

Early behavioral markers for neurodevelopmental disorders in the first 3 years of life: An overview of systematic reviews

Martina Micai, Francesca Fulceri, Angela Caruso, Andrea Guzzetta, Letizia Gila, Maria Luisa Scattoni

PII:	S0149-7634(20)30454-1
DOI:	https://doi.org/10.1016/j.neubiorev.2020.06.027
Reference:	NBR 3824
To appear in:	Neuroscience and Biobehavioral Reviews
Received Date:	30 December 2019
Revised Date:	22 June 2020
Accepted Date:	23 June 2020

Please cite this article as: Micai M, Fulceri F, Caruso A, Guzzetta A, Gila L, Scattoni ML, Early behavioral markers for neurodevelopmental disorders in the first 3 years of life: An overview of systematic reviews, *Neuroscience and Biobehavioral Reviews* (2020), doi: https://doi.org/10.1016/j.neubiorev.2020.06.027

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

RUNNING HEAD: Early behavioral signs for neurodevelopmental disorders

Title: Early behavioral markers for neurodevelopmental disorders in the first 3 years of life: An overview of systematic reviews

Authors:

Micai Martina^a, Fulceri Francesca^{a#}, Caruso Angela^{a#}, Guzzetta Andrea^{b,c}, Gila Letizia^a, Scattoni Maria Luisa^a*

[#]Equally contributing authors

Affiliations:

^aResearch Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; martina.micai@iss.it (M.M.); francesca.fulceri@iss.it (F.F.); angela.caruso@iss.it (A.C.); letizia.gila@iss.it (L.G.); marialuisa.scattoni@iss.it (M.L.S.) ^bDepartment of Developmental Neuroscience, Stella Maris Scientific Institute, 00168 Pisa, Italy

^c Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; aguzzetta@fsm.unipi.it (A.G.)

Corresponding author:

*Maria Luisa Scattoni, Ph.D. Research Coordination and Support Service Istituto Superiore di Sanità, Viale Regina Elena 299 – 00161 – Rome, Italy Phone: +39-0649903143 E-mail: marialuisa.scattoni@iss.it

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Highlights

- Motor, language development, and temperament in the first three years of life should be carefully investigated to detect neurodevelopmental disorders
- Repetitive/stereotyped behaviors, atypicalities or delays in play, object use, attention, visual and sensory processing, and social engagement are early signs of neurodevelopmental disorders in the first two years of life
- Systematic reviews exploring early markers of neurodevelopmental disorders are needed to build evidence-based surveillance tools.

Abstract

Being able to recognize red flags for neurodevelopmental disorders (NDD) is crucial to provide timely intervention programs. This work aims to support - within a scientific framework - the construction of an instrument capable to early detect all spectrum of NDD and explore all areas of development, detect failures in typical developmental pathways and point out atypical signs at all ages. This overview of reviews provides evidence for differences in children later diagnosed with NDD compared to typically developing peers such as delays in motor, language development and temperament in the first three years of age, repetitive/stereotyped behaviors, atypicalities/delays in play, object use, attention, visual, sensory processing and social engagement in the first and second year, and difficulties in feeding and sleeping in the first year. These behaviors must be carefully observed as potential red flags for NDD. However, data of the systematic reviews are not yet useful to develop an evidence-based clinical screening. It urges to increase efforts in producing systematic reviews on early behavioral markers for each NDD.

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Trial registration: CRD42019137731

(https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019137731).

Keywords: Infant, Neurodevelopmental Disorders, Primary Health Care, Infant Behavior, Neonatal Screening, Signs and Symptoms, Early Detection

Introduction

Neurodevelopmental disorders (NDD) encompass several conditions resulting from atypical brain development, including intellectual developmental disorders, communication disorders, Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), specific learning disorder, and motor disorders (DSM-5; American Psychiatric Association, 2013). Precise epidemiological data on NDD are lacking. However, a recent report shows a significant increase from 16.2% to 17.8% of developmental disabilities' prevalence (i.e., ADHD; ASD; blindness; cerebral palsy; moderate to profound hearing loss; learning disability; intellectual disability; seizures; stuttering or stammering; and other developmental delays) among children aged 3 to 7 years in the US between 2009–2017, making NDD one of the most frequent diagnosis in the pediatric population (Trauner, 2019). Much of the overall increase was attributed to ADHD, ASD, and intellectual disabilities (Zablotsky et al., 2019). Other studies showed that among NDD, learning disabilities are the most frequently diagnosed with an estimated prevalence of 8% (Boat & Wu, 2015), followed by developmental language disorders (7%; Laasonen et al., 2018), ASD (approximately 2%; e.g., Baio et al., 2018; Xu et al., 2018; Schendel & Thorsteinsson, 2018), and ADHD (approximately 2%; Willcutt, 2012; Boat & Wu, 2015).

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

The disorders included under the umbrella category of NDD are usually not considered as independent entities since impairments of different areas often co-occur and multiple diagnoses are the rule rather than the exception (Yeargin-Allsopp et al., 2008). This complexity is reflected upon the intervention program designs, which are typically individualized and focused on the functional impairments rather than merely derived from the diagnostic categorization. The Autism and Developmental Disabilities Monitoring Network study showed that in eleven sites in the US the median age of earliest known ASD diagnosis was 53 months (in the years range: 2000-2012) and about 43% of children received a comprehensive developmental evaluation by age 3 years (in the years range: 2006-2012; Baio et al., 2018). However, parents began to show concerns generally starting by the child age of 12 to 18 months (De Giacomo & Fombonne, 1998; Rogers & DiLalla, 1990; Wimpory et al., 2000; Coonrod, & Stone, 2004), suggesting that earlier detection of clinical signs is potentially achievable. The early identification of signs and symptoms of NDD is the real trigger to start intervention, even before a formal diagnosis is made, with the potential benefit of attenuating the severity of the symptoms and improving children and parents' outcomes (e.g., modifying their anxiety; depressive symptoms; self-efficacy) (Benzies et al., 2013; Cioni et al., 2016; Dawson et al., 2010; Landa et al., 2012; Oberklaid & Drever, 2011; Sullivan et al., 2014; Wetherby & Woods, 2006).

