
ScienceDirect

Available online at www.sciencedirect.com

Transportation Research Procedia 47 (2020) 211–218

2352-1465 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 22nd Euro Working Group on Transportation Meeting.
10.1016/j.trpro.2020.03.091

10.1016/j.trpro.2020.03.091 2352-1465

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 22nd Euro Working Group on Transportation Meeting 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2020 The Authors. Published by Elsevier B.V.  
Peer-review under responsibility of the scientific committee of the 22nd  EURO Working Group on Transportation Meeting.  

22nd EURO Working Group on Transportation Meeting, EWGT 2019, 18-20 September 2019, 
Barcelona, Spain 

Energy consumption of electric vehicles: models’ estimation using 
big data (FCD) 

Antonello Ignazio Crocea, Giuseppe Musolinob*, Corrado Rindoneb, Antonino Vitettab 
aDipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali Università Mediterranea di Reggio Calabria, Feo di Vito Reggio 

Calabria 89122, Italy 
bDipartimento di ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile Università Mediterranea di Reggio Calabria, Feo 

di Vito Reggio Calabria 89122, Italy  

Abstract 

The paper presents a framework to estimate energy consumption of Electric Vehicles (EVs) by combining: (a) the use of models 
derived from traffic flow theory and from mechanics of locomotion and (b) the great amount of Floating Cara Data (FCD) from 
available Information and Communications Technology (ICT) devices. Existing energy consumption models may be classified into 
aggregate vs. disaggregate, according to the level of aggregation of variables related to driver, vehicle, and infrastructure. The 
proposed models have a hybrid nature: the aggregate component allows to estimating the values of vehicular speed and acceleration 
on a road link; the disaggregate one allows to estimating the discrete variability of EVs’ energy consumption inside a spatial-
temporal domain. The energy consumption models are estimated using traffic data extracted from FCD. 
The proposed framework is structured into four steps: FCD processing, estimation of vehicular speeds and accelerations, estimation 
of resistance/energy consumption. The framework is applied in a pilot study  area,  composed  by  the  backward  (sub-)urban area 
of the port of “Porto delle Grazie” of Roccella Jonica (South of Italy). The preliminary results show that the methodology allows 
relative inexpensive and accurate calculation of EVs’ energy consumption and that it can be integrated into Intelligent 
Transportation System (ITS) applications. 
 
© 2020 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 22nd EURO Working Group on Transportation Meeting. 
Keywords: energy consumption models; Eletric Vehicles (EVs); Floating Car Data (FCD); passenger mobility 

 

 
* Corresponding author. Tel.: +39-0965-1693-272; fax: +39-0965-1693-247. 

E-mail address: giuseppe.musolino@unirc.it 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2020 The Authors. Published by Elsevier B.V.  
Peer-review under responsibility of the scientific committee of the 22nd  EURO Working Group on Transportation Meeting.  

22nd EURO Working Group on Transportation Meeting, EWGT 2019, 18-20 September 2019, 
Barcelona, Spain 

Energy consumption of electric vehicles: models’ estimation using 
big data (FCD) 

Antonello Ignazio Crocea, Giuseppe Musolinob*, Corrado Rindoneb, Antonino Vitettab 
aDipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali Università Mediterranea di Reggio Calabria, Feo di Vito Reggio 

Calabria 89122, Italy 
bDipartimento di ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile Università Mediterranea di Reggio Calabria, Feo 

