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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Pattern recognition techniques have been implemented in real-time tool condition monitoring (TCM) systems to improve their robustness and 
reliability. The performance and accuracy of these techniques vary depending on their algorithm and the dataset properties. This research 
benchmarks six pattern recognition techniques to optimize the learning effort, classification accuracy and calculation time for TCM in milling of 
Al-Alloys using spindle-drive feedback. The techniques were tested using a generalized dataset where the tool condition has a dominant effect 
over the cutting conditions. The analysis demonstrated the high capability of the linear discriminant analysis technique compared to other 
techniques. 
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1. Introduction 

The evolution of tool wear in milling operations is affected 
by many parameters due to the process complexity. Currently, 
milling processes can be accurately evaluated by only 
inspecting the final workpiece [1], by which time, any damage 
cannot be avoided. Therefore, advanced investigations of the 
tool condition monitoring systems are required to achieve the 
industrial demands for automated machining systems, such as 
reducing the process cost and standardizing the produced parts 
quality. These systems overcome the uncertainty of tool life 
prediction by estimating the tool condition based on process-
born features [2]. Several signals such as forces, acoustic 
emissions, vibrations and spindle motor current were reported 
as good indicators of tool failure detection [3, 4]. However, the 
later has high potential for industrial applications due to its low 
cost, high flexibility and unobtrusive nature. 

Signal processing methods used in TCM systems cover the 
majority of conventional processing techniques, including time, 

frequency and time-frequency domain analysis. In addition, 
pattern recognition techniques have been used for tool 
condition classification and decision making [2]. A 
comparative study has been carried out on machine learning 
algorithms for tool wear prediction in high speed milling [5]. 
The study was carried out at single cutting condition/tool 
geometry with considerable learning effort, which is necessary 
for prediction purpose. Although pattern recognition techniques 
have revealed high potential for TCM applications, they have 
limitations [6]. Most of these techniques are difficult to be used 
to estimate the state of the tool condition at different cutting 
conditions throughout a single process, due to the extracted 
features sensitivity to the cutting conditions [7]. Additionally, 
TCM systems need extensive experimental work for system 
learning in order to build a reliable database of features 
corresponding to different cutting conditions, tool geometries 
and tool paths methods. Such database needs a considerable 
training data that is difficult to be calibrated for tool wear 
monitoring. This is because actual tool wear must be measured 
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after the cutting operation is interrupted, which provides few 
training data for the correlation stage [8]. Furthermore, the 
pattern recognition techniques are depended on probabilistic 
and optimization results of the training dataset and not physical 
meaning models [6]. 

The main drawback of previous work related to tool 
detection in TCM is applying the classification techniques on 
datasets that were gathered from determined-problem 
experimental results. Therefore, the performance, accuracy and 
efficiency of these techniques cannot be generalized. In 
addition, most of this work has ignored the practicality of their 
classification techniques selection in the TCM systems with 
respect to the learning effort. Recently, new approaches have 
increased the pattern recognition TCM systems certainty, key 
feature extraction, standardization and generalization [9]. This 
is mainly by pre-processing the acquired signals to mask the 
effect of the cutting feed and depth of cut, and emphasize the 
tool condition effect prior to feature extraction. However, the 
high dynamics of the milling process still limits the extraction 
of a stand-alone describing feature. This necessitates fusing 
several features in a pattern recognition classification 
technique. Hence, it is essential to analyse the performance of 
different classification techniques using the acquired signals in 
the machining process to highlight their efficiency. 

This research benchmarks six common pattern recognition 
classification techniques that have been used in literature, 
namely Binary Support Vector Machine (SVM), Linear 
Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), 
Neural Network (NN), Naïve Bayes (NB), and Decision Trees 
(DT). These techniques have been considered and compared 
with respect to their conservation characteristics and 
computational efficiency to optimize the learning effort, 
classification accuracy and calculation time for TCM using 
spindle-drive feedback signals in milling processes of Al-
Alloys. The comparison is based on a dataset of high-speed 
roughing operations that is independent on the cutting 
conditions. The following sections describe the signal 
processing technique and the techniques used for pattern 
recognition, illustrate the test matrix and experimental setup, 
and discuss the benchmarking approach and results. The 
comparison outcome demonstrates that the linear discriminant 
analysis technique is superior compared to other techniques. 