Several tools and methods are available to identify early behavioral markers of NDD. For instance, retrospective studies analyzed parental recall of developmental differences and concerns during the child's first years of life, such as language, speech, and motor delays or atypical sleep, feeding, or play behavior. Home video analyses are useful to recognize signs of peculiar development such as social and communicative competencies, verbal and nonverbal infant-parent interactions, affect regulation, temperament, or play actions. Finally, prospective studies of infants at risk of developing NDD (i.e., siblings of older children with

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

NDD, infants born preterm, or small for gestational age) begin observing and assessing them as early as 24-36 months. Children later diagnosed with NDD are compared with high-risk (HR) children that do not receive a diagnosis or those with typical development (Zwaigenbaum et al., 2007; 2009).

The present overview of reviews aims to methodically collect systematic reviews and meta-analyses on early markers of NDD before the three years of life. This approach has been proved to be useful in synthesizing, summarizing, and combining relevant data from the literature and in examining the highest level of evidence. The present work attempts to support the future definition of a scientific framework to build an instrument capable to early detect all spectrum of NDD and explore all areas of development, detect failures in typical developmental pathways and point out atypical signs at all ages.

Methods

Search strategy

The protocol for this systematic overview of reviews was registered with PROSPERO: CRD42019137731. This overview of reviews followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; Moher et al., 2009). The search strategy focused on Population, Intervention, Comparison, and Outcomes (PICO) domains. Population: 0-3-year-old children; Intervention: early behavioral signs of NDD; Outcome: neurodevelopmental disorders according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5; American Psychiatric Association, 2013). The comparison was not applicable. We developed the search strategy using a combination of MeSH (Medical Subject Headings) and terms to capture the available literature on the topic. Details of the search strategy are presented in Table 1. This search strategy was peer-reviewed by clinicians and methodologist experts in the field.

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

The search strategy was adapted using appropriate syntax for the following databases: The Cochrane Library (Cochrane Database of Systematic Reviews), PubMed, MEDLINE, SCOPUS and Web of Sciences. When available, search filters were applied to limit the search to "Humans", "Systematic Reviews" and "Meta-Analysis". We performed the systematic search strategy of articles indexed since the inception to 27 March 2019. We updated searches for all relevant databases within 12 months before publication to 18 March 2020 (Chandler et al., 2013). No language and temporal restrictions have been applied. Conference abstracts, ongoing studies via ClinicalTrials.gov (www.clinicaltrials.gov) and ISRCTN registry were also searched for additional studies. Moreover, the reference lists from identified studies were scanned to identify any other relevant studies. We interrogated PROSPERO (www.crd.york.ac.uk/prospero/) to search for ongoing systematic reviews and OpenGrey (www.opengrey.eu/) to look for the gray literature (e.g., technical or research reports, doctoral dissertations, conference papers, official publications).

Table 1

Search strategy focused on Population, Intervention, Comparison, and Outcomes (PICO) for MEDLINE (Via OVID).

Domain	Search strategy
Population	"Infant"[Mesh:NoExp] OR "Infant, Newborn"[Mesh:NoExp] OR "Siblings"[Mesh] OR "Child"[Mesh] OR "Child, Preschool"[Mesh] OR "Minors"[Mesh] OR "Pediatrics"[Mesh] OR "Fetus"[Mesh:NoExp] OR toddler OR toddlers OR risk infant OR risk infants OR high risk infants OR high risk infant OR low risk infant OR low risk infants OR general population OR general populations OR risk marker OR risk markers OR genetic risk OR genetic risks OR familial risk OR familiar risks OR environmental risk OR environmental risks OR kid OR kids OR under age OR under ages OR kindergarten OR paediatric OR paediatrics OR foetus OR "Infant, Premature"[Mesh] OR "Premature Birth"[Mesh] OR "Infant, Extremely Premature"[Mesh] OR preterm OR "Infant, Small for Gestational Age"[Mesh] OR SGA OR small for gestational age OR infants, small for gestational age

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

	OR "Infant, Low Birth Weight" [Mesh] OR "Infant, Very Low Birth Weight" [Mesh] OR low for birth weight OR very low for birth weight
Intervention	"Primary Health Care" [Mesh:NoExp] OR "Primary Care Nursing" [Mesh] OR "Neonatal Screening" [Mesh] OR "Outcome and Process Assessment (Health Care)" [Mesh] OR "Symptom Assessment" [Mesh] OR "Signs and Symptoms" [Mesh:NoExp] OR red flag OR red flags OR early marker OR earlier marker OR early sign OR earlier sign OR early signs OR earlier signs OR surveillance protocol OR surveillance protocols OR surveillance OR developmental monitoring OR early identification OR earlier identification OR screening tool OR screening tools OR screening OR developmental screening OR screening instruments OR screening instruments OR symptom OR symptoms OR symptom assessment OR sign OR signs
Comparison	Not applicable
Outcome	"Neurodevelopmental Disorders" [Mesh:NoExp] OR "Developmental Disabilities" [Mesh] OR developmental delay OR developmental delays OR developmental difficulty OR developmental difficulties OR "Autistic Disorder" [Mesh] OR "Autism Spectrum Disorder" [Mesh] OR "Child Development Disorders, Pervasive" [Mesh] OR PDD OR "Asperger Syndrome" [Mesh] OR Autis* OR ASD OR Asperger OR Autistic OR Kanner OR "Attention Deficit Disorder with Hyperactivity" [Mesh] OR Pervasive development OR Pervasive developments OR pervasive disorder OR pervasive disorders OR "Communication Disorders" [Mesh] OR "Language Development Disorders" [Mesh] OR "Social Communication Disorder" [Mesh] OR "Speech Sound Disorder" [Mesh] OR "Stuttering" [Mesh] OR receptive language disorders OR receptive language disorder OR "Language disorders" [MeSH] OR "Intellectual Disability" [Mesh] OR "Motor Disorders" [Mesh] OR "Motor skills disorders" [MeSH] OR motor disorder OR "Learning Disorders" [Mesh] OR "Specific Learning Disorder" [Mesh]
Limits	"Neoplasms"[Mesh] OR "Mass Screening"[Mesh]