di Vito Reggio Calabria 89122, Italy  

Abstract 

The paper presents a framework to estimate energy consumption of Electric Vehicles (EVs) by combining: (a) the use of models 
derived from traffic flow theory and from mechanics of locomotion and (b) the great amount of Floating Cara Data (FCD) from 
available Information and Communications Technology (ICT) devices. Existing energy consumption models may be classified into 
aggregate vs. disaggregate, according to the level of aggregation of variables related to driver, vehicle, and infrastructure. The 
proposed models have a hybrid nature: the aggregate component allows to estimating the values of vehicular speed and acceleration 
on a road link; the disaggregate one allows to estimating the discrete variability of EVs’ energy consumption inside a spatial-
temporal domain. The energy consumption models are estimated using traffic data extracted from FCD. 
The proposed framework is structured into four steps: FCD processing, estimation of vehicular speeds and accelerations, estimation 
of resistance/energy consumption. The framework is applied in a pilot study  area,  composed  by  the  backward  (sub-)urban area 
of the port of “Porto delle Grazie” of Roccella Jonica (South of Italy). The preliminary results show that the methodology allows 
relative inexpensive and accurate calculation of EVs’ energy consumption and that it can be integrated into Intelligent 
Transportation System (ITS) applications. 
 
© 2020 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 22nd EURO Working Group on Transportation Meeting. 
Keywords: energy consumption models; Eletric Vehicles (EVs); Floating Car Data (FCD); passenger mobility 

 

 
* Corresponding author. Tel.: +39-0965-1693-272; fax: +39-0965-1693-247. 

E-mail address: giuseppe.musolino@unirc.it 



212	 Antonello Ignazio Croce  et al. / Transportation Research Procedia 47 (2020) 211–2182 Author name / Transportation Research Procedia 00 (2019) 000–000 

 

1. Introduction 

The term Well-To-Wheel (WTW) commonly indicates in literature the overall chain from production to 
consumption of energy. The chain includes two processes: (a) the Well-To-Tank (WTT) process, which considers the 
amount of energy required to make fuel available from the primary energy source to the vehicle tank; (b) the Tank-
To-Wheel (TTW) process, which considers the necessary amount of energy to move a vehicle over a given distance. 

Focusing on the TTW process, the paper presents a framework to estimate energy consumption of passenger 
Electric Vehicles (EVs) by means of models derived from traffic flow theory and from laws of vehicles locomotion. 
Big data (e.g. Floating Car Data - FCD) analysis allows making available a great amount of observed traffic data that 
can be used to calibrate the models. 

The literature related to models on vehicle energy consumption is mature. Existing models may be classified 
according to different criteria: methods of calculation of energy, the level of aggregation of variables. The widespread 
presence of Information and Communications Technology - ICT (e.g. mobile phones, GPSs) allows the collection of 
potentially valuable information on travel patterns and transport networks. The possibility to consider them as a 
replacement or complement of data obtained from traditional survey methods depends on the ability to select, filter 
and process the great amount of available spatial-temporal data. Focusing on FCD, today their potentialities in 
providing position and speed of road vehicles are commonly recognized.  

The paper presents a framework to estimate energy consumption of EVs by combining: (a) the use of models 
derived from traffic flow theory and from laws of vehicles locomotion, and (2) the great amount of FCD available 
from ICT (i.e. GPS) devices. The models have a hybrid nature in relation to the two above mentioned classes. The 
steady-state component allows to estimating the average values of vehicular speed for each class of links of the road 
network, which is function of vehicular flow. The (quasi-)dynamic component allows to estimating the energy 
consumption of a EVs in a discrete spatial-temporal domain, according to the average values of speed, acceleration 
and traction/resistance. The energy consumption models are estimated using traffic data extracted from FCD, after a 
process of filtering, integration and conversion. This structure of models allows relative cheap and accurate calculation 
of energy consumption of EVs and it can be integrated into Intelligent Transportation System (ITS) applications. 

The remaining part of the paper is structured as follows. A brief state of the art is reported in section 2. The proposed 
framework is presented in section 3. Section 4 reports the prototypal experimental results for a link belonging to a road 
category; they could be extended for all links’ categories and for the whole road network. Both sections 3 and 4 are 
subdivided into four parts; each of one describes a step of the framework (see Fig.1). Conclusions and developments 
are reported in section 5. 