2. Signal processing and classification methods 

2.1. Signal processing and analysis: 

In this work, the spindle-drive feedback current signals have 
been used to classify the tool condition. A novel processing 
technique has been adapted to generate a generalized dataset of 
features to be used for pattern recognition techniques 
comparison [9, 10]. This technique depresses the effect of the 
cutting conditions on the extracted features and emphasizes the 
tool condition effect. It first filters the acquired signals using 
the second passing frequency as a low pass filter to reduce the 
signal noises. Filtered signals are then segmented per tool 
rotation using overlapping windows and each segment is 
normalized with respect to its maxima. The segmentation 
process provides comparable patterns owing to the repetitive 

nature of the milling process. While the normalization process 
minimizes the cutting forces effect represented in the depth of 
cut and feed. After processing, a feature vector is extracted in 
the time and frequency domain for each segment. This vector 
can be used in a pattern recognition technique to classify the 
tool condition. In [9], the extracted features have been ranked 
according to their sensitivity to the tool condition using the 
results of an N-way analysis of variance test. Table 1 shows the 
ranking value for the signal mean (M), maximum peak of 
periodogram (Pp), root mean square (rms), peak to root mean 
square ratio (P2rms), mean frequency (Fmean), band power (BP), 
median frequency (Fmed), maximum peak of welch power 
spectral energy (Pw), kurtosis (K), minimum (min) and variance 
(Var). The feature ranking score, 𝑅𝑅𝑖𝑖, varies from -∞ to 1. A 
value of 𝑅𝑅𝑖𝑖 = 1 indicates ultimate sensitivity to tool condition, 
while 𝑅𝑅𝑖𝑖 = 0 shows very low sensitivity to the tool condition. 
Oppositely, a value of 𝑅𝑅𝑖𝑖< 0 denotes that this feature is sensitive 
to the cutting condition. In this work, these 11 features were 
used in the benchmarking process. 

Table 1 Ranking score of extracted features according to [9] 

Feature M Pp rms P2rms Fmean BP 
𝑅𝑅𝑖𝑖 0.9 0.88 0.86 0.86 0.84 0.84 

Feature Fmed Pw K min Var  
𝑅𝑅𝑖𝑖 0.8 0.71 0.41 0.25 0.17  

2.2. Pattern recognition techniques: 

The most frequent pattern recognition techniques, which 
were used in literature, have been considered in this study. To 
apply these techniques, the machine learning toolbox of 
MATLAB© software has been used and empirical prior 
probabilities depending on the trained data relative frequencies 
were used whenever applied. Low number of training samples 
may produce undefined classifier, while high number may lead 
to over-defined classifier. In both cases, the error increases. 
Therefore, different number of training samples have been 
tested to reach near-optimum classifiers. 

2.2.1. Support Vector Machine (SVM) 
 
The support vector machine solves the problem of 

separation of two classes by finding a linear function f, called 
hyperplane that separates the classes and finds the widest 
margin between them by minimizing w as follows [11]: 

 
𝑓𝑓(𝑥𝑥)
= (𝑥𝑥 ∙ 𝑤𝑤) + 𝑏𝑏; {𝑓𝑓(𝑥𝑥) > 0 𝑓𝑓𝑜𝑜𝑜𝑜 𝑥𝑥 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1

𝑓𝑓(𝑥𝑥) < 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2} (1) 

 
This is done usually using the sequential minimal optimization 
technique. For nonlinearly separable data, a slack variable is 
allowed of samples from boundaries of the separation margin 
with a penalization parameter. Support vector machine has 
been proved less vulnerable for overfitting problem and higher 
generalization ability since it is designed to minimize structural 
risk [12]. In addition, the technique does not require a large 
number of training samples and can solve the learning problem 
even when only a small amount of training samples are 
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available [11]. A linear SVM with a regularization parameter 
equal to 1 has be used in this work. 

2.2.2. Linear Discriminant Analysis (LDA) 
 
Linear discriminant analysis is a mathematical model to 

classify multivariate data based on statistical analysis. It is 
based on assumptive Gaussian distributions of the learned data 
classes. The score function of the LDA model can be expressed 
as follows [13]: 

 

𝑆𝑆𝑆𝑆(𝛽𝛽) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑉𝑉𝑉𝑉𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖

= 𝛽𝛽𝑇𝑇𝜇𝜇1 − 𝛽𝛽𝑇𝑇𝜇𝜇2
𝛽𝛽𝑇𝑇𝐶𝐶𝐶𝐶   (2) 

The function goal is to maximize the variance between classes 
over the variance of the data within the same class. The 
assumed distribution parameters are used to search for a linear 
combination of variables that best separate the learned data 
classes. This linear combination is used to determine the class 
of the tested data.  

2.2.3. K-Nearest Neighbor (KNN) 
 
K-Nearest Neighbor classification is a fundamental 

classification method that is recommended when it is difficult 
to determine reliable parametric estimates of probability 
densities [14]. It is based on learning by analogy. It measures 
the distance between the tested observation and the closest K-
nearest neighbors in the learned dataset in an n-dimensional 
space. In this work, Euclidean distance metric is utilized to 
determine the neighbors’ closeness. The tested observation 
class is determined using the assumption that objects near each 
other are similar. Hence, it categorizes tested data based on the 
classes of their nearest neighbors in the learned dataset.  