Selection process

We collected the papers arising from the search strategy in the Systematic Review Rayyan QCRI application (Ouzzani et al., 2016) which also supported the authors in the exclusion of duplicates. Two blinded reviewers, with the support of a third reviewer, screened titles and abstracts, and excluded the papers that did not clearly meet the inclusion criteria. The same authors evaluated the selected papers in their full text for inclusion criteria. Systematic reviews and meta-analyses were included in the present overview of reviews if: (1) reported early behavioral markers for NDD; (2) assessed children younger than 36 months of age in at least 20% of the number of studies. We excluded nonsystematic reviews where studies' search strategy, selection process, and data extraction process were not specified

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

(e.g., narrative reviews), and reviews exploring early markers using health technologies (e.g., electroencephalography; eye-tracking). The present overview aims to provide evidence on early behavioral markers that can be easily detected in the clinical practice context.

Journal Prevention

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

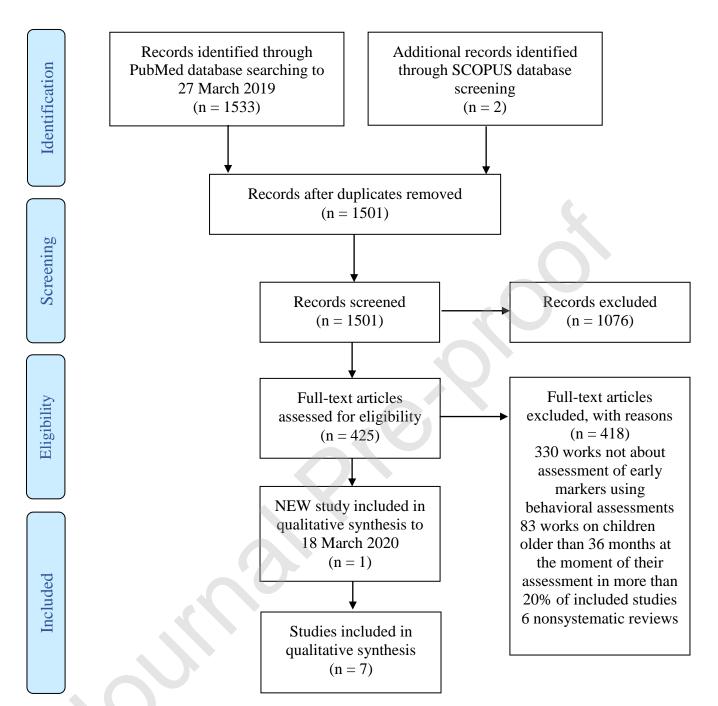
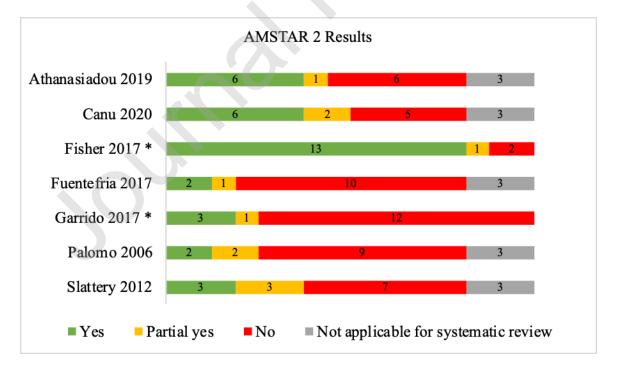


Fig. 1. Flow chart of the literature selection process.

Data extraction and synthesis

To ensure consistency across reviewers, we conducted calibration exercises before starting to extract the data. Three independent reviewers fulfilled a developed data extraction

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS


form (available on request). The data from the included full-texts were extracted and independently cross-checked. We collected data on the target population, early marker assessment tools, age at assessment of the early marker (Table 2), general information about the review (i.e., type of study; funding), methods (i.e., temporal and language restrictions; datasets explored; PICO domains; type of studies included; search strategy; inclusion and exclusion criteria; number of records identified via database searching; number of included studies; gray literature check; references check; risk of bias; publication bias assessment), sample characteristics (i.e., target population - at risk or general population or with NDD symptoms; age at the assessment of the early marker; diagnosis type; assessment instrument) (see Supplementary Material 2). For the meta-analyses, we additionally collected the timepoints of the early markers' assessment, assessment tools, number of studies included in the analysis, sample size, effect size, Confidence Intervals, heterogeneity analysis results, publication bias analysis results, and other sub-analyses (e.g., socioeconomic status and gender as predictors of language outcomes in Fisher et al., 2017). We performed a formal narrative synthesis of the findings from the selected works by grouping the early behavioral markers in developmental domains (e.g., motor, language, social development) and age group (i.e., first, second and third year of life).

