMP-9, MMP-8, tissue inhibitor of metalloproteinase
(TIMP)-1, TIMP-2, MMP-9/TIMP-1 complex, MPO (all from R&D
Systems, Minneapolis, Minnesota, USA) and NE (from eBioscience,
Vienna, Austria) released in serum and cell supernatants were mea-
sured by colorimetric enzyme-linked immunosorbent assays (ELISA),
following manufacturer's instructions. The limits of detection were
0.312 ng/ml for MMP-9, 0.156 ng/ml for MMP-8, 31.25 pg/ml for
TIMP-1, 31.25 pg/ml for TIMP-2, 46.9 pg/ml MMP-9/TIMP-1 complex,
0.156 ng/ml for MPO, and 0.156 ng/ml for NE. Mean intra- and inter-
assay coefficients of variation were below 6%.

2.3. Pro-MMP-9 zymographic assay

Pro-MMP-9 zymographic activitywas assessed in human serum and
cell supernatants. 9% SDS–polyacrylamide gels were copolymerized
with gelatin (Sigma, St. Louis, MO). Equal amounts of serum (2 μl), cell
supernatants (10 μl) and 1 ng of recombinant pro-MMP-9 standard
(Calbiochem, Lucern, Switzerland) were loaded on gels in the absence
of reducing agents. Then, gels were rinsed and stained with Coomassie
Blue R-250. Zymographic results were expressed as pro-MMP-9 proteo-
lytic activity and calculated on the basis of the following formula:
Serum/supernatant pro-MMP-9 = (Iobs/Istd) × Wstd, where Iobs and Istd
are intensities of lytic areas produced in gels by samples and by standard
pro-MMP-9, and Wstd is the weight (1 ng) of standard pro-MMP-9
loaded onto the gel. Zymographic data were expressed as ng/ml of
serum/supernatants. Gelatinolytic bands were measured with a gel
analysis system (GeneGenius, Syngene, Cambridge, UK).

2.4. Western blot analysis

Freshly isolated human neutrophils (1 × 107 cells/ml) from 3
healthy donors were lysed in 400 μl of Nonidet P40 buffer (20 mM
Tris–HCl pH 7.5, 0.15 M NaCl, 10 mM NaF, 1% Nonidet P40, 10 μg/ml
glycerol, 1 mM phenylmethanesulphonyl-fluoride, 10 μg/ml leupeptin,
10 μg/ml aprotinin, 0.5 mM Na3VO4). In parallel experiments, neutro-
phils (from five different healthy donors) were incubated in Teflon
dishes at 37 °C in a humidified atmosphere 5% CO2 for different times
(up to 30 min) in the presence or absence of culture medium, tumor
necrosis factor (TNF)-α (positive control for kinase phosphorylation at
200 U/ml for 7 min, from R&D Systems) [27], or 0.1 mg/ml r-tPA
(for 1, 5, 15 or 30 min). The incubations were stopped on ice and the
cells were centrifuged at 4 °C. After removing supernatants, the pellets
were lysed in 400 μl of Nonidet P40 buffer. Equal amounts of protein
(50 μg for RANK and 20 μg for intracellular kinases) for each sample
were boiled in loading buffer (62.5 mM Tris–HCl pH 6.8, 0.75% SDS,
3.75% 2-mercaptoethanol, 8.75% glycerol and 0.025% bromophenol
blue) and resolved by 10% SDS–polyacrylamide electrophoresis. Then,
proteins were transferred on nitrocellulose membrane at 4 °C for
45 min. After blocking 1 h in 5% non-fat dry milk and washing with
Tris-buffered saline/Tween 20 (10 mM Tris-base pH 7.4, 154 mM NaCl
and 0.05% Tween 20), membranes were incubated with appropriate
dilution of anti-phospho-Akt (Santa Cruz Biotechnology, Santa Cruz,
CA), anti-phospho-ERK1/2 (R&D Systems), anti-phospho p38 MAPK
(R&D Systems) primary Abs, as well as corresponding secondary Abs.
Blots were developed using the ECL system (Immobilion Western,
Millipore, USA). Membranes were then stripped, reblocked and
reprobed to detect total intracellular kinases (using anti-Akt [Santa
Cruz Biotechnology], anti-ERK 1/2 [R&D Systems], or anti-p38 MAPK
[Santa Cruz Biotechnology] Abs). Immunoblots were scanned and
quantifications was carried out by Image Quant software version 3.3
(Molecular Dynamics, Sunnyvale, USA). Values of phospho-Akt,
phospho-ERK 1/2, and phospho-p38 MAPK (obtained in three different
experiments) were normalized to corresponding total amounts of Akt,
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ERK 1/2 and p38 MAPK and expressed as percentages of control
medium (defined as 100%).