2.2.4. Neural Network (NN) 
 
Neural Networks are a computational model inspired by the 

neural structure of the human brain, which find data structures 
and algorithms for learning and classification of data. They 
consist of interconnected group of multi-layers of neurons that 
relate the inputs to the desired outputs. The network is trained 
by iteratively modifying the strength of the structure 
connections based on the information flow through the network 
to map the inputs to the correct response [15]. Usually NN is 
used to model complex relationships and find patterns in 
nonlinear data. A one-layer NN of size 10 with one output has 
been constructed using the Levenberg-Marquardt training 
algorithm and the extracted features in this work. 

2.2.5. Naïve Bayes (NB) 
 
Naïve Bayes is a statistical technique to construct classifiers 

that predict the probabilities of each class feature. They are 
based on Bayes theorem with strong (naive) independence 
assumption between the features. This assumption states that 
the conditional probability of a feature for a class is 
independent from the conditional probabilities of other features 
given that same class. They use the joint probabilities of a new 

data to predict its class depending on the dataset features 
probability distribution [16]. They classify new data based on 
the highest probability of its belonging to a particular class. 
Despite the incorrectness in this assumption, as regularly 
features are dependent, NB classifiers are simple to be applied 
and usually provide high accuracy [16]. Normal distribution 
was assumed to calculate the predictor distribution parameters 
within each class. 

2.2.6. Decision Trees (DT)   
 
A decision tree is a hierarchical model composed of decision 

rules that recursively splits independent variables into 
homogeneous zones [17]. It is a flowchart-like tree structure of 
decision rules to predict a new observation class from a set of 
input features. At each tree branching condition (node), the new 
observation features value is compared to a weight obtained 
from the training dataset. The number of branches and the 
values of weights are determined in the training process. 
During the training process, the DT technique identifies and 
removes branches that may reflect noises in the training dataset 
to improve the classification accuracy. Decision trees has been 
applied successfully in many real-world situations for 
classification and prediction. The Gini’s diversity index was 
used in this work as a split criterion to classify the tool 
condition.  

3. Experimental setup 

High speed rouging milling tests of high strength aluminum 
alloy workpieces have been performed on a 5-axis DMU 100P 
duoBlock machining center with 28 kW spindle and maximum 
speed of 18,000 rpm. The experimental setup is shown in Fig. 
1(a). Three AC-DC and pulsed current signals transducers have 
been used to measure the spindle current signals. The 
transducers have a measuring frequency band and reaction time 
100 kHz and 0.5 μs, respectively. The three transducers where 
mounted on the three phases between the spindle motor and its 
pulse width modulation PWM driving module. A National 
Instrument data acquisition card type NI 4472 Series has been 
used to digitalize and store the acquired signals.  

Milling operations of straight slots have been performed 
using 2, 3 and 4 flutes carbide end mills at speed of 14,000 rpm. 
Table 2 shows the full factorial matrix of the cutting conditions 
(i.e. feed and depth of cut ae), the tool diameters (Dia), corner 
radius (Cr) and flank wear levels (VB) used in the slotting tests. 
A total of 80 slot tests, including one replicate for each set, have 
been performed to induce the effect of the tool and cutting 
parameters on the extracted features. 
According to the ISO standards [18], tool flank wear (VB) is 
the phenomenon of tool life deterioration. It has maximum 
acceptable uniform value of 0.3 mm. In this work, uniform tool 
wear has been used as tool life criterion. The tested tool 
conditions have been categorized into two ranges; namely, 
fresh (0 ≤ VB < 0.07) and worn tool (0.25 ≤ VB < 0.3), as 
shown in Fig. 1(b). To generate tool wear prior to the milling 
test, the targeted tools have been subjected to severe cutting 
conditions under controlled machining conditions to accelerate 
the induced uniform tool wear. 
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after the cutting operation is interrupted, which provides few 
training data for the correlation stage [8]. Furthermore, the 
pattern recognition techniques are depended on probabilistic 
and optimization results of the training dataset and not physical 
meaning models [6]. 

The main drawback of previous work related to tool 
detection in TCM is applying the classification techniques on 
datasets that were gathered from determined-problem 
experimental results. Therefore, the performance, accuracy and 
efficiency of these techniques cannot be generalized. In 
addition, most of this work has ignored the practicality of their 
classification techniques selection in the TCM systems with 
respect to the learning effort. Recently, new approaches have 
increased the pattern recognition TCM systems certainty, key 
feature extraction, standardization and generalization [9]. This 
is mainly by pre-processing the acquired signals to mask the 
effect of the cutting feed and depth of cut, and emphasize the 
tool condition effect prior to feature extraction. However, the 
high dynamics of the milling process still limits the extraction 
of a stand-alone describing feature. This necessitates fusing 
several features in a pattern recognition classification 
technique. Hence, it is essential to analyse the performance of 
different classification techniques using the acquired signals in 
the machining process to highlight their efficiency. 