Quality assessment of the evidence

The quality of all eligible systematic reviews using the 16-item AMSTAR 2 checklist (Shea et al., 2017) was evaluated for each work by two independent authors. Any disagreements were solved in conjunction with a third author. The AMSTAR 2 checklist has been designed for the quality assessment of systematic reviews, including randomized or non-randomized studies of healthcare interventions, or both. Authors assigned to each domain-specific questions a 'Yes' answer if the rationale described in Shea and colleagues

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

were satisfied. If no information was provided to rate an item, the item was rated as a 'No'. We provided a 'Partial Yes' response when the rationale of Shea and colleagues was partially satisfied. AMSTAR questions were the following: (1) inclusion of PICO components, (2) protocol registered before the commencement of the review, (3) selection of the study designs for inclusion, (4) adequacy of the literature search, (5) study selection in duplicate, (6) data extraction in duplicate, (7) justification for excluding individual studies and list of excluded studies, (8) detailed description of the included studies, (9) risk of bias from individual studies being included in the review, (10) report on the source of funding for the studies included, (11) appropriateness of meta-analytical methods, (12) assessment of the risk of bias in individual studies on the results, (13) consideration of the risk of bias when interpreting the results of the review, (14) explanation for, and discussion of, heterogeneity observed in the results, (15) assessment of the presence and likely impact of publication bias, (16) report any potential source of conflict of interest (Shea et al., 2017). Inter-rater reliability was calculated using intra-class correlations (McGraw & Wong, 1996). Figure 2 summarizes the AMSTAR 2 results. Scores on each domain-specific questions are reported in Supplementary Material 1.

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS 12

Fig. 2. Summary of the quality assessment score of the included systematic reviews and meta-analyses assessed with AMSTAR 2 checklist. *: meta-analysis. Scores on each domain specific questions were coded as 'Yes', 'No', 'Partial yes', or not applicable for meta-analysis.

Results

Description of studies

The search strategy to 27 March 2019 provided 1,535 works (PubMed, n = 1,533; SCOPUS, n = 2, and none in the other databases). One author removed 34 duplicates. 1,501 works were screened for inclusion and exclusion criteria. Based on the titles and abstracts screening, 1,076 not pertinent works were excluded by at least two independent authors. The remaining 425 works were checked in their full text. Two independent authors excluded 330 works failing to assess early markers using behavioral assessments. Studies exploring early markers thought clinical observation or parental questionnaires were kept. Studies exploring biological markers, assessment of test accuracy, or studies that used health technologies such as functional brain imaging or eye-tracking were excluded. In addition, were excluded 83 works that assessed children older than 36 months of age in more than 20% of the number of included studies. Conflicts were solved between the two authors, but for 19 works the consultation of a third independent author was required. Finally, we evaluated eligible for the data extraction process two meta-analyses (Garrido et al., 2017; Fisher, 2017) and four systematic reviews (Athanasiadou et al., 2019; Fuentefria et al., 2017; Palomo et al., 2006; Slattery et al., 2012). Six works were excluded because of nonsystematic reviews. We performed updated searches for all relevant databases within 12 months before publication to 18 March 2020 which provided 92 works (PubMed, n = 92; SCOPUS, n = 1, and none in the other databases). No duplicates were encountered. Based on the titles and abstracts screening, 92 not pertinent works were excluded by at least two independent authors. One systematic review (Canu et al., 2020) was checked in its full text and was evaluated eligible for the data

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

extraction process. Figure 1 provides the process of records' identification and screening, and the eligibility and inclusion actions (Moher et al., 2009).

A meta-analysis of the extracted data was not possible since data of the systematic reviews were mostly qualitative and heterogeneous in the description of different neurodevelopmental components. The seven eligible works were informative on behavioral signs alarming for NDD at different ages. We excluded 13 Canu and colleagues' studies as they explored early markers using health technologies (i.e., eye tracking; gap-overlap task). The red flags for the identification of the risk for NDD in high-risk (HR) and low-risk (LR) population pertained mainly to the motor, language, social developmental, play, and temperament domains. Findings, target population, time, and tool of assessment of the early behavioral markers for NDD are displayed for each developmental domain in Table 2. None of the studies provided evidence that the protocol was registered prior to conducting the review or included conflict of interest statements for individual studies within the systematic review. All studies were written in English. All studies declared to have no conflict of interests except for two that did not provide this information.

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS 14

Table 2

Summary of the results of the systematic reviews and meta-analyses on early behavioral markers for neurodevelopmental disorders.

Reference	Population	Assessment	Finding
Motor develop	nent		
Athanasiadou (2019)	HR for NDD, healthy term infants	GMs	First year of life Milder GMs abnormalities during the first months of life associated with ADHD, aggressive behavior and minor neurological dysfunction at 4-9-year follow-up (Hadders-Algra & Groothuis, 1999). GMs abnormalities are associated with ADHD together with co-occurrence of psychiatric diagnosis. Fidgety abnormalities associated with problematic and hyperactive behavior at 12 years of age (Hadders-Algra et al., 2009). Spontaneous movement quality at 11-16 weeks showed a positive association with IQ and a trend to an association with attention problems at 7-11 years in preterm born infants (Butcher et al., 2009).
	ADHD, controls	DDST	Gross motor developmental delay in ADHD children at 3 and 9 months of age (Gurevitz et al., 2014).
		NBAS	Less motor maturity at 7/10 days correlated with hyperactivity in children in kindergarten (Jacobvitz & Sroufe, 1987).
		Mother interview	Inability to sit up straight when put on lap (at 6 months) associated with very early or delay in independent walking in ADHD children (Lemcke et al., 2016).
	ADHD	VWS	Good gross motor skills predicted ADHD signs (Jasper et al., 2013).
		SSMTS	Motion variables at 12 months not associated with ADHD at 7 years (Johnson et al., 2014).
Canu (2020)	HR-ASD, HR-TD, HR-DD, LR	ADOS-G, AOSI, Skilled Reaching Rating Scale	No motor impairment in motor control and general motor behavior at 6-12 months of age (Brian et al., 2008). Poorer reach-to-grasp and pronate scores in HR-ASD than HR-TD, and LR. Poorer orient and lift in HR-ASD than LR (Sacrey et al., 2018).