2.5. Patients and clinical assessment

From April 2009 and December 2011, we conducted a prospective,
case–control study enrolling consecutive patients admitted at Neurolo-
gy Department of Ferrara University Hospital with diagnosis of first AIS
treated according to the current recommended guidelines [28]. No
blinding was done in this study. AIS was defined as an acute-onset
focal neurological deficit combined with neuroimaging evidence of
cerebral infarction [29]. Cases (n = 60) were defined as consecutive
r-tPA-treated (intravenous or intra-arterial) patients admitted for AIS
within 6 h from symptom onset. Patients admitted during the same
period, but not submitted to thrombolysis were selected as controls
(n= 30). Primary exclusion criteria were: primary hemorrhagic stroke,
seizure, intracranial abscess or brain tumor, acute infection, recent
(b30 days) myocardial infarction, malignancy and renal/hepatic failure.
Instead, control patients were excluded from thrombolytic treatment
for the following reasons: minor or rapidly improving stroke symptoms
(n= 11); history of previous intracranial hemorrhage (n= 4); signifi-
cant head trauma in previous 3 months (n = 4); elevated blood
pressure (systolic N 185 mm Hg or diastolic N 110 mm Hg) (n = 3);
active internal bleeding (n = 3); major surgery within previous
30 days (n= 3); admission after 4.5 h from onset of symptoms, in pres-
ence of a hypodensity N1/3 cerebral hemisphere on non-contrast cranial
computed tomography (NCCT) (n= 2). The studywas approved by the
Local Ethics Committee of Ferrara University Hospital and performed in
accordance to the guidelines in the Declaration of Helsinki. The patients
and their relatives gave informed consent prior to entering in the study.
Patients were submitted to serial blood sample collection at baseline
(time 0: within 7 h from symptom onset and 1 h from thrombolysis),
1, 7 and 90 days after stroke onset.

All patients were also categorized for stroke subtypes according to
the TOAST (Trial of ORG 10172 in Acute Stroke Treatment) criteria in:
i) large-artery atherosclerosis, ii) cardioembolism, iii) small-vessel
occlusion, iv) stroke of other determined etiology, or v) stroke of unde-
termined etiology [30]. Disease severity was assessed at onset and
then 1, 7 and 90 days after stroke symptom occurrence by using the
National Institutes of Health Stroke Scale (NIHSS) [31]. A NIHSS b5
defined a minor stroke [32] whereas NIHSS N15 identified severe/
very severe stroke. Finally, clinical outcome at day 90 was measured
by the modified Rankin scale (mRS) [33]. As previously described
[34], mRS ≤2 and N2 were defined as good and poor outcomes,
respectively.

2.6. Power study estimation

Although this is a “pilot” study, we calculated the study power ac-
cording to previous studies [15,18]. MMP-9 was selected as reference
parameter because it was the only neutrophil-related (though
not exclusive) molecule so far investigated in thrombolysed AIS
patients. Accordingly, our simple size allowed us to estimate large
differences (effect size N 0.80) of baseline MMP-9 between treated
and non-treated groups, with power of 95% and a two-sided alpha
error of 5%.

2.7. Neuroimaging

NCCT was performed at onset and then 1, 7 and 90 days after stroke
on a 64-slice Lightspeed VCT (GEMedical System,Milwaukee,WI; USA)
from the skull base to the vertex by using an axial technique with the
following imaging parameters: 120 kVp, 350 mA, 512 × 512 matrix,
25 cm-DFOV, 4 × 5-mm collimation, 1 s/rotation and table speed of 15
mm/rotation. All NCCT images were acquired along the orbito-meteal
plane with 2.5-mm (8 images/rotation) and 5-mm (4-images/rotation)
slice thickness reconstruction for posterior fossa and supra-tentorial re-
gion, respectively.

The extension of early ischemic changes (hypoattenuation, loss of
the gray–white matter boundary and effacement of cortical sulci) was
evaluated on NCCT at onset by Alberta Stroke Program Early CT Score
(ASPECTS), a 10-point scale that rates the presence or absence of
ischemia in 10 regions included in the middle cerebral artery territory
assigning a score of 1 for normal and 0 for a region showing early
ischemic signs [35]. ASPECTS was then dichotomized into N7 (minor
stroke) and ≤7 (major stroke) [36]. As reported elsewhere, ischemic
volume was calculated on NCCT on days 1, 7 and 90 after symptom
onset with a multi-slice planimetric method by summation of the
hypodense areas, manually traced on each slice in which they were
detectable, multiplied by slice thickness [37]. The lesion volume obtained
at 3 months was considered the final infarct size.

