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a b s t r a c t

Rare collisions of a classical particle bouncing between twowalls are studied. The dynamics
is described by a two-dimensional, nonlinear and area-preservingmapping in the variables
velocity and time at the instant that the particle collides with the moving wall. The phase
space is of mixed type preventing diffusion of the particle to high energy. Successive and
therefore rare collisions are shown to have a histogramof frequencywhich is scaling invari-
ant with respect to the control parameters. The saddle fixed points are studied and shown
to be scaling invariant with respect to the control parameters too.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The traditional one-dimensional Fermi accelerator model consists of a classical particle of mass M which is confined to
move between two rigid walls. One is fixed and works only as a returning mechanism for the particle to collides with the
other onewhich is assumed tomove in time. This simple systememerged as an attempt of Ulam [1] tomodel the original idea
of Fermi [2] to describe the high energy measured from the cosmic rays. Indeed Fermi claimed that the energy of the cosmic
particles could be gained from interactions of the particles with moving magnetic fields existent in the space. Therefore in
Ulam’s interpretation, themoving wall would indeed represent a movingmagnetic field while the particle denotes a cosmic
ray. The problemwas that after the particle collides with moving wall and leaving the collision zone it moves with constant
velocity to infinite. Ulam then imposed the existence of a fixed wall that the particle has to collide and returns for a further
collision with the moving wall. The model as proposed failed to explain the cosmic rays high energy. The failure was due to
the fact that the dynamics of the particle at high energy exhibits a short time elapsed between collisions leading to a strong
correlation of them. The phase space which appears from themodel is of mixed type showing both the existence of periodic
islands (denoting regular/periodic motion) surrounded by a chaotic sea which is confined by a set of invariant KAM curves
of quasi-periodic dynamics. Such a set of curves appear due to the high correlation between the collisions and they work as
barriers that do not allow the particle to pass through, therefore setting an upper limit for the velocity growth.

The Fermi–Ulam model was considered after that in many different approaches, using different techniques and as
motivation for several experiments [3–15]. The unlimited energy growth, the aim of the Fermi’s idea would indeed be
implemented if the returning mechanism of the particle for a next collision is changed. Pustylnikov [16] proposed replacing
the fixed wall, which leads to correlation in the regime of high energy, to a gravitation field. Indeed, as soon as the particle
accumulate energy from the collisions with the moving wall, the interval of time between collisions rises therefore leading
to a lose of correlation between two collisions. For certain ranges of control parameters, the invariant KAM curves present
in the phase space of the Fermi–Ulam are not observed in the Pustylnikov model. Depending on the combination of control
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parameters and initial conditions, the particle would exhibit diffusion in the velocity, leading to a phenomenon called as
Fermi acceleration. However, either inelastic collision [17] and drag force [18] are shown to be sufficient conditions to
suppress the unlimited growth of velocity therefore giving support to the assumption that Fermi acceleration is not a robust
phenomenon [19]. It was shown in the literature that the introduction of drag force in the Fermi–Ulam model makes the
particle loses energy (velocity) as it passed through a fluid such as a gas [20]. Depending on the initial conditions and control
parameters, attractors were observed in the system including sinks and the behaviour around them were discussed.

In this paper we revisit the Fermi–Ulam accelerator model considering that the motion of the moving wall is given by a
system of the type crank drive [21]. Our main goal is to understand and describe a specific type of rare collisions, namely
as successive collisions, and the behaviour of the velocity of the saddle fixed points in the phase space. To do so, we use a
scaling formalism. The dynamics of the model is described by a two-dimensional, nonlinear and area preserving mapping.
The phase space is of mixed type and invariant KAM curves limit the energy gain of the bouncing particle. However in the
limit of the radii of the crank approaching the length of the connecting rod, the movement of the moving wall becomes very
fast for certain ranges of phase and very slow for others. In the limit case it may also lead to discontinuities in velocity of the
moving wall therefore causing the particle to exhibit unlimited energy growth. However we will not consider such a range
here.