		MSEL	Poorer gross motor skills in HR-ASD than LR at 6 months (Estes et al., 2015). HR-ASD and HR-TD did not differ in gross motor skills at 6 months; poorer fine motor skills in HR-ASD, HR-DD, and HR-TD than LR, not confirmed by post doc comparisons (Libertus et al., 2014). Fine (but not gross) motor skills predicted ASD at 36 months (Iverson et al., 2019). Lower increased motor milestones over time in HR-ASD than HR-TD (Landa & Garrett-Mayer, 2006). HR-ASD, LR, and HR-TD did not differ in fine motor skills (Choi et al., 2018). HR-ASD more likely assigned to the developmental slowing class (TD at 6 months followed by attenuation in developmental rate and severe fine and gross motor delay) than to HR-TD. Broader Autism Phenotype assigned to normative class or language/motor delay class (fine motor delay at 6 months followed by normative development in all areas except in motor development) (Landa et al., 2012).
		PDMS2	Worse visual motor integration in HR-ASD than LR, but no differences in stationary and grasping at 6 months. Visual-motor integration at 6 months predicted ASD at 24-36 months (LeBarton & Landa, 2019).
	HR, TD	Infants seated in a booster seat. Object presented	Less grasping of the rigid ball in HR than TD at 6 months. Between 6 and 9 months: increased grasping of the rigid ball and rattle in HR; reduced grasping of the rigid ball in LR. Between 9 and 12 months: increased grasping of the koosh ball in HR; increased grasping of the rattle in LR. Less dropping of the rigid ball in HR than LR at 6 months, more dropping of objects in HR than LR from 6 to 9 months. Delayed increase in dropping in HR from 12 to 15 months; increased dropping of objects in LR from 6 to 9 months. Less mouthing of the rattle in HR than LR at 6 months (Kaur et al., 2015).
Fuentefria	Moderate preterm	AIMS	Abnormal motor development at 3 and 9 months were not predictive of motor delay at 4 years of age (in 80%) (Prins et al., 2010).
(2017)	Very preterm	AIMS, NSMDA	Early motor skills at 4 months of life predicted motor impairment at 4 years in very preterm children (Spittle et al., 2015).
Garrido (2017)*	ASD Siblings, LR infants	MSEL	Poorer fine motor skills in ASD siblings than LR (small effect size, SMD = 21 , 95% CI [39 , 04], $n = 1542$, $k = 12$) (Chawarska et al., 2013; Curtin & Vouloumanos, 2013; Ekberg et al., 2016; John et al., 2016; Leonard et al., 2015; Libertus et al., 2014; Macari et al., 2012; Mulligan et al., 2012; Ozonoff et al., 2014; Paul et al., 2011; Young et al., 2011). Poorer gross motor skills in ASD siblings than LR children (small effect size, SMD = 22 , 95% CI [40 , 04], $n = 738$, $k = 7$) (Curtin et al., 2013; John et al., 2016; Elison et al., 2014; Paul et al., 2011; Leonard et al., 2015; Libertus et al., 2014).
Palomo (2006)	ASD, ID, DD, TD	Home video	ASD and TD, and ID and TD differed in unusual posture (Baranek, 1999).
Slattery (2012)	Preterm	NOMAS	Infants with a persistent disorganized sucking pattern after 37 weeks had lower psychomotor developmental scores than infants who regained a normal sucking pattern by 37 weeks old, at 6 and 12 months (Tsai et al., 2010).
Athanasiadou (2019)	ELBW	NSMDA	Second year of life Motor development at 24 months (not 12 months) was associated with clinical measures of attention at 7-9 years (Jeyaseelan et al., 2006).

	ADHD, controls	DDST	Gross motor developmental delay in ADHD at 18 months of age (Gurevitz et al., 2014).
Canu (2020)	HR-ASD, HR-TD, LR	ADOS-G, AOSI Skilled Reaching Rating Scale	Atypical motor behavior in HR-ASD than HR-TD and LR. Abnormal motor control in HR-ASD than LR at 18 months (Brian et al., 2008).
		MSEL	Lower scores in Gross and Fine motor scales in HR-ASD than HR-TD and LR at 24 months (Estes et al., 2015). Lower increase over time of motor milestones in HR-ASD than HR-TD (Landa & Garrett-Mayer, 2006). Lower fine motor skills in HR-ASD than HR-TD at 12 months and LR at 18 months. Slower growth rate of fine motor milestones in HR-ASD than LR, but not compared to HR-TD from 6 to 24 months (Choi et al., 2018).
		Home videos	HR-ASD, HR-TD and LR did not differ in postures at 14 months (Nickel et al., 2013).
	HR, TD	Infants seated in a booster seat. Object presented	Lower level of dropping in HR than LR from 12 to 15 months. Delayed increase in dropping in HR than LR from 12 to 15 months; more mouthing of the rattle and rigid ball in HR than LR at 15 months (Kaur et al., 2015).
Garrido (2017)*	ASD Siblings, LR infants	MSEL	Poorer fine motor skills in ASD siblings than LR (small-to-moderate effect size, SMD =35, 95% CI [46,24], $n = 3177$, $k = 11$) (John et al., 2016; Leonard et al., 2015; Macari et al., 2012; Messinger et al., 2015; Ozonoff et al., 2014; Presmanes et al., 2007; Paul et al., 2011; Stone et al., 2007; Toth et al., 2007; Young et al., 2009; 2011). Poorer gross motor skills in ASD siblings than LR (not statistically significant effect, SMD =36, 95% CI [-1.20, .05], $n = 377$, $k = 4$) (John et al., 2016; Leonard et al., 2015; Paul et al., 2011; Toth, 2007).
Garrido (2017)*	ASD Siblings, LR infants	MSEL	Third year of life Poorer fine motor skills in ASD siblings than LR (small-to-moderate effect size, SMD = 36 , 95% CI [54 , 17], n = 2906, k = 6) (Klerk et al., 2014; Leonard et al., 2015; Messinger et al., 2015; Miller et al., 2015; Ozonoff et al., 2014; Schwichtenberg et al., 2013). ASD siblings and LR differed in gross motor skills (SMD = 44 , 95% CI [83 , 04], n = 101, k = 1) (Leonard et al., 2015).
Language deve	elopment		
Athanasiadou (2019)	ADHD, controls	DDST	First year of life Significant delay in speech and language development at 9 and 18 months of age in ADHD (Gurevitz et al., 2014).
× /		Parent observation	Delay in language development in ADHD (Lemcke et al., 2016).
Garrido (2017)*	ASD Siblings, LR infants	MSEL	Poorer expressive language skills in ASD siblings than LR children (moderate effect size, SMD =40, 95% CI [57,23], n = 2044, k = 18) (Chawarska et al., 2013; Curtin & Vouloumanos, 2013; Droucker et al., 2013; Ekberg et al., 2016; Ference & Curtin,