On NCCT, also the occurrence of hemorrhagic transformation (HT)
was recognized on days 1 and 7 after stroke onset. Furthermore,
four different categories of HT were identified according to the
ECASS (European Cooperative Acute Stroke Study) II criteria [34]:
i) hemorrhagic infarction type 1 (HI-1) defined as small petechiae
along the margins of the infarct; ii) HI type 2 (HI-2) defined as more
confluent petechiae within the infarcted area but without a space-
occupying effect; iii) parenchymal hemorrhage type 1 (PH-1) defined
as hematoma in ≤30% of the infarcted area but with some slight
space-occupying effect; iv) PH type 2 (PH-2) defined as dense hemato-
ma N30% of the infarcted area with substantial space-occupying effect
or as any hemorrhagic lesion outside the infarcted area.

2.8. Blood collection and quantification

Blood samples were collected using a butterfly to reduce membrane
shear stress to obtain serum. In cases, the first sample (time 0) was
obtained within 1 h from the beginning of thrombolysis and within
7 h from symptom onset. In controls, the first sample (time 0) was
obtained within 1 h from admission and within 9 h from symptom
onset. Then, in both cases and controls, additional time points of blood
collection were at 1, 7 and 90 days after stroke onset. Hematology
parameters, blood chemistry including plasma glucose, triglycerides,
total cholesterol, high-density lipoprotein, low-density lipoprotein
cholesterol as well as high-sensitive C-reactive protein (hsCRP) were
measured by routine autoanalyzer at different time points.

2.9. Statistical analysis

Patient characteristics were described at admission. Qualitative data
were presented as absolute and relative frequencies and then compared
with Pearson χ2 test or Fisher's exact testwhen appropriate. Continuous
variables were presented as median (interquartile range) and their
comparison was performed by non-parametric Mann–Whitney U test
(the normality assumption of the variables' distribution in both groups
was violated). Intergroup comparison of marker serum levels at
different time points was analyzed by Wilcoxon text. A 2-sided
p-value b0.05 was considered statistically significant. Analyses were
performed with IBM SPSS Statistics for Windows, Version 20.0
(Armonk, NY: IBM Corp.).

3. Results

3.1. Stimulation with the thrombolytic drug r-tPA promotes in vitro
degranulation of human neutrophils both cultured in suspension and
adherence patterns

To establish whether incubation with r-tPA induced neutrophil
degranulation in different conditions, we tested two validated
models of neutrophil culture using Teflon and polystyrene dishes
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(mimicking circulating and adherent neutrophil patterns, respectively)
[26].

In both cell culture models, incubation with r-tPA induced neutro-
phil degranulation of MMP-9 and increased pro-MMP-9 gelatinolytic
activity in a dose-dependent manner (Fig. 1A–D). r-tPA concentration
of 0.1–1 mg/ml was also shown to promote a significant release of
MMP-8 and MPO (Fig. 1E and F), further suggesting a more specific
role as a neutrophil degranulating factor for this drug. Concerning
TIMPs, TIMP-2 raised in supernatants of both culture substrates in the
Fig. 1. r-tPA induces degranulation inhumanneutrophils cultured inpolystyrene and Teflondish
(white bars) dishes in the presence or absence of control medium (CTL), 10 ng/ml PMA (po
zymography of 10 different experiments performed in polystyrene or Teflon dishes. White ban
nant pro-MMP-9 (St.), and supernatants of cells treated with control medium (CTL) and wit
different experiments performed in polystyrene (C) or Teflon (D) dishes. Data are expressed a
incubated in polystyrene (gray bars) or Teflon (white bars) dishes in the presence or absence
of r-tPA. Data are expressed as median (interquartile range), n = 10.
presence of the positive control (PMA) but not r-tPA (Fig. 2). TIMP-1
was below the low range limit of detection (31.25 pg/ml), as previously
reported [19].

3.2. Neutrophil degranulation induced by r-tPA is dependent on the
activation of different intracellular pathways

In order to identify the potential signaling pathways regulating
r-tPA-mediated effects, we focused on intracellular kinases recently
es. A.MMP-9 release in supernatants of cells incubated inpolystyrene (gray bars) or Teflon
sitive control), and different concentrations of r-tPA. B. Representative gels of MMP-9
d (arrow) on the gel represents the pro-MMP-9 gelatinolytic activity of standard recombi-
h increasing concentrations of r-tPA. C–D. Results of densitometric quantifications of 10
s median (interquartile range). E–F. Release of MMP-8 and MPO in supernatants of cells
of control medium (CTL), 10 ng/ml PMA (positive control), and different concentrations
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shown to participate to neutrophil degranulation [26]. Inhibition of PI3K
by LY294002 significantly decreased r-tPA-induced degranulation of
MMP-9 only in Teflon dishes (Fig. 3A and B), whereas a reduced
MMP-8 release was exclusively observed in polystyrene substrate
(Fig. 3C and D). Conversely, the release of MPO induced by r-tPA was
independent of PI3K inhibition (Fig. 3E and F). Accordingly, Akt
phosphorylation increased very early in the presence of 0.1 mg/ml
r-tPA. This effect was observed within a few minutes (10–15 min),
then prior to the time due for neutrophil degranulation in vitro
(30 min) (Fig. 3G and H).

