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Periodic waves travelling along an unsmooth boundary via the fractal variational theory  
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A B S T R A C T   

The solitary waves of the fractal Korteweg-de Vries (KdV) equation travelling along an unsmooth boundary is 
studied by Ji-Huan He, et al (Results in Physics, 2021, 104104 [1]). In this letter, we obtain its periodic waves 
travelling along an unsmooth boundary via the fractal variational theory, which is expected to open the new 
perspectives on the study of the fractal travelling wave theory.   

Introduction 

Ji-Huan He, et al. obtain the solitary waves of the fractal Korteweg- 
de Vries (KdV) equation travelling along an unsmooth boundary in [1], 
which makes an unprecedented contribution on the study of the fractal 
travelling wave theory in physics. Inspired by this work, we aim to seek 
the periodic wave travelling along an unsmooth boundary in this short 
paper. The fractal KdV equation that can work under the unsmooth 
boundary (such as the fractal boundary in Fig. 1) is expressed as [1–4]: 

∂φ
∂tγ +φ

∂φ
∂xγ +

∂3φ
∂x3γ = 0. (1.1)  

where γ represents the two-scale fractal dimension. The definitions of 
the fractal derivatives ∂/∂tγ and ∂/∂xγ are detailedly given in [1–4] as: 

∂
dtα φ(x, t0) = Γ(1 + γ) lim
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Δt∕=0

u(x, t) − u(x, t0)
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γ , (1.2)  

∂
dxγ φ(x0, t) = Γ(1 + γ) lim

x− x0=Δx

Δx∕=0

u(x, t) − u(x0, t)
(x − x0)

γ , (1.3)  

where Δt is the period required for the motion through a fractal space 
Δx. For γ = 1, Eq. (1.1) becomes the classic KdV equation. 

Periodic wave solution 

For obtaining the periodic wave solution, the following transform is 
introduced: 

εγ = xγ − mtγ . (2.1) 

Eq. (1.1) can be converted as: 

− m
∂φ
∂εγ +φ

∂φ
∂εγ +

∂3φ
∂ε3γ = 0. (2.2) 

Integrating Eq. (2.2) with respect to εγand ignoring the integral 
constant, yields: 

− mφ+
1
2
φ2 +

∂2φ
∂ε2γ = 0. (2.3) 

We can establish its fractal variational principle as [5,6]: 

J(φ) =
∫ {
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1
2

(
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)2
}

dεγ . (2.4) 

The periodic wave solution of Eq. (2.3) is assumed as: 

φ(εγ) = ψcos(ωεγ),ω > 0. (2.5) 

Taking Eq. (2.5) into Eq. (2.4) and applying He’s frequency formu-
lation [7,8], we have: 

ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− (4ψ + 3mπ)

3π

√

> 0. (2.6) 

So the periodic wave solution can be obtained as: 

φ(x, t) = ψcos

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− (4ψ + 3mπ)

3π

√

(xγ − mtγ)

]

(2.7) 

By selecting ψ = − 1, m = − 1, we draw the behaviors of Eq. (2.7) 
with different fractal orders γ in Fig. 2. Obviously, it is found that the 
value of γ has a great influence on the periodic characteristics of the 
periodic wave, that is the smaller the value of γ, the greater the period is, 
but the amplitude remains unchanged. 

Conclusion 

In this letter, we presented the periodic wave solution of the fractal 
KdV equation travelling along an unsmooth boundary via the fractal 
variational theory, which offers a promising and simple approach to Fig. 1. The unsmooth boundary (fractal boundary).  
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construct the periodic solution. The results show that the smaller the 
value of the fractal order γ is, the greater the period is, but the amplitude 
remains unchanged. The finding of paper is expected to shed a new light 
on the fractal and fractional travelling wave theory [9,10]. 
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Fig. 2. The behaviors of Eq. (2.7), (a) γ = 1. (b) γ = 0.9. (c) γ = 0.8. (d) t = 1.
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