			2013; Hudry et al., 2014; Key & Stone, 2012; Lazenby et al., 2016; Leonard et al., 2015; Libertus et al., 2014; Macari et al., 2012; Mitchell et al., 2006; Mulligan et al., 2012; Ozonoff et al., 2014; Paul et al., 2011; Young et al., 2011; Zwaigenbaum et al., 2005). Poorer receptive language skills in ASD siblings than LR (moderate effect size, SMD = 44 , 95% CI [53 , 34], n = 1694, k = 15) (Chawarska et al., 2013; Curtin & Vouloumanos, 2013; Ekberg et al., 2016; Ference & Curtin, 2013; Hudry et al., 2014; Key & Stone, 2012; Lazenby et al., 2016; Leonard et al., 2015; Libertus et al., 2014; Mitchell et al., 2006; Mulligan et al., 2012; Paul et al., 2011; Ozonoff et al., 2014; Zwaigenbaum et al., 2005).
Palomo (2006)	ASD, ID, TD	Home video	ASD and TD differed in simple vocalizations, bubbling complex vocalizations, and words (Maestro et al., 2002; Werner & Dowson, 2005). ASD and TD did not differ in follows verbal instructions, simple vocalizations, bubbling complex vocalizations, and words (Osterling & Dowson, 1994; Osterling et al., 2002; Maestro et al., 2001; Werner et al., 2000).
Fisher (2017)*	Late-talkers	Language assessment ¹	Second year of life Preschool-age expressive-vocabulary size accounted for the 6% of the variability in expressive-language outcome ($r = .249$, $p < .01$, 95% CI [.133, .358], $n = 1113$, $k = 12$) (Dale et al., 2003; Moyle et al., 2007; Hadley et al., 2006; Lee, 2011; Fernald & Marchman, 2012; Peyre et al., 2014; Whitehurst et al., 1991; Bishop et al., 2012; Thal et al., 1991; Rescorla & Schwartz, 1990; Carson et al., 2003).
		Language assessment ²	Preschool-age receptive language accounted for the 12% of the variability in expressive-language outcome ($r = .340$, $p < .01$, 95% CI [.215, .454], $n = 527$, $k = 10$) (Rescorla & Schwartz, 1990; Petinou & Spanoudis, 2014; Paul et al., 1991; Henrichs et al., 2011; Hadley et al., 2006; Vuksanovic, 2015; Fischel et al., 1989; Bishop et al., 2012; Lyytinen et al., 2005; Thal et al., 1991).
		Language assessment ³	Nonsignificant main effect of the correlation between preschool-age phrase speech and expressive-language outcome. Preschool-age phrase speech accounted for the 2% of the variability in expressive-language outcome ($r = .122$, $p = .098$, 95% CI [022, .261], $n = 851$, $k = 7$) (Williams & Elbert, 2003; Hadley et al., 2006; Moyle et al., 2007; Dale et al., 2003; Thal et al., 1991; Rescorla & Schwartz, 1900; Fischel et al., 1989).
Garrido (2017)*	ASD Siblings, LR infants	MSEL	Poorer expressive language skills in ASD siblings than LR (moderate effect size, $SMD =34$, 95% CI [45,23], n = 3590, k = 18) (Mitchell et al., 2006; Gamliel et al., 2007; Presmanes et al., 2007; Stone et al., 2007; Toth et al., 2007; Yirmiya et al., 2007; Young et al., 2009, 2011; Paul et al., 2011; Macari et al., 2012; Curtin & Vouloumanos, 2013; Droucker et al., 2013; Hudry et al., 2014; Ozonoff et al., 2014; Gangi et al., 2015; Leonard et al., 2015; Messinger et al., 2015; Talbott et al., 2015). Poorer receptive language skills in ASD siblings than LR (moderate effect size, $SMD =52$, 95% CI [68,37], n = 3243, k = 15) (Mitchell et al., 2006; Gamliel et al., 2007; Presmanes et al., 2007; Stone et al., 2007; Yirmiya et al., 2007; Young et al., 2009; Paul et al., 2011; Macari et al., 2012; Curtin & Vouloumanos, 2013; Hudry et al., 2007; Yirmiya et al., 2009; Paul et al., 2011; Macari et al., 2012; Curtin & Vouloumanos, 2013; Hudry et al., 2014; Gangi et al., 2009; Paul et al., 2011; Macari et al., 2012; Curtin & Vouloumanos, 2013; Hudry et al., 2014; Gangi et al., 2015; Leonard et al., 2015; Messinger et al., 2014; Gangi et al., 2007; Young et al., 2007; Young et al., 2009; Paul et al., 2011; Macari et al., 2012; Curtin & Vouloumanos, 2013; Hudry et al., 2014; Ozonoff et al., 2014; Gangi et al., 2015; Leonard et al., 2015; Messinger et al., 2015; Messinger et al., 2015; Leonard et al., 2015; Messinger et al., 2015; Leonard et al., 2015; Messinger et al., 2015; Leonard et al., 2015; Messinger et al., 2015).