2. State of the art 

The literature on energy consumption models of road vehicles may be classified according to different criteria (Fiori 
and Marzano, 2018; Praticò et al., 2012; Wu et al., 2015). A first criterion considers forward and backward models. 
Forward models start from the engine and “work forwards” towards the wheels in order to identify component 
interactions that affect energy consumption levels and vehicle performances. Backward models compute the amount 
of traction required at the wheels and ‘‘work backward” towards the engine; in this case, vehicle energy consumption 
is estimated from drive cycle (driver behavior), vehicle (traction at the wheels) and infrastructure (geometry) 
characteristics. Another criterion of classification is based on the level of temporal aggregation. Models may be steady-
state (or aggregate), and dynamic (disaggregate). Steady-state models need fewer input data (e.g. average speed on a 
link, consumption per unit of travelled distance), than dynamic models (e.g. instantaneous speed/traction profile of 
vehicle on the link). However, the former ones provide aggregate results that do not take into account the variability 
of driver behavior, vehicle and infrastructure characteristics, as the latter does.  

The widespread use of ICT (e.g. mobile phones, GPSs) allows the collection of potentially valuable information on 
travel patterns and transport networks (see Chilà et al., 2016; Bonnel and Munizaga, 2018). The possibility to consider 
them as a replacement or complement of data obtained from traditional survey methods depends on the ability to select, 
filter and process the great amount of available spatial-temporal data. Focusing on FCD, today their potentialities in 
providing positions and speeds of road vehicles are commonly recognized (Croce et al., 2019).  
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As far as concern EVs, they seem to be one of the promising solutions to reach global Sustainable Development 
Goals (SDGs). The economic studies predict in the next future a progressive replacement of the internal combustion 
engine vehicles with EVs. Today the market offers several types of EVs that may be classified according to the criterion 
of propulsion systems and energy sources: battery electric vehicle; hybrid electric vehicle, plug-in hybrid electric 
vehicle, extended range-electric vehicle (Ehsani et al., 2005; Chan 2007; Shaukata et al., 2018). 

The research contribution of the paper regards the integration of energy consumption models and FCD in order to 
pursue two connected objectives. The first concerns the benefits’ maximization of using energy consumption models, 
in order to increase their capacity to analyze and forecast the effect of the relatively greater mass of EVs with respect 
to the road traffic and geometry-related characteristics. The second concerns the reduction of costs necessary to build 
the above models. The execution of surveys to obtain traffic data (vehicular flows, densities, speeds and accelerations) 
is expensive. Big data concerns observations of large sample of population and long observation periods about people 
and freight mobility. But they are sparse and noisy. Therefore, a great effort is necessary to filter, integrate and convert 
them into traffic and infrastructure performances estimates. 

3. Proposed framework: specification of steps 

The proposed framework is structured into four steps (see Fig. 1): FCD processing (step 0), vehicular speeds 
estimation (step 1), vehicular accelerations estimation (step 2), resistance/energy consumption estimation (step 3). 
Step 0 is the first; step 3 is the last; steps 1 and 2 are in parallel. The framework requires some preliminary operations 
connected to study area delimitation, road graph building, and link classification.  

 

Fig. 1. Framework for energy consumption estimation of EVs from FCD. 

Step 0: FCD processing.  
A sequence of operations, such as data filtering and elaboration, allows to obtain, as output, the spatial-temporal 

vehicles’ positions, p, associated to each link of the road network from the available FCD set. 
By processing the information on p, the following outputs are calculated for each class of links, denoted with c. 

 
Step 1: vehicular speeds estimation. 

Vehicles’ positions, p, are the inputs for the estimation of average speed of vehicles, vc, depending on the vehicular 
density, kc, obtained from vehicles’ positions: 

vc=(kc)   c   (1) 

The link speed-density function requires that stationary conditions of traffic flow hold. Preliminary, the values of 
density, ki, and average speed, vi, on link i are estimated. 