This research benchmarks six common pattern recognition 
classification techniques that have been used in literature, 
namely Binary Support Vector Machine (SVM), Linear 
Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), 
Neural Network (NN), Naïve Bayes (NB), and Decision Trees 
(DT). These techniques have been considered and compared 
with respect to their conservation characteristics and 
computational efficiency to optimize the learning effort, 
classification accuracy and calculation time for TCM using 
spindle-drive feedback signals in milling processes of Al-
Alloys. The comparison is based on a dataset of high-speed 
roughing operations that is independent on the cutting 
conditions. The following sections describe the signal 
processing technique and the techniques used for pattern 
recognition, illustrate the test matrix and experimental setup, 
and discuss the benchmarking approach and results. The 
comparison outcome demonstrates that the linear discriminant 
analysis technique is superior compared to other techniques. 

2. Signal processing and classification methods 

2.1. Signal processing and analysis: 

In this work, the spindle-drive feedback current signals have 
been used to classify the tool condition. A novel processing 
technique has been adapted to generate a generalized dataset of 
features to be used for pattern recognition techniques 
comparison [9, 10]. This technique depresses the effect of the 
cutting conditions on the extracted features and emphasizes the 
tool condition effect. It first filters the acquired signals using 
the second passing frequency as a low pass filter to reduce the 
signal noises. Filtered signals are then segmented per tool 
rotation using overlapping windows and each segment is 
normalized with respect to its maxima. The segmentation 
process provides comparable patterns owing to the repetitive 

nature of the milling process. While the normalization process 
minimizes the cutting forces effect represented in the depth of 
cut and feed. After processing, a feature vector is extracted in 
the time and frequency domain for each segment. This vector 
can be used in a pattern recognition technique to classify the 
tool condition. In [9], the extracted features have been ranked 
according to their sensitivity to the tool condition using the 
results of an N-way analysis of variance test. Table 1 shows the 
ranking value for the signal mean (M), maximum peak of 
periodogram (Pp), root mean square (rms), peak to root mean 
square ratio (P2rms), mean frequency (Fmean), band power (BP), 
median frequency (Fmed), maximum peak of welch power 
spectral energy (Pw), kurtosis (K), minimum (min) and variance 
(Var). The feature ranking score, 𝑅𝑅𝑖𝑖, varies from -∞ to 1. A 
value of 𝑅𝑅𝑖𝑖 = 1 indicates ultimate sensitivity to tool condition, 
while 𝑅𝑅𝑖𝑖 = 0 shows very low sensitivity to the tool condition. 
Oppositely, a value of 𝑅𝑅𝑖𝑖< 0 denotes that this feature is sensitive 
to the cutting condition. In this work, these 11 features were 
used in the benchmarking process. 

Table 1 Ranking score of extracted features according to [9] 

Feature M Pp rms P2rms Fmean BP 
𝑅𝑅𝑖𝑖 0.9 0.88 0.86 0.86 0.84 0.84 

Feature Fmed Pw K min Var  
𝑅𝑅𝑖𝑖 0.8 0.71 0.41 0.25 0.17  

2.2. Pattern recognition techniques: 

The most frequent pattern recognition techniques, which 
were used in literature, have been considered in this study. To 
apply these techniques, the machine learning toolbox of 
MATLAB© software has been used and empirical prior 
probabilities depending on the trained data relative frequencies 
were used whenever applied. Low number of training samples 
may produce undefined classifier, while high number may lead 
to over-defined classifier. In both cases, the error increases. 
Therefore, different number of training samples have been 
tested to reach near-optimum classifiers. 

2.2.1. Support Vector Machine (SVM) 
 
The support vector machine solves the problem of 

separation of two classes by finding a linear function f, called 
hyperplane that separates the classes and finds the widest 
margin between them by minimizing w as follows [11]: 

 
𝑓𝑓(𝑥𝑥)
= (𝑥𝑥 ∙ 𝑤𝑤) + 𝑏𝑏; {𝑓𝑓(𝑥𝑥) > 0 𝑓𝑓𝑜𝑜𝑜𝑜 𝑥𝑥 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1

𝑓𝑓(𝑥𝑥) < 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2} (1) 

 
This is done usually using the sequential minimal optimization 
technique. For nonlinearly separable data, a slack variable is 
allowed of samples from boundaries of the separation margin 
with a penalization parameter. Support vector machine has 
been proved less vulnerable for overfitting problem and higher 
generalization ability since it is designed to minimize structural 
risk [12]. In addition, the technique does not require a large 
number of training samples and can solve the learning problem 
even when only a small amount of training samples are 
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available [11]. A linear SVM with a regularization parameter 
equal to 1 has be used in this work. 