	Palomo (2006)	ASD, PDD, TD	Home video	ASD and TD differed in following verbal instructions, making bubbling complex vocalizations, imitating vocalizations, pronouncing words, and two words/phrases (Mars et al., 1998; Maestro et al., 2001; Werner & Dowson, 2005). ASD and TD did not differ in making simple vocalizations (Maestro et al., 2001).
	Garrido (2017)*	ASD Siblings, LR infants	MSEL	Third year of life Poorer expressive language skills in ASD siblings than LR (moderate effect size, SMD =44, 95% CI [58,30], n = 3422, k = 12) (Gamliel et al., 2007; Yirmiya et al., 2007; Young et al., 2011; Herlihy et al., 2013; Ibañez et al., 2013; Schwichtenberg et al., 2013; Klerk et al., 2014; Miller et al., 2015; Ozonoff et al., 2014; Gangi et al., 2015; Leonard et al., 2015; Messinger et al., 2015). Poorer receptive language skills in ASD siblings than LR (moderate effect size, SMD =48, 95% CI [60,36], n = 3422, k = 12) (Gamliel et al., 2007; Yirmiya et al., 2007; Young et al., 2011; Herlihy et al., 2013; Ibañez et al., 2013; Schwichtenberg et al., 2013; Klerk et al., 2014; Miller et al., 2015; Ozonoff et al., 2014; Gangi et al., 2015; Leonard et al., 2015; Messinger et al., 2013; Klerk et al., 2014; Miller et al., 2015; Ozonoff et al., 2014; Gangi et al., 2015; Leonard et al., 2015; Messinger et al., 2013; Klerk et al., 2014; Miller et al., 2015; Ozonoff et al., 2014; Gangi et al., 2015; Leonard et al., 2015; Messinger et al., 2015).
,	Temperament			
	Athanasiadou (2019)	ADHD, controls	Parent description	First year of life Difficult temperament more frequent in children with ADHD at 9 months (Gurevitz et al., 2014).
	Canu (2020)	HR-ASD, HR-TD, LR	CTS (RITQ, TTQ, BSQ)	Lower scores in adaptability scale in HR-ASD than HR-TD at 6 and 12 months. Lower score on the approach scale in HR-ASD than HR-TD at 6 months. Less active behavior in HR-ASD than HR-TD at 6 and 12 months, but not later (del Rosario et al., 2014).
			IBQ, TBAQ or TBAQ-R	Higher scores in distress to limitations and fear in HR than LR at 12 months. Positive affect at 12 months predicted ASD symptoms at 36 months in HR infants (relationship mediated by effortful control at 24 months). Lower activity level at 6 months and more frequent and intense distress reactions, less inhibitory control, less positive anticipation and affective responses at 12 months in HR-ASD than HR-TD and LR (Zwaigenbaum et al., 2005)
			IBQ-R, ECBQ	Lower surgency scores in HR-ASD than HR-TD and LR from 8 to 14 months. Higher negative affect in HR-ASD than HR-TD, HR-DD and LR from 8 months (Pijl et al., 2019).
	Palomo (2006)	ASD, ID, DD, TD	Home video	ASD and TD differed in positive affect (including social smiles) and conventional communicative gestures (Maestro et al., 2001, 2002; Werner et al., 2002), but no differences for Maestro et al., (2001) and Werner & Dawson (2005). ASD and TD did not differ in negative affect, conventional communicative gestures, moving hands toward desired objects, and vague pointing reaching (Mars et al., 1998; Werner & Dawson, 2005).
	Canu (2020)	HR-ASD, HR-TD, HR-DD, LR	ADOS-G, AOSI	Second year of life Higher scores on transition and levels of reactivity in HR-ASD than HR-TD and LR at 18 months. Transition and reactivity predicted ASD at 36 months (Brian et al., 2008).
			CTS (RITQ,	Higher score in HR-ASD than HR-TD at 24 and 36 months (del Rosario et al., 2014).

EA	RLY BEHAVIORA	L SIGNS FOR NE	URODEVELOPMENTAL DISORDERS 19
		TTQ, BSQ)	
		IBQ, TBAQ or TBAQ-R	Higher scores on fear, sadness, anger, and lower on inhibitory control, soothability, attention focus, high pleasure, and low pleasure in HR than LR at 24 months. Lower effortful control score at 24 months predicted more ASD symptoms at 36 months (Garon et al., 2016). Lower scores on behavioral approach in HR-ASD than HR-TD and LR at 24 months; HR-TD scored higher than LR. Lower score on emotion regulation in HR-ASD and HR-TD than LR. Below average on behavioral approach and effortful emotion regulation in the 65% of HR-ASD. Higher than average behavioral approach and lower effortful emotion regulation in the 74% of HR-TD. Higher than average effortful emotion regulation in the 70% of LR. Behavioral approach better discriminated between HR-ASD and HR-TD than effortful emotion regulation. Effortful emotion regulation better discriminated between HR-ASD and LR than behavioral approach (Garon et al., 2009).
		IBQ-R, ECBQ	Lower effortful control in HR-ASD than HR-DD, HR-TD and LR at 14 months and at 24 months. A combination of surgency, negative affect and effortful control at 24 months as well as effortful control at 14 months and effortful control and negative affect at 24 months predicted ASD (Pijl et al., 2019).
			Third year of life
Canu (2020)	HR-ASD, HR-TD, LR	CTS (RITQ, TTQ, BSQ)	Higher score in HR-ASD than HR-TD at 24 months and 36 months (del Rosario et al., 2014).
Repetitive/ster	eotyped behavior		
Canu (2020)	HR-ASD, HR-TD, LR	RSMs, MSEL, VABS	First year of life Higher scores on the object and body cluster subscale in HR-ASD and HR-TD than LR at 12 months (Elison et al., 2014). More parental concerns about repetitive and restricted behaviors in HR-ASD than LR starting from 9 months (Sacrey et al., 2015).
		ADOS-G, AOSI	More repetitive interests in HR-ASD than HR-TD and LR at 6-12 months (Brian et al., 2008).
Palomo (2006)	ASD, ID, DD, TD	Home video	ASD and TD differed in repetitive motor behaviors and stereotypies (Osterling et al., 2002). ASD and TD did not differ for repetitive motor behaviors and stereotypies (Baranek, 1999; Osterling & Dowson, 1994; Werner & Dowson, 2005). ASD, ID, and TD did not differ in repetitive motor behaviors and stereotypies (Baranek, 1999; Mars et al., 1998; Osterling & Dowson, 1994; Werner & Dowson, 2005).
Canu (2020)	HR-ASD, HR-TD, LR	ADOS, MSEL	Second year of life Repetitive behaviors predicted ASD outcome at 18 months in HR-ASD (Chawarska et al., 2014).