0: FCD processing 

Energy consumption 

2: Acceleration 
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The average vehicular density on link i (of length Li), ki, adopted for the estimation of  (1), is calculated as: 

ki = (j nj,i (T, tj)  tj) / (T  f  Li)  i   (2) 

with 
 T, given period of time (T should be as small as possible in order to let density be correctly defined); 
 tj, time interval of group of vehicles positions j, which lies between the instant of detection of a vehicle position 

on link and the next instant of detection included in the FCD set (generally the vehicle positions are detected 
every minute (j=1; t1= 1 minute), but this time interval could be greater than 1 minute for different reasons 
(j>1), up to several minutes); 

 nj,i (T, tj), number of vehicle positions of group j, detected on link i inside T, whose next position is present in 
the FCD set after a time interval tj; 

 f[0,1], is the ratio between the detected vehicles (i.e. equipped with GPS) and the whole number of circulating 
vehicles in the study area (penetration rate). 

The weighted average speed of vehicles travelling on link i, vi, is calculated as: 

vi = (jpi vp,i  tj) / (ni  tj))  i   (3) 

with 
vp,i = dp(tj) / tj, average speed of vehicles’ position p of group j, travelling on link i, whose next position is 

detected after tj; 
dp(ti), distance covered by vehicle p during time interval tj; 
ni =j nj,i (T, tj), number of vehicle positions detected on link i inside T. 
The values of k*c and v*c of (1) are calculated as the weighted averages of ki (2) and vi (3): 

v*c = ic (vi  ni) / i ni   c   (4) 
k*c = ic (ki  ni) / i ni   c   (5) 

The speed-density curves (1) related to link i, or the class c, are estimated from the available speed and density 
values calculated respectively with (2) and (3), or with (4) and (5).  
 
Step 2: vehicular accelerations estimation.  

Statistical analyses allow obtaining, as output, the average acceleration of vehicles on a link belonging to class c:  

ac =(gc)     c   (6) 

where gc is the vector of geometric and functional characteristics of links belonging to class c. 
The average acceleration of vehicles p travelling on links belonging to class c, a*c, is calculated as: 

a*c = pc ap / Pc    c   (7) 

with  
apvp (tj) / tj, discrete acceleration of detected vehicle, p, inside time period tj; 
vp (tj), discrete variation of speed of detected vehicle, p, travelling on links belonging to class c during tj;  
Pc, number of vehicles p travelling on links belonging to class c. 
The average acceleration (6) of vehicles p travelling on links belonging to class c, is estimated from the vector of 

geometric and functional characteristics and acceleration calculated with (7). The whole values of acceleration are 
grouped into a histogram of frequency according to predefined intervals. 
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Step 3: resistances / energy consumption estimation. 
(3.a) The whole resistances on a vehicle p, rtot,p, are calculated as (valid for every link): 

rtot,p = (v p, a p) = rroll,praero,prslope,prinertia,p p   (8) 

with 
rroll,p = m p  g (a + b  v p), rolling resistance;        (9)
raero,p1/2  ρ  cx  s p  v p

2, aerodynamic resistance;       (10)
rslope,p  m p  g  i, slope resistance;         (11) 
rinertia,p =   m p  a p, inertial resistance;         (12) 
where m p, mass of vehicle p; g, gravity acceleration; a and b, parameters; ρ, air density; cx, coefficient of 

aerodynamic shape; sp, front surface of vehicle p; i, link slope;  percentage of energy recovered downhill (i<0); 
percentage of energy recovered under braking (ap<0), if the vehicle is supposed to be electric (EV). 

(3.b) The energy consumption of a vehicle p is estimated on the base of rtot,p (from step3.a): 

ep =(rtot, p)    p   (13) 

where ep is equal to  

ep =   rtot,p    p   (14) 

with  increase of electricity consumption due to accessory installations (i.e. air conditioning). 

4. Proposed framework: application and preliminary results 

The framework has been tested in the backward (sub-)urban area a touristic port, called "Porto delle Grazie", located 
in Roccella Jonica (South of Italy). There is a general objective of local administrations, which is the design of optimal 
transport services for passenger mobility to be operated by means of a fleet of EVs (see Musolino et al., 2019). A 
potential catchment area (Fig. 2) on the landside of the port (study area) has been identified, including several coastal 
and hilly municipalities. The road network of the study area has been built and the links have been classified into five 
different classes: freeway, primary road of type 1, primary road of type 2, secondary road, urban road. Each class has 
been identified by its own geometrical and functional characteristics. The steps of the proposed framework, reported 
in section 3, have been applied, and the preliminary results are reported in the following paragraphs. 