Pre-incubation with the MEK1/2 inhibitor U0126 dose-dependently
abrogated cell degranulation of MMP-9, MMP-8 andMPO in Teflon, but
not in polystyrene (Fig. 4A–F). Consistent with these results, an early
increase of ERK1/2 phosphorylation was shown in both culture
conditions within 15 min from r-tPA administration (Fig. 4G and H).

Finally, pre-incubation with the p38 MAPK inhibitor SB203580 was
ineffective on r-tPA-induced degranulation except for a significant
decrease of MPO degranulation on Teflon substrate (Fig. 5A–F). On the
contrary, a significant enhancement of p38 MAPK phosphorylation
was induced by r-tPA in both culture models (Fig. 7G and H).

These results suggest that r-tPA-induced neutrophil degranulation is
partially dependent on activation of Akt in both culture substrates and
exclusively mediated by ERK1/2 in Teflon. Conversely, despite r-tPA-
induced activation of p38 MAPK, the inhibition of this pathway does
not affect degranulation.

3.3. Clinical features of study population

At baseline, AIS patients treated with thrombolysis were similar for
gender, age, comorbidities and medications as compared to non-
thrombolysed controls. Among biochemical parameters, a weak reduc-
tion in total cholesterol, high density lipoprotein (HDL)-cholesterol and
triglycerides was observed in thrombolysed patients as compared to
non-thrombolysed controls (Table 1). According to TOAST classification,
stroke etiology differed between groups with a higher prevalence of
atherothrombotic stroke in the group treated with thrombolysis as
compared to untreated controls (31.0% vs. 55.9%; p = 0.028) (Table 2).

At baseline, patients treated with thrombolysis were characterized
by an increased disease severity according to NIHSS, while the radiolog-
ical features of stroke according to ASPECTS were similar between the
Fig. 2. r-tPA does not affect TIMP-2 levels in human neutrophil supernatants cultured in
polystyrene and Teflon dishes. Release of TIMP-2 in supernatants of cells incubated in
polystyrene (gray bars) or Teflon (white bars) dishes in the presence or absence of control
medium (CTL), 10 ng/ml PMA (positive control), and different concentrations of r-tPA.
Data are expressed as median (interquartile range), n = 5.
two groups (Table 2). Considering timing of hemorrhagic transforma-
tion, an increased number of hemorrhagic events were detected in
patients with thrombolysis as compared to controls during the first
24 h, but not later till 7 days after stroke (Table 2). An increased number
of type 1 parenchymal hemorrhages (by ECASS classification) was also
observed in patients treated with thrombolysis as compared to controls
within the first 7 days after stroke onset (Table 2). At 1, 7 and 90 days,
no significant differences in stroke severity (assessed by NIHSS) and
ischemic lesion volume (determined by CT) were shown between the
study groups (Table 2).

3.4. Thrombolysis is associated with an early increase in the serum levels of
proteinases contained in neutrophil granules

Serum levels of MMP-9 (contained in neutrophil tertiary granules)
and pro-MMP-9 gelatinolytic activity were significantly increasedwith-
in 1 h after thrombolysis (time 0) as compared to patients without
thrombolysis at the same time point (Fig. 6A and B). The baseline
serum levels of MMP-9 and pro-MMP-9 activity were significantly
higher when compared to serum samples from the same patients at 7
and 90 days after stroke onset (Fig. 6A and B). Similar to MMP-9, also
MMP-8, NE and MPO (contained in neutrophil secondary [MMP-8]
and primary granules [NE and MPO]) [5] were significantly increased
at baseline in thrombolysed patients when compared to non-
thrombolysed patients (Fig. 6C–E). The serum peak of neutrophil prod-
ucts was transient and significantly reduced at already 1-day follow-up
(Fig. 6A–E). Interestingly, the sudden increase in neutrophil degranula-
tion observed immediately after thrombolysis was not timely accompa-
nied by a concomitant increase in the general inflammatory factor (i.e.,
hs-CRP) (Fig. 6F). A delayed increase on hsCRP (significantly rising at
day 1 with a peak at day 7) was observed in the thrombolysis group
as compared to baseline levels (Fig. 6F). No difference in hs-CRP
serum levels between thrombolysis and non-thrombolysis groups was
shown at any time points (Fig. 6F). These results were accompanied
by a protective increase in TIMP-1 and TIMP-2 at baseline in
thrombolysed patients as compared to untreated controls (Fig. 7A and
B). Similar to proteinases, TIMP-2 but not TIMP-1 serum levelswere sig-
nificantly reduced at already 1-day follow-up (Fig. 7A and B). Partially
confirming serum patterns of MMPs and TIMPs, the levels of the
MMP-9/TIMP-1 complex had an initial weak increase in thrombolysed
patients, without reaching the statistical significance (p = 0.112)
(Fig. 7C). In thrombolysed patients, a significant reduction in serum
levels of MMP-9/TIMP-1 complex was shown at 1-, 7- and 90-day
follow-up when compared to baseline (Fig. 7C).