2.2.2. Linear Discriminant Analysis (LDA) 
 
Linear discriminant analysis is a mathematical model to 

classify multivariate data based on statistical analysis. It is 
based on assumptive Gaussian distributions of the learned data 
classes. The score function of the LDA model can be expressed 
as follows [13]: 

 

𝑆𝑆𝑆𝑆(𝛽𝛽) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑉𝑉𝑉𝑉𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖

= 𝛽𝛽𝑇𝑇𝜇𝜇1 − 𝛽𝛽𝑇𝑇𝜇𝜇2
𝛽𝛽𝑇𝑇𝐶𝐶𝐶𝐶   (2) 

The function goal is to maximize the variance between classes 
over the variance of the data within the same class. The 
assumed distribution parameters are used to search for a linear 
combination of variables that best separate the learned data 
classes. This linear combination is used to determine the class 
of the tested data.  

2.2.3. K-Nearest Neighbor (KNN) 
 
K-Nearest Neighbor classification is a fundamental 

classification method that is recommended when it is difficult 
to determine reliable parametric estimates of probability 
densities [14]. It is based on learning by analogy. It measures 
the distance between the tested observation and the closest K-
nearest neighbors in the learned dataset in an n-dimensional 
space. In this work, Euclidean distance metric is utilized to 
determine the neighbors’ closeness. The tested observation 
class is determined using the assumption that objects near each 
other are similar. Hence, it categorizes tested data based on the 
classes of their nearest neighbors in the learned dataset.  

2.2.4. Neural Network (NN) 
 
Neural Networks are a computational model inspired by the 

neural structure of the human brain, which find data structures 
and algorithms for learning and classification of data. They 
consist of interconnected group of multi-layers of neurons that 
relate the inputs to the desired outputs. The network is trained 
by iteratively modifying the strength of the structure 
connections based on the information flow through the network 
to map the inputs to the correct response [15]. Usually NN is 
used to model complex relationships and find patterns in 
nonlinear data. A one-layer NN of size 10 with one output has 
been constructed using the Levenberg-Marquardt training 
algorithm and the extracted features in this work. 

2.2.5. Naïve Bayes (NB) 
 
Naïve Bayes is a statistical technique to construct classifiers 

that predict the probabilities of each class feature. They are 
based on Bayes theorem with strong (naive) independence 
assumption between the features. This assumption states that 
the conditional probability of a feature for a class is 
independent from the conditional probabilities of other features 
given that same class. They use the joint probabilities of a new 

data to predict its class depending on the dataset features 
probability distribution [16]. They classify new data based on 
the highest probability of its belonging to a particular class. 
Despite the incorrectness in this assumption, as regularly 
features are dependent, NB classifiers are simple to be applied 
and usually provide high accuracy [16]. Normal distribution 
was assumed to calculate the predictor distribution parameters 
within each class. 

2.2.6. Decision Trees (DT)   
 
A decision tree is a hierarchical model composed of decision 

rules that recursively splits independent variables into 
homogeneous zones [17]. It is a flowchart-like tree structure of 
decision rules to predict a new observation class from a set of 
input features. At each tree branching condition (node), the new 
observation features value is compared to a weight obtained 
from the training dataset. The number of branches and the 
values of weights are determined in the training process. 
During the training process, the DT technique identifies and 
removes branches that may reflect noises in the training dataset 
to improve the classification accuracy. Decision trees has been 
applied successfully in many real-world situations for 
classification and prediction. The Gini’s diversity index was 
used in this work as a split criterion to classify the tool 
condition.  

3. Experimental setup 

High speed rouging milling tests of high strength aluminum 
alloy workpieces have been performed on a 5-axis DMU 100P 
duoBlock machining center with 28 kW spindle and maximum 
speed of 18,000 rpm. The experimental setup is shown in Fig. 
1(a). Three AC-DC and pulsed current signals transducers have 
been used to measure the spindle current signals. The 
transducers have a measuring frequency band and reaction time 
100 kHz and 0.5 μs, respectively. The three transducers where 
mounted on the three phases between the spindle motor and its 
pulse width modulation PWM driving module. A National 
Instrument data acquisition card type NI 4472 Series has been 
used to digitalize and store the acquired signals.  