The organisation of the paper is as follows. In Section 2 we present the model and discuss the variables and control
parameters used. Our discussions regarding the rare events of the successive collisions are also described here together
with the scaling for the saddle fixed points. Our conclusions and final remarks are presented in Section 3.

2. The model, numerical results and scaling formalism

In this sectionwe revisited themodel discussed in Ref. [21] aiming to understand and describe a set of rare collisions that
the model exhibits, namely the successive collisions. Indeed themodel describes the dynamics of a classical particle of mass
M bouncing between two rigid walls. One of then is fixed at x = ℓ and the motion of the other wall is given by an equation
of the type s(t) = R cos(ωt) +


L2 − R2 sin2(ωt), where ω is the frequency of oscillation, R denotes the radii of the crank,

L the length of the connecting rod. To define the initial conditions we consider that at the time t = tn, the particle is at the
position xp(tn) = s(tn)with velocity v = vn > 0. Given the initial conditions, the dynamics may present two different kinds
of collisions, such as: (i) a single hit with themovingwall or; (ii) multiple collisionswith themovingwall. In the second case,
the particle suffers a collision with the moving wall but, before it leaves the collision zone, which is defined as x ∈ [−R, R],
the particle has successive impacts with the moving wall. These impacts are rare in the dynamics and happen at the limit of
low velocity. The probability of observing one successive collision is larger than observing two, that is larger than observing
three and so on.

To write themapping that describes the dynamics it is convenient to define dimensionless variables. We define ϵ = R/ℓ,
r = R/L, Vn = vn/(ωℓ) and measure the time in terms of the number of oscillations of the moving wall φn = ωtn. We
consider that the range for ϵ is ϵ ∈ [0, 1] and for r is r ∈ [0, 1]. The limit of r → 0 corresponds to L → ∞ and r → 1 is
obtained for L → R+. Using the new variables, we write the mapping as

T :


φn+1 = [φn + ∆Tn] mod (2π)

Vn+1 = V ∗

n − 2ϵ sin(φn+1)


1 +

r cos(φn+1)
1 − r2 sin2(φn+1)


, (1)

where Vn and ∆Tn depend on the kind of collision. For the case where the particle leaves the collision zone, V ∗
n = Vn and

∆Tn = φT +φc , whereφT corresponds to the elapsed time the particle spends travelling from the last collisionwith themov-
ing wall, up to suffering an elastic reflection with the fixed wall and being reflected backwards, therefore until the entrance
of the moving wall. Thus, φT is given by

φT =

2 +


ϵ
r −

ϵ
r


1 − r2 sin2(φn)


− ϵ cos(φn) − ϵ

Vn
. (2)

The term φc is numerically obtained from F(φc) = 0 for φc ∈ [0, 2π), where the function F(φc) is given by

F(φc) = ϵ cos(φn + φT + φc) +
ϵ

r


1 − r2 sin2(φn + φT + φc) −

ϵ

r
− ϵ + Vnφc . (3)

For the case of multiple collisions with the moving wall, V ∗
n = −Vn and ∆Tn = φc with φc obtained by the solutions of

G(φc) = 0 with G(φc) given by

G(φc) = ϵ cos(φn + φc) − ϵ cos(φn) − Vnφc +
ϵ

r


1 − r2 sin2(φn + φc) −

ϵ

r


1 − r2 sin2(φn). (4)

A solution of the function G(φc) for φc ∈ (0, 2π ] is obtained numerically considering an accuracy of 10−12 and corresponds
to a collision of the particle with the moving wall.
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Fig. 1. (Colour online) Histogram of successive collisions of the particle with the moving wall. The control parameters used were r = 0.01, and:
(a) ϵ = 8 × 10−3 and (b) different values of ϵ (as labelled in the figure). n corresponds to the number successive collisions with the moving wall while h
denotes its frequency.