4. Discussion

This study shows that the thrombolytic drug r-tPA is an inducer of
neutrophil degranulation. The release of neutrophil products was inves-
tigated in vitro, in two different models of culture, recently validated by
our research group [26]. A significant increase of neutrophil degranula-
tionwas observed very early (within 30min from r-tPA administration)
in both Teflon dishes and polystyrene substrates, mimicking circulating
and adherent patterns of neutrophil activation, respectively. Interest-
ingly, r-tPA modified the physiological timing of neutrophil degranula-
tion inducing a combined release of MMP-9, MMP-8 and MPO. In fact,
together with tertiary granules (containing MMP-9) early released to
promote extra-vascular migration, we also observed the degranulation
of secondary (rich in collagenases, such as MMP-8) and primary
granules (storing MPO and NE) [2].

Then,we investigatedmolecularmechanisms underlying neutrophil
degranulation, especially focusing on intracellular pathways. As
compared to the previous work by Cuadrado and co-workers [19],
the activation of different intracellular pathways was investigated
in cells incubated on adherence and suspension. At a concentration
of 0.1 mg/ml, r-tPA significantly increased PI3K/Akt- and ERK1/2



Fig. 3. r-tPA-induced release of neutrophil products is partially reduced by LY294002 (inhibitor of PI3K/Akt pathway). A–F. Neutrophils were 30-min pre-incubated in polystyrene
or Teflon dishes in the presence or absence of different concentrations of LY294002 (PI3K inhibitor, 0.1, 1, 10 μM). Then, cells were stimulated with control medium (CTL), PMA
(10 ng/ml, positive control) or 0.1 mg/ml r-tPA. Data are expressed as median (interquartile range), n = 5–10. Release of MMP-9 (A, B). Release of MMP-8 (C, D). Release of MPO
(E, F). G–H. Representative western blot and densitometric analysis of Akt phosphorylation in the presence or absence of control medium (CTL), 200 U/ml TNF-alpha (for 7 min, positive
control), or r-tPA (time course: 1 min, 5 min, 15 min, 30 min, all at 0.1 mg/ml). Values were normalized to total amounts of Akt and expressed as percentage of control medium (CTL),
defined as 100%. Data are expressed as mean ± SEM (n = 3–4).
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phosphorylation, independent of substrate culture. These effects, occur-
ring within 15 min from r-tPA administration preceded degranulation
and were consistent with previous studies supporting the crucial role
of MAPK signaling in neutrophil activation [38]. On the contrary, p38
MAPK did not seem to be involved in r-tPA signaling transduction.

The use of PI3K/Akt inhibitor showed partial effects in inhibiting
neutrophil degranulation in polystyrene and Teflon cultures, while the
inhibition of ERK1/2 pathway abrogated r-tPA-induced neutrophil
degranulation exclusively in Teflon cultures. Considering these partial
beneficial results in vitro, we believe that more selective inhibitors of
neutrophil degranulation or proteinase activity are needed to potentially
improve early complications related to thrombolysis.

In the clinical cohort of AIS patients, a potential neutrophil degranu-
lation was observed after thrombolysis. This was suggested by the early