Milling operations of straight slots have been performed 
using 2, 3 and 4 flutes carbide end mills at speed of 14,000 rpm. 
Table 2 shows the full factorial matrix of the cutting conditions 
(i.e. feed and depth of cut ae), the tool diameters (Dia), corner 
radius (Cr) and flank wear levels (VB) used in the slotting tests. 
A total of 80 slot tests, including one replicate for each set, have 
been performed to induce the effect of the tool and cutting 
parameters on the extracted features. 
According to the ISO standards [18], tool flank wear (VB) is 
the phenomenon of tool life deterioration. It has maximum 
acceptable uniform value of 0.3 mm. In this work, uniform tool 
wear has been used as tool life criterion. The tested tool 
conditions have been categorized into two ranges; namely, 
fresh (0 ≤ VB < 0.07) and worn tool (0.25 ≤ VB < 0.3), as 
shown in Fig. 1(b). To generate tool wear prior to the milling 
test, the targeted tools have been subjected to severe cutting 
conditions under controlled machining conditions to accelerate 
the induced uniform tool wear. 
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Table 2 Cutting conditions and test matrix 

Tool Dia. (mm) Cr (mm) VB (mm) Feed (mm/tooth/rev) ad (mm) 

T1 
16 

0.4 

0 - 0.07 
 

0.25 - 0.3 

0.1 
  

0.14 

3 
  
5 

T2 3.3 

T3 
20 

0.4 

T4 3.3 

T5 25 0.4 

 

     

Fig. 1. (a) Experimental setup and (b) worn tool, VB=0.28mm 

4. Comparison approach, results and discussion 

In this section, the benchmarking approach of the six pattern 
recognition techniques and the outcome results are 
demonstrated and discussed. The techniques performance has 
been compared according to their practicality in tool condition 
monitoring applications. 

4.1. General approach of comparison 

The six pattern recognition techniques have been applied 
using the following approach, as shown in Fig. 2: 
1. The resultant current signals for each slot cut have been 
filtered, segmented per tool revolution and normalized with 
respect to its maxima. 
2. For each processed signal segment, the top-ranked features, 
reported in Table 1, have been extracted and sorted in 
according to Ri. Figs. 3(a) and (b) show the normalized mean 
and standard deviation values of the top ranked features 
extracted from the current signals acquired from the fresh and 
worn conditions of the five tested tools before and after 
processing. The processing technique has successfully separate 
the features extracted from the two tool conditions into two 
distinct distinguishable clusters depending on the tool 
condition by separating the features mean values and limiting 
their deviation, as shown in Fig. 3(b) compared to Fig. 3(a).  
3. The extracted features dataset has been divided to two 
distinct datasets for training and testing. Due to the signal 
processing technique capability to mask the cutting conditions 
effect on the extracted features, the training dataset has been 
generated from the features extracted from only one cutting 
feedrate and depth of cut combination per tool condition. Cuts 
with feed and axial depth of cut of 0.1 mm/rev/tooth and 5 mm 
respectively have been selected for training. In total, 10 cuts 
have been used as a training database for the five tested tools. 
The rest of the slot cuts have been used for classification 
models testing. 

4. For classification model training, five training subsets Ti 
have been created using 20%, 40%, 60%, 80% and 100% of the 
training dataset. Each subset has been used for generating 11 
different models of the same classifier technique using an m 
number of features features Tim. Each subset Tim represents m 
number of features, where m varies from 1 to 11 according to 
their ranking score Ri in sequence. In total, 55 models have 
been generated and analysed for each pattern recognition 
technique. A 5-fold Cross validation method has been 
implemented in the training process in order to train the models 
by 10 stages of the training data. 
5. The testing dataset has been used to test and analyze the 
accuracy and computational time for the generated models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 3. The mean of the top-ranked features extracted from the current signals 
of the five tested tools (a) before processing (b) after processing 
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The techniques have been compared according to the 
classification accuracy, computational time and learning effort, 
which consists of the number of training segments and the 
number of extracted features needed in the learning process. 
For a more representation of the classification techniques 
accuracy from a practical point of view, two types of false 
classification errors of the tool condition are introduced, 
namely, Safe False Alarm (SFA) and Unsafe False Alarm 
(USFA) rates. USFA occurs when the tool is worn but the 
technique classified it as fresh. The SFA is the opposite where 
the tool is classified as worn while it is in a good state. While 
SFAs may reduce productivity, they will not affect the part 
quality. In contrast, the USFA condition could lead to more 
damage as the part surface integrity could be affected before 
tool replacement. Both errors rates have been computed for all 
the classification techniques. 

4.2. Learning effort and accuracy 

Figs. 4(a) and (b) show the maximum accuracy achieved by 
the six classification techniques with respect to (a) the training 
dataset size and (b) the number of features used for training 
respectively. In general, the LDA and SVM showed higher 
accuracy than the other techniques. In addition, they were able 
to achieve an almost 90% accuracy using only 20% of the 
training data. This accuracy was almost the same when five or 
more features were used regardless of the training dataset size. 
Hence, 20% of a training set consisting of the five top ranked 
features were enough to achieve high accuracy for both 
techniques. The high performance of the LDA technique can 
be referred to its assumption of training data normality and not 
adapting the data distribution. Therefore, the LDA prediction 
errors are due to the errors in estimating a representative mean 
and variance out of the training dataset. Whereas the SVM 
ability to minimize structural risk has limited its classification 
errors to the difficulty of calculating global boundaries for the 
separation margin using the training data. However, the LDA 
has showed higher accuracy compared to the SVM even when 
only one feature was used for training. Hence, the LDA 
classification technique is recommended for applications with 
a limited training data as in the TCM system learning process 
for machining operations. 