4.1. FCD processing (step 0) 

FCD are available for a wide region, including the study area, in a period 4 weeks (about 5.31 millions of vehicle 
positions). Several filtering operations were executed on the available initial database (see Table 1). Temporal filtering 
consisted of selecting positions travelling during the weekdays (about 3.65 millions). Spatial filtering consisted of the 
elimination of the positions of the vehicles outside the study area (about 0.38 million). Cinematic filtering consisted 
of selecting positions with speed greater than zero (about 0.30 million). Topological filtering (or map matching) 
allowed to associate the vehicles’ positions to the main links of the road network, previously identified (about 0.15 
million, which are about 2.8% of the total points). 

The map matching was carried out after building a road graph, which represents a portion of the existing road 
facilities. After classifying the links of the graph according to their functional and geometric characteristics (see table 
2), it was possible to associate an average speed to each link class. Starting from the filtered FCD data (in time and 
space) (table 1), two selection criteria were applied: (1) distance of vehicle position, p, from  a link lower than a 
predefined threshold; (2) minimum difference, in absolute value, between the observed speed of the vehicle, p, and 
the average speed associated to the link class (topological filtering, table 1). The association of vehicle position, p, to 
a link is conditioned upon the satisfaction of both criteria (see details in Croce et al., 2019). 
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a b 

Fig. 2. (a) Potential catchment area; (b) and main roads.

Table 1. Filtering operations on FCD data

Temporal Spatial Cinematic Topological %

Week Total points Points in the 
weekdays

Points in the 
study area

Points with 
speed>0

Points on the 
road network

1 1,031,984 764,669 87,700 67,869 32,452 22.1%
2 1,045,594 772,674 82,948 63,155 31,395 21.4%
winter 2,077,578 1,537,343 170,648 131,024 63,847 43.5%

Table 2. Estimation of link characteristics (avr. and st.dev.) for each link class

Class Typology Links
Length [Km] Width [m] N. Lanes Slope [%]

avr. st. dev. avr. st. dev. avr. st. dev. avr. st. dev.

1 Freeway 7 5.62 1.55 7.50 0.00 2.00 0.00 0.05 0.06
2 Primary of type 1 15 2.01 1.58 3.50 0.00 1.00 0.00 0.09 0.19
3 Primary of type 2 4 5.06 3.79 3.50 0.00 1.00 0.00 2.03 0.95
4 Extra-urban 40 4.98 5.17 2.98 0.40 1.00 0.00 1.93 2.75
5 Urban 115 0.32 0.47 3.15 0.63 1.00 0.00 0.43 5.88

4.2. Vehicular speeds estimation (step 1)

Step 1 is preliminary applied on a link belonging the class 3, by using (3) and (4). It could be extended to all links 
of the class, by using (4) and (5), and to all classes for evaluations regarding the whole network.

From the set of vehicles positions, p, obtained after several filtering operations of initial FCD data (see Table 1), it 
is possible to estimate the values of speeds and densities related to each link i from (2) and (3), and then to each link 
class c, from (4) and (5). 

The averages speeds-densities scatterplot for a link belonging to class 3 (see Table 2) is depicted in Fig. 3 (left), as 
a result of the application of (2) and (3). The estimated values concern an average working day inside the two available 
winter weeks. The following values are assumed: T=1 min, f=0.02, L= 2.42 km. The estimated speed-density points 
seem to lie exclusively in the stable region of the curve. Therefore, at this stage of the research, a linear specification 
of the stable branch of the speed-density curve is considered. The calibrated value of free speed is v0=72.55 (km/h) 
and the speed reduction per unit of density is -1.65 (km/veic x km/h). The value of R2 is equal to 0.4252. The absolute 
average speed error is about 6 km/h and the relative standard deviation is about 6 km/h. These results are due to the 
low FCD penetration rate (f=0.02), as reported in Klunder et al. (2017).  