Fig. 4. r-tPA-induced release of neutrophil products in Teflon cultures is abrogated by UO126 (inhibitor of MEK1/2, a kinase directly activating ERK1/2). A–F. Neutrophils were 30-min
pre-incubated in polystyrene or Teflon dishes in the presence or absence of different concentrations (0.1, 1, 10 μM) of UO126. Then, cells were stimulated with control medium (CTL)
PMA (10 ng/ml, positive control) or 0.1 mg/ml r-tPA. Data are expressed as median (interquartile range), n = 5–10. Release of MMP-9 (A, B). Release of MMP-8 (C, D). Release of MPO
(E, F). G–H. Representative Western blot of ERK1/2 phosphorylation in the presence or absence of control medium (CTL), 200 U/ml TNF-alpha (for 7 min, positive control), or r-tPA
(time course: 1 min, 5 min, 15 min, 30 min, all at 0.1 mg/ml). Values were normalized to total amounts of Akt and expressed as percentage of control medium (CTL), defined as 100%.
Data are expressed as mean ± SEM (n = 3–4).
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serum peak of proteases (within 1 h from r-tPA in vivo administration)
contained in neutrophil granules. This short-term effect was consistent
with in vitro results (30 min of exposure). Although different
neutrophil-specific enzymes were concomitantly increased at the
same time point (time 0), not all proteases investigated were specific
for neutrophil degranulation. For instance, the pathophysiology of
MMP-9 is far from being known, also concerning the cellular sources.
Microglial cells, vascular cells, astrocytes, neuronal cells and leukocytes
may release MMP-9 and other MMPs potentially differing for timing,
trigger and intracellular signaling [39]. Increased levels of MMP-9
were already associated with ischemic event and thrombolysis was
shown to further enhance this effect [17,18]. Recent studies also empha-
sized the association between MMP-9 and adverse clinical outcome
(increased infarct volume, hemorrhagic transformation and long-term
disability) [13,15,40–42], thus raising the interest as a potential thera-
peutic target [43,44]. However, by combining the release of MMP-9



Fig. 5. r-tPA-induced release of MPO in Teflon is reduced by SB203580 (inhibitor of p38 MAPK pathway). A–F. Neutrophils were 30-min pre-incubated in polystyrene or Teflon dishes in
the presence or absence of different concentrations (0.1, 1, 10 μM) of SB203580. Then, cells were stimulated with control medium (CTL) PMA (10 ng/ml, positive control) or 0.1 mg/ml
r-tPA. Data are expressed as median (interquartile range), n = 5–10. Release of MMP-9 (A, B). Release of MMP-8 (C, D). Release of MPO (E, F). G–H. Representative Western blot of
p38 MAPK phosphorylation in the presence or absence of control medium (CTL), 200 U/ml TNF-alpha (for 7 min, positive control), or r-tPA (time course: 1 min, 5 min, 15 min, 30 min,
all at 0.1 mg/ml). Values were normalized to total amounts of Akt and expressed as percentage of control medium (CTL), defined as 100%. Data are expressed asmean± SEM (n= 3–4).
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with the specific neutrophil products MPO and NE, we speculated that
the increase circulating levels of proteases might be originated from
the activation of these cells in response to thrombolysis.

As additional finding, an increase of protective TIMPs was observed
in our cohort concomitantly to the peaks on neutrophil degranulation,
thus representing a potential beneficial response counteracting
neutrophil proteases. Whether r-tPA has a direct role on this protective
increase in TIMP-1 and TIMP-2 levels remains to be elucidated.
Neutrophils were partially investigated as a potential source of TIMPs
but differently from Cuadrado and colleagues [19], we failed in
detecting any significant increase of TIMP-2 levels in supernatants of
neutrophil treatedwith r-tPA. TIMP-2was detected at very low concen-
tration (in the range of pg/ml, 1000-fold less than other neutrophil
enzymes), whereas TIMP-1 was confirmed at very low concentrations
(below 31.25 pg/ml) in all neutrophil supernatants. Considering these
findings and the higher concentration of TIMPs detected in serum of



Table 1
Clinical characteristics and medications of study population.

Non-thrombolysis
(n = 30)

Thrombolysis
(n = 60)

p-Value

Demographic
Age, yr. (IQR) 67 (56–76) 68 (55–75) 0.758
Males, no. (%) 14 (46.7) 37 (61.7) 0.186
Systolic blood pressure, mm Hg
(IQR)

140 (130–180) 142 (130–150) 0.213

Diastolic blood pressure, mm Hg
(IQR)

80 (80–100) 80 (70–90) 0.064

Hypertension, no. (%) 20 (66.7) 34 (56.7) 0.494
Current smoking, no. (%) 9 (31.0) 21 (35.0) 0.813
Previous smoking, no. (%) 5 (16.7) 6 (10.0) 0.496
Alcohol abuse, no. (%) 1 (3.3) 1 (1.7) 1.000
Type 2 diabetes, no. (%) 3 (10.0) 9 (15.0) 0.744
Dyslipidemia, no. (%) 9 (30.0) 12 (20.0) 0.303
Chronic CADa, no. (%) 2 (6.7) 6 (10.0) 1.000
Liver diseases, no. (%) 2 (6.7) 3 (5.0) 1.000