On the other hand, DT and KNN techniques, which adopt 
the training set distribution, showed the lowest accuracy, with 
a maximum of 84.2% and 84.6% respectively, through all the 
training dataset sizes. However, the KNN technique presented 
an increasing trend by increasing the number of training 
samples.  The NB and NN showed a steady accuracy around 
85% regardless of the number of features used. The NN had a 
decreasing trend by increasing the number of training samples. 
It also provided the highest accuracy when five features were 
used, which has decreased afterwards. This performance 
illustrates the technique sensitivity to the training dataset size, 
which is in agreement with the results found in [5]. Such 
performance may not provide a generalized approach for TCM 
systems. 

Fig. 5 shows the safe and unsafe false alarms rates achieved 
by the classification techniques at their highest accuracy levels. 
The LDA showed the lowest SFA and USFA  

 

 

Fig. 4 Classification technique accuracy 

 

Fig. 5 Safe and Unsafe false alarms at the highest accuracy values 

rates with values of 6.2% and 3.6% respectively, followed by 
the SVM technique. On the other hand, the DT, KNN and NN 
techniques showed an USFA rate as high as 10%, while the NB 
technique reached the highest SFA rate. From these results, a 
conclusion can be drawn that implementing the LDA and SVM 
techniques in TCM systems should increase the systems 
accuracy and the machining process productivity. 

It should be noted that the tool diameter and corner radius 
have not been included in the study performed in [9]. In this 
work, each model has included five different tools. The results 
showed the capability of fusing the adopted processing 
technique with pattern recognition techniques to mask the 
effect of different tool diameters and corner radius while 
preserving the same accuracy level reported in [9]. 
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Table 2 Cutting conditions and test matrix 
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Fig. 1. (a) Experimental setup and (b) worn tool, VB=0.28mm 

4. Comparison approach, results and discussion 

In this section, the benchmarking approach of the six pattern 
recognition techniques and the outcome results are 
demonstrated and discussed. The techniques performance has 
been compared according to their practicality in tool condition 
monitoring applications. 

4.1. General approach of comparison 

The six pattern recognition techniques have been applied 
using the following approach, as shown in Fig. 2: 
1. The resultant current signals for each slot cut have been 
filtered, segmented per tool revolution and normalized with 
respect to its maxima. 
2. For each processed signal segment, the top-ranked features, 
reported in Table 1, have been extracted and sorted in 
according to Ri. Figs. 3(a) and (b) show the normalized mean 
and standard deviation values of the top ranked features 
extracted from the current signals acquired from the fresh and 
worn conditions of the five tested tools before and after 
processing. The processing technique has successfully separate 
the features extracted from the two tool conditions into two 
distinct distinguishable clusters depending on the tool 
condition by separating the features mean values and limiting 
their deviation, as shown in Fig. 3(b) compared to Fig. 3(a).  
3. The extracted features dataset has been divided to two 
distinct datasets for training and testing. Due to the signal 
processing technique capability to mask the cutting conditions 
effect on the extracted features, the training dataset has been 
generated from the features extracted from only one cutting 
feedrate and depth of cut combination per tool condition. Cuts 
with feed and axial depth of cut of 0.1 mm/rev/tooth and 5 mm 
respectively have been selected for training. In total, 10 cuts 
have been used as a training database for the five tested tools. 
The rest of the slot cuts have been used for classification 
models testing. 

4. For classification model training, five training subsets Ti 
have been created using 20%, 40%, 60%, 80% and 100% of the 
training dataset. Each subset has been used for generating 11 
different models of the same classifier technique using an m 
number of features features Tim. Each subset Tim represents m 
number of features, where m varies from 1 to 11 according to 
their ranking score Ri in sequence. In total, 55 models have 
been generated and analysed for each pattern recognition 
technique. A 5-fold Cross validation method has been 
implemented in the training process in order to train the models 
by 10 stages of the training data. 
5. The testing dataset has been used to test and analyze the 
accuracy and computational time for the generated models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 3. The mean of the top-ranked features extracted from the current signals 
of the five tested tools (a) before processing (b) after processing 
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The techniques have been compared according to the 
classification accuracy, computational time and learning effort, 
which consists of the number of training segments and the 
number of extracted features needed in the learning process. 
For a more representation of the classification techniques 
accuracy from a practical point of view, two types of false 
classification errors of the tool condition are introduced, 
namely, Safe False Alarm (SFA) and Unsafe False Alarm 
(USFA) rates. USFA occurs when the tool is worn but the 
technique classified it as fresh. The SFA is the opposite where 
the tool is classified as worn while it is in a good state. While 
SFAs may reduce productivity, they will not affect the part 
quality. In contrast, the USFA condition could lead to more 
damage as the part surface integrity could be affected before 
tool replacement. Both errors rates have been computed for all 
the classification techniques. 