Once the values of average speeds and densities for each link i are available, the values of average speeds and 
densities values of average speeds and densities for each class c by applying (4) and (5).
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4.3. Vehicular accelerations estimation (step 2)

The availability of filtered vehicles positions, p, (see Table 1) allowed to estimate the values of average 
accelerations for each link class c from (7). A curve of cumulative frequency of average acceleration for vehicles 
travelling on all links belongs to class 3 (see Table 2) is depicted in Fig. 3 (right), as result of the application of (7). 
The figure shows also the tabulated values (amin, amax, avrg) of five classes of accelerations obtained from the cumulative 
frequency, which are associated to five discrete locomotion regimes (in term of acceleration) of vehicles along the 
road links. The application of (7) could be repeated for each link class c, obtaining five curves of specific cumulative 
frequency of average accelerations. 
a b

Fig. 3: (a) Speed-density scatterplot for a link of category 3; (b) and average vehicles’ acceleration profiles for link category 3.

4.4. Resistance/energy consumption estimation (step 3)

The application of (8) allowed to estimating the values of total resistances of an Electric Vehicle (EV) travelling 
on the link in each of the 24 hours of the average working day (see steps 1 and 2). The EV considered is a Renault 
Zoe, that has the following characteristics: m=1468 kg, cx=0.25, s= 1,5 m2. The characteristic of the link is i=0.3%. 
The values of the parameters are: g= 9,8 m/sec2, = 1,25; a=0.0025 , b=0.000025, =0,6, =0,5.

The values of speed, vp, in (9) and (10) are, at this stage, the average values of speed on the link i of vehicles 
travelling at each hour. For what concerns the value of acceleration in (12), the average values, avrg, for each of the 
five classes defined in Fig. 3.b are considered, in order to represent five different acceleration regimes of the vehicle 
along the link. Fig. 4 (left) presents the estimation of temporal profile (every hour) of the total, rolling, aerodynamic, 
slope and inertial resistances of an EV on the considered link.  

Finally, the application of (14) led to the estimation of the values of energy consumption of an EV, travelling on 
the link in each of the 24 hours of the average working day considered in steps 1 and 2. The value of 1.25.

By assuming that all vehicles travelling on the link are EV, it is possible to estimate the temporal profile of the total 
amount of energy consumed by multiplying the value of ep, obtained from (14), per hour and the value of vehicular 
flow in the same hour. The vehicular flow is calculated by multiplying the average hourly values of speeds and 
densities, from the linear speed-density function calibrated in step 2 (see Fig. 3, left). Fig. 4 (right) presents the 
estimation of temporal profile (every hour) of energy consumption and speed of all vehicles (assumed to be EV) 
travelling on the link. 

5. Conclusions

The paper presents a framework to estimate energy consumption of EVs, based on a hybrid (steady-state/quasi-
dynamic) system of models. A great effort has been made to filter, integrate and convert FCD into traffic estimates 
(such as vehicular densities, speeds and accelerations), in order to be suitable for models’ calibration.
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a b

Fig. 4: (a) Estimation of resistances; (b) energy consumption and speed temporal profiles of EVs per hour. 

The framework allows, as EVs have limited drive ranges, a quite accurate and inexpensive estimation of their 
energy consumption, which is a necessary element for transport planners/operators in order to design/implement 
transport services according to passengers’ mobility demand.

The next steps of the research concern: (a) the estimation of link speed-density models (i.e. Drake, Underwood) 
able to capture the stable and unstable regions; (b) a sensitivity analysis of speeds estimation accuracy based on 
different values of FCD penetration rates; (c) an experimentation with EVs to obtain observations about energy 
consumptions profiles, in order to calibrate parameters related to disaggregate energy consumption functions.
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