Let us now discuss the statistics of the successive collisions. Two conditions are needed for the particle to have a
successive collision with the moving wall. After obtaining a solution for F , a try to G is given, then: (1) the position of the

particle must be in xp ∈ [−ϵ, ϵ]; (2) the velocity of the particle Vn must satisfy Vn < 2ϵ sin(φn+1)


1 +

r cos(φn+1)√
1−r2 sin2(φn+1)


.

In this case, the probability of observing one successive collision is larger than observing two, that is larger than observing
three and so on. The distribution of these multiple collisions is described by a power law as shown in Fig. 1. The control
parameters used to construct the figure were r = 0.01, and: (a) ϵ = 8 × 10−3 and (b) different values of ϵ (as labelled in
the figure). n corresponds to the number successive collisions with the moving wall while h denotes its frequency.

When applying a power law fitting of the type h = h0nα to the data of Fig. 1(a) we obtain h0 = 9.946 × 10−4 and the
exponent α = −3.79(2) for the control parameters r = 0.01 and ϵ = 8 × 10−3. In Fig. 1(b) we use the control parameters
r = 0.01 and different values of ϵ (as labelled in the figure). A power law fitting applied to the data shown in Fig. 1(b) also
furnishes the exponent α ≃ −3.79. We conclude that, at least for this range of control parameters considered, all curves of
h have the same slope of decay. A recent discussion on a periodically corrugated waveguide [22] led to obtaining a similar
exponent for the successive reflections of the light with the corrugated mirror.

We see from Fig. 1(b) that a rise in the control parameter ϵ leads the curve of h to also rise keeping the same slope. If we
set up a cutting line at hc , say at hc = 10−6, we obtain that

nc =


hc

h0

1/α

, (5)

where nc corresponds to the average number of successive collisions at the position hc in the histogram. A plot of nc as a
function of the control parameter ϵ is shown in Fig. 2(a) using hc = 10−6. Applying a power law fitting to the data shown
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Fig. 2. (Colour online) (a) Plot of nc vs. ϵ while (b) shows an overlap of the different histograms shown in Fig. 1(b) onto a single and universal plot.

in Fig. 2(a) furnishes the exponent z = 0.24(1). We notice that the exponent z may be obtained as z ≃ −1/α. Using the
exponent z, we can rescale the horizontal axis of Fig. 1(b) and obtain amerger for the three different histograms into a single
and universal plot as shown in Fig. 2(b).

Let us nowmove on and discuss some properties of the phase space. The iteration of the mapping (1) for different initial
conditions and considering fixed the parameters ϵ = 10−3 and r = 0.3 is shown in Fig. 3. A mixed structure is evident in
the sense that a set of periodic islands which are surrounded by a large chaotic sea and KAM curves that limit the unbound
growth of the velocity are all observed.

The fixed points of the mapping (1) can be obtained by matching the following conditions: Vn+1 = Vn = V and φn+1 =

φn = φ + 2πm, where m = 1, 2, 3, . . .. We obtained two fixed points, which are: fixed point 1 given by

0, (1−ϵ)

mπ


and

fixed point 2 given by

π, (1+ϵ)

mπ


. We stress that the fixed point 1, is always hyperbolic, while fixed point 2may be elliptic or

hyperbolic, according to the combination of control parameters. Ifm > 1+ϵ

π
√

ϵ(1−r)
the fixed point 2 is hyperbolic. On the other

hand if 0 < m < 1+ϵ

π
√

ϵ(1−r)
the fixed point 2 is elliptic. Some of the elliptic fixed points are shown in Fig. 3 as (red) circles

while some of the hyperbolic are identified as (blue) squares and (green) diamonds.
We now discuss some properties observed for the saddle fixed point velocity V (fixed point 1) as a function of the