4.2. Learning effort and accuracy 

Figs. 4(a) and (b) show the maximum accuracy achieved by 
the six classification techniques with respect to (a) the training 
dataset size and (b) the number of features used for training 
respectively. In general, the LDA and SVM showed higher 
accuracy than the other techniques. In addition, they were able 
to achieve an almost 90% accuracy using only 20% of the 
training data. This accuracy was almost the same when five or 
more features were used regardless of the training dataset size. 
Hence, 20% of a training set consisting of the five top ranked 
features were enough to achieve high accuracy for both 
techniques. The high performance of the LDA technique can 
be referred to its assumption of training data normality and not 
adapting the data distribution. Therefore, the LDA prediction 
errors are due to the errors in estimating a representative mean 
and variance out of the training dataset. Whereas the SVM 
ability to minimize structural risk has limited its classification 
errors to the difficulty of calculating global boundaries for the 
separation margin using the training data. However, the LDA 
has showed higher accuracy compared to the SVM even when 
only one feature was used for training. Hence, the LDA 
classification technique is recommended for applications with 
a limited training data as in the TCM system learning process 
for machining operations. 

On the other hand, DT and KNN techniques, which adopt 
the training set distribution, showed the lowest accuracy, with 
a maximum of 84.2% and 84.6% respectively, through all the 
training dataset sizes. However, the KNN technique presented 
an increasing trend by increasing the number of training 
samples.  The NB and NN showed a steady accuracy around 
85% regardless of the number of features used. The NN had a 
decreasing trend by increasing the number of training samples. 
It also provided the highest accuracy when five features were 
used, which has decreased afterwards. This performance 
illustrates the technique sensitivity to the training dataset size, 
which is in agreement with the results found in [5]. Such 
performance may not provide a generalized approach for TCM 
systems. 

Fig. 5 shows the safe and unsafe false alarms rates achieved 
by the classification techniques at their highest accuracy levels. 
The LDA showed the lowest SFA and USFA  
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Fig. 5 Safe and Unsafe false alarms at the highest accuracy values 

rates with values of 6.2% and 3.6% respectively, followed by 
the SVM technique. On the other hand, the DT, KNN and NN 
techniques showed an USFA rate as high as 10%, while the NB 
technique reached the highest SFA rate. From these results, a 
conclusion can be drawn that implementing the LDA and SVM 
techniques in TCM systems should increase the systems 
accuracy and the machining process productivity. 

It should be noted that the tool diameter and corner radius 
have not been included in the study performed in [9]. In this 
work, each model has included five different tools. The results 
showed the capability of fusing the adopted processing 
technique with pattern recognition techniques to mask the 
effect of different tool diameters and corner radius while 
preserving the same accuracy level reported in [9]. 
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4.3. Computational time 

Early detection of tool wear will minimize the worn tool impact 
on the workpiece surface integrity. Hence, the time needed per 
one revolution will be used as a reference for comparing the 
pattern recognition techniques classification time. In this work, 
a speed of 14000 rpm was applied. At this speed, 4.28 ms is 
required for full tool rotation. Fig. 6 shows the average time 
needed for each classification technique to classify one 
segment. The time ranges have been calculated for all the tested 
sample sizes Tim. The results show that the DT has the lowest 
classification time of 6.8µs and the lowest deviation as well, 
followed by the NB and LDA respectively. While the KNN 
showed the highest classification time of 114.7 µs.  Although 
these time ranges are too low compared to the time needed for 
1 revolution at high speed machining applications, it represents 
the relative computational effort and memory needed to 
classify the tool condition. 
 

 

Fig. 6 Classification time per segment 

5. Conclusion 

The practicality of applying different pattern recognition 
techniques in TCM systems has been benchmarked in this 
work. The following conclusions can be drawn from the 
conducted tests, analysis and comparison: 

 
• The linear discriminant analysis, followed by the support 

vector machine, are the most recommended classification 
techniques for TCM applications.  

• The LDA has shown the highest classification accuracy 
and lowest USFA rate using a limited learning effort with 
an applicable classification computational time. This 
shows the high performance and applicability of such 
technique when the provided training data is limited as in 
TCM systems learning process.  

• Decision trees and k-nearest neighbor classification 
techniques have provided the lowest accuracy and highest 
USFA rate. Hence, the application of these techniques in 
TCM systems should be minimized. 

• The neural network and naïve Bayes classification 
techniques have provided a steady accuracy regardless of 
the training size. However, the neural network technique 
has provided higher USFA rates. 

• Fusing the adopted processing technique with pattern 
recognition techniques can mask the effect of the tool 
diameter and corner radius on the learning and 
classification process in TCM systems. 
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