Medications
RAASb inhibitors, no. (%) 12 (40.0) 24 (40) 1.000

ACE-Ic, no. (%) 10 (33.3) 19 (31.7) 1.000
ARBsd, no. (%) 2 (6.7) 5 (8.3) 1.000

β-Blockers, no. (%) 6 (20.0) 9 (15.0) 0.560
Calcium antagonists, no. (%) 3 (10.0) 3 (5.0) 0.396
Diuretics, no. (%) 6 (20.0) 22 (36.7) 0.148
Statins, no. (%) 4 (13.3) 8 (13.3) 1.000
Antiaggregants, no. (%) 6 (20.0) 10 (34.3) 0.224

Aspirin, no. (%) 5 (16.7) 17 (28.3) 0.301
Thienopyridine, no. (%) 1 (3.3) 3 (5.0) 1.000

Oral antidiabetics, no. (%) 0 (0.0) 4 (6.7) 0.297
Insulin, no. (%) 1 (3.3) 0 (0.0) 0.333

Biochemical
Total WBCe, no. × 109/l (IQR) 8.62 (5.98–10.41) 7.54 (6.55–8.61) 0.290
Neutrophils, no. × 109/l (IQR) 5.56 (3.64–7.40) 4.54 (3.70–5.91) 0.371
Lymphocytes, no. × 109/l (IQR) 1.99 (1.44–2.93) 1.97 (1.63–2.47) 0.751
Platelets, no. × 109/l (IQR) 220 (170–251) 213 (173–234) 0.513
Red blood cells, no. × 1012/l (IQR) 4.64 (4.39–5.07) 4.68 (4.31–5.00) 0.656
Serum total-cf, mg/dl (IQR) 215 (192–240) 193 (154–221) 0.008
Serum LDL-cg, mg/dl (IQR) 45 (40–60) 133 (121–148) 0.290
Serum HDL-ch, mg/dl (IQR) 133 (121–148) 111 (83–142) 0.019
Serum Triglycerides, mg/dl (IQR) 137 (97–181) 105 (82–147) 0.010
INRi, no. (IQR) 1.09 (1.01–1.11) 1.10 (1.01–1.17) 0.575
Plasma fibrinogen, mg/dl (IQR) 264 (220–294) 280 (246–319) 0.132
Serum glycemia, mg/dl (IQR) 111 (97–136) 110 (97–146) 0.857

Data are expressed as median (interquartile range [IQR]) or number [no.] (percentages [%]).
a CAD: coronary artery disease
b RAAS: renin–angiotensin–aldosterone system.
c ACE-I: angiotensin converting enzyme inhibitor.
d ARBs: angiotensin receptor blockers.
e WBC: white blood cells.
f Total-c: total cholesterol.
g LDL: low density lipoprotein.
h HDL: high density lipoprotein.
i INR: International normalized ratio.

Table 2
Clinical and radiological characteristics of ischemic stroke in the study groups.

Non-thrombolysis
(n = 30)

Thrombolysis
(n = 60)

p-Value

Clinical features at onset (time 0)
Time window to CTa, no. (%)

b3 h 18 (60.0) 52 (86.7) 0.007
3–6 h 10 (33.3) 8 (13.3) 0.023
N6 h 2 (6.7) 0 (0.0) 0.109

TOASTb classification, no. (%)
Atherothrombotic 9 (31.0) 33 (55.9) 0.028
Cardioembolic 9 (31.0) 18 (30.5) 0.959
Lacunar 11 (37.9) 8 (13.6) 0.009

Seizure at onset, no. (%) 0 (0.0) 0 (0.0) 1.000
Headache at onset, no. (%) 2 (6.7) 1 (1.7) 0.257
Previous cognitive decline, no.
(%)

1 (3.3) 4 (6.7) 0.661

NIHSSc ≥ 5, no. (%) 19 (63.3) 55 (91.7) 0.002
ASPECTSd ≤ 7, no. (%) 7 (23.3) 7 (11.5) 0.216

1 day
NIHSS ≥ 5, no. (%) 13 (43.3) 39 (65.0) 0.070
CT lesion volume at 24 h, mm3

(IQR)
1.35 (0.60–17.97) 13.05 (1.24–46.95) 0.066

Hemorrhagic transformation, no.
(%)

1 (3.3) 13 (21.7) 0.023

7 days
NIHSS ≥ 5, no. (%) 8 (26.7) 25 (41.7) 0.246
CT lesion volume at 7 days,
mm3 (IQR)

2.15 (0.70–51.37) 14.30 (1.52–66.50) 0.104

Hemorrhagic transformation,
no. (%)

6 (20.0) 22 (36.7) 0.148

ECASSe, no. (%)
None 24 (80.0) 38 (63.3) 0.118
Hemorrhagic infarction type 1 3 (10) 6 (10.0) 0.981
Hemorrhagic infarction type 2 3 (10) 1 (1.7) 0.067
Parenchymal hemorrhage
type 1