parameter ϵ. The behaviour of different saddle velocity curves as a function of ϵ is shown in Fig. 4 for the control parameter
r = 0.3 and different values ofm, as labelled in the figure. We see from Fig. 4(a) that the saddle velocity curves stay almost
constant for a relative extent range of the ϵ until they converge to the null value as the control parameter ϵ → 1. This fast
approach to null values is indeed foreseen by the expression of the velocity of the fixed point 1, i.e., V = (1− ϵ)/mπ . Based
on the behaviour seen in Fig. 4(a) we can suppose that:
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Fig. 3. (Colour online) Phase space generated for themapping (1) for the control parameters ϵ = 10−3 and r = 0.3.We used a grid of 10×12 (one hundred
twenty) different initial conditions uniformly distributed in the window V0 ∈ [0.01, 0.057] and φ0 ∈ [0.524, 2π ]. Each initial condition was evolved up to
103 iterations.

• (i) The instant of the birth of the fixed point may be described as

VB(ϵ,m) ∝ mσ , (6)

where σ is an exponent and m is a positive integer number. The index B denotes that the velocity is accounted at the
birth of the fixed point, i.e. when the control parameters yield both phase φ and velocity V being real numbers.

• (ii) Assumingm as fixed, the second scaling hypothesis is

VB(ϵ) ∝ ϵµ, (7)

where µ is the other exponent.

The exponents σ and µ can be obtained numerically from specific plots. Thus, as an attempt to find them, it is shown
in Fig. 5, the corresponding plots of: (a) VB vs. ϵ and; (b) VB vs. m for a fixed parameter r = 0.3. A power law fitting to the
curves plotted in Fig. 5 furnishes that: (a) µ = 0.488(3) ∼= 0.5 and (b) σ = −1.0015(2) ∼= −1. Since the exponents are
now known, a merger of four different curves V generated for r = 0.3 and different values of control parameters m into
the single and universal plot is shown in Fig. 4(b). This result leads us to confirm that the saddle velocity is indeed a scaling
invariant.
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Fig. 4. (Colour online) (a) Plot of saddle velocities (fixed point 1) V vs. ϵ using different values of m. (b) Their overlap onto a single and universal plot.

Let us now discuss about the possible effects and consequences of dissipation in the system. The introduction of the
dissipation in the system should destroy the mixed structure of the phase space observed for the conservative model. If
a small dissipation is introduced in the system, the initial conditions certainly converge into a finite number of periodic
attractors, including possible a chaotic one. The number of attractors in the dynamical system depends on the damping
coefficient and they exist even for large damping [23,24]. Similar consequences of dissipation observed for the Fermi–Ulam
accelerator model may be observed if considering the motion of the moving wall given by a system of the type crank drive.
The scaling properties for the successive collisions of the conservative system provided uswith the exponentα = −3.79(2).
A similar exponent alsowas observed for the successive reflections of the lightwith the corrugatedmirror in the periodically
corrugated waveguide [22]. The scaling properties for the successive collisions may be also be obtained for the dissipative
system leading possibly to a different value of the exponent α.

3. Conclusion

As a short summary, we have studied a conservative version of a classical bouncing ball model under the presence of two
nonlinear terms. Our results showed that the successive collisions of the particle with the moving wall are scaling invariant
and described by a power law. We used scaling arguments to describe the behaviour of the birth of saddle velocities, which
were also shown to be scaling invariants.

Acknowledgements

JAO thanks CAPES, CNPq and Pró-reitoria de Pesquisa da UNESP. EDL kindly acknowledges the financial support from
CNPq, FAPESP and FUNDUNESP, Brazilian agencies.



1592 J.A. de Oliveira, E.D. Leonel / Physica A 392 (2013) 1586–1592

Numerical Data
Best fit

Numerical Data
Best fit

10-1

10-2

10-310-410-5 10-2

10-1

10-2

V
B

V
B

101 102

m

a

b

Fig. 5. (Colour online) Behaviour of the birth saddle velocities (fixed point 2) as function of: (a) ϵ and (b)m. We consider fixed r = 0.3.
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