0 (0.0) 10 (16.7) 0.018

Parenchymal hemorrhage
type 2

0 (0.0) 5 (8.3) 0.106

90 days
NIHSS ≥ 5, no. (%) 7 (23.3) 14 (23.3) 1.000
mRSf N 2, no. (%) 4 (13.3) 11 (18.3) 1.000
CT lesion volume at 3 months,
mm3 (IQR)

1.10 (0.40–23.00) 6.00 (0.80–59.20) 0.130

CT lesion volume variation (%) 21.5 (−0.01–33.3) 18.4 (−0.56–48.54) 0.827

Data are expressed as median (interquartile range [IQR]) or number [no.] (percentages [%]).
a CT: computed tomography.
b TOAST: Trial of ORG 10172 in Acute Stroke Treatment.
c NIHSS: National Institutes of Health Stroke Scale.
d ASPECTS: Alberta Stroke Program Early CT Score.
e ECASS: European Cooperative Acute Stroke Study.
f mRS: modified ranking scale.
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AIS patients, we believe that the peak detected after thrombolysismight
be independent of neutrophil degranulation. Despite this increase in
serum TIMP levels in patients treated with thrombolysis, the amount
of MMP-9/TIMP-1 complex was not significantly augmented. These re-
sults might suggest that the increase in TIMP-1 serum levels might be
not enough to bind and abrogate MMP-9 activity. Therefore, the patho-
physiology of TIMPs in AIS still remains largely unknown, even though
long-time recognized in experimental studies [45,46].

The pathophysiological relevance of early r-tPA-induced neutrophil
degranulation needs to be validated in clinical AIS cohorts, including
the potential association with post-stroke hemorrhagic transformation.
Our cohort included a quite high rate of hemorrhagic transformation
following thrombolysis, as compared with other studies [47]. The inclu-
sion of all radiological findings (and then both symptomatic and asymp-
tomatic lesion) certainly contributed to increase this number. Various
neutrophil products have been suggested as potential mediators of
reperfusion injury [48,49], but also many other risk factors were
shown to be potentially associated with hemorrhagic transformation
[50]. Therefore, our clinical findings remained as mainly observational
and require further validation. Finally, our study has some limitations.
In vitro results did not completely clarify r-tPA-mediated molecular
mechanisms on neutrophil degranulation. Therefore, this point requires
further investigation to identify which transmembrane receptor binds
r-tPA on neutrophil surface aswell as additional downstream intracellu-
lar pathways. In addition, the small sample size of clinical study did not
allow any sub-analysis within groups, especially in thrombolysed
patients. Larger studies are needed to further clarify the pathophysio-
logical relevance of r-tPA-mediated neutrophil activation on post-
stroke hemorrhagic transformation in vivo in patients. Therefore, our
clinical study has to be considered as a “pilot” clinical observation,
potentially suggesting a detrimental neutrophil activation in response
to r-tPA. On the other hand, the in vitro experiments conferred to our



Fig. 6. Serum levels of neutrophil enzymes and pro-MMP-9 activity but not hsCRP are increased in patients immediately after thrombolysis (time 0). Serum MMP-9 (A), pro-MMP-9
activity (B), MMP-8 (C), NE (D), MPO (E) and hsCRP (F) at baseline (time 0), and 1, 7 and 90 days after the acute ischemic event in patients treated with (white bars) or without
(gray bars) thrombolysis.
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research a “translational” value, adding promising mechanistic insight
on r-tPA-mediated effects on neutrophil pathophysiology.

In conclusion, this study shows that the administration of a throm-
bolytic drug r-tPA-induced early neutrophil degranulation both
in vitro via defined intracellular pathways and potentially in vivo. In
AIS patients treated with thrombolysis, neutrophil degranulation was
mainly hypothesized on the basis of early MPO and NE serum peaks
(proteases more specific of neutrophil granules). Considering serum
MMPs, we should acknowledge that the serum profile of these
proteases might be also influenced by a potential release from the
damaged brain or blood–brain barrier into the blood stream. Neutrophil
activation was early, but transient and accompanied by an increase in
serum levels of protective TIMPs. Since no long-term effects were
observed, these results do not invalidate the usefulness of thrombolytic
approach. However, the combined inhibition of neutrophil activation
together with the administration of r-tPA might be a promising
strategy to further improve thrombolysis-mediated benefits after
ischemic stroke.



Fig. 7. Serum levels of protective TIMPs are increased in patients immediately after throm-
bolysis (time 0). Serum levels of TIMP-1 (A), TIMP-2 (B) and MMP-9/TIMP-1 complex
(C) at baseline (time 0), and 1, 7 and 90 days after the acute ischemic event in patients
treated with (white bars) or without (gray bars) thrombolysis.
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