		MSEL, VABS	More concerns about repetitive and restricted behaviors in HR-ASD parents than HR-TD parents from 18 months (Sacrey et al., 2015).
		RSMs	Higher rates of RSMs in HR than LR at 12-24 months (Damiano et al., 2013).
Canu (2020)	HR-ASD, HR-TD, LR	RSMs	Third year of life Higher rates of RSMs in HR than LR at 24–36 months. Higher object RSM inventory score than the body RSM inventory score in HR-TD but not in HR-ASD (Damiano et al., 2013).
Play and objec	t use		First year of life
Canu (2020)	HR-ASD, HR-TD, LR	Parent concerns' interview	Poorer play skills in HR-ASD than HR-TD and LR at 9 months (Sacrey et al., 2015).
Palomo (2006)	ASD, ID, DD, TD	Home video	ASD differed than TD and ID in mouthing objects (Baranek, 1999). No differences between ASD and TD in nonsocial gaze/looking at the object not being held by another person/orienting to nonsocial novel stimulus, appropriate use of the object, exploratory activities with the object, and symbolic play (Maestro et al., 2001, 2002; Osterling et al., 2002; Werner & Dowson, 2005; Werner et al., 2000). ID and TD differed in object play rating (i.e., flexibility, variety, appropriateness) (Baranek, 1999).
Canu (2020)	HR-ASD, HR-TD, HR-DD, LR	Free play assessment	Second year of life Fewer novel other-directed functional play in HR-ASD than LR at 18 months. Greater levels of non-functional repeated play in HR-ASD than LR (no effect when controlling for verbal age). More nonfunctional repeated play in HR-TD than LR. No between-group difference in symbolic and functional repeated play. HR-DD, HR-TD and LR did not differ on novel functional play (Christensen et al., 2010).
Palomo (2006)	ASD, ID, DD, TD	Home video	ASD and TD differed in nonsocial gaze/looking at the object being held by another person/orienting to nonsocial novel stimulus, appropriate use of the object, exploratory activity with the object, and symbolic play (Mars et al., 1998; Maestro et al., 2001; Werner & Dowson, 2005).
Social domain			
Palomo (2006)	ASD, ID, DD, TD	Home video	First year of life ASD and TD differed in social orienting and interactions (i.e., to seek out physical contact; anticipate intentions of other; look at the people; face and camera; respond when called by name; avoid physical-social contacts) (Baranek, 1999; Maestro et al., 2001, 2002; Osterling & Dawson, 1994; Osterling et al., 2002; Werner et al., 2000). ASD and TD did not differ in postural attunement, participating in reciprocal social games, imitating actions (Maestro et al., 2001, 2002; Osterling & Dawson, 1994; Osterling et al., 2002; Werner et al., 2001, 2002; Osterling & Dawson, 1994; Osterling et al., 2002; Werner et al., 2001, 2002; Osterling & Dawson, 1994; Osterling et al., 2002; Werner et al., 2000).

EA	EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS 21		
			pointing to request, and sharing interests (Maestro et al., 2001; Osterling & Dawson, 1994; Osterling et al., 2002; Werner & Daswon, 2005). ASD and TD did not differ in shared attention, gaze alternation and conventional communicative gestures, vague pointing/ reaching (Maestro et al., 2001; Osterling & Dowson, 1994). ID and TD differed in looking at the faces and people, responding when called by name, avoiding physical social contacts, initiating pointing to request, and looking at the object held by others (Baranek, 1999; Osterling et al., 2002). ID and TD did not differ in participating in reciprocal social games (Osterling et al., 2002).
Palomo (2006)	ASD, ID, DD, TD	Home video	Second year of life ASD and TD differed in social engagement, looking at people and faces, and responding when called by names (Mars et al., 1998, Werner & Dowson 2005). ASD and TD did not differ in seeking out physical contact, anticipating intentions of other, avoiding physical contact, postural attunement, participating in reciprocal social games, and imitating actions (Maestro et al., 2001; Mars et al., 1998). ASD and TD differed in shared attention, gaze alternation, and initiating pointing to share interest (Maestro et al., 2001; Mars et al., 1998; Werner & Dowson, 2005). ASD and TD did not differ in understanding pointing, looking at the object holds by others, gaze alternation, and initiating pointing to request (Maestro et al., 2001; Mars et al., 1998; Werner & Dawson, 2005).
Sensory proc	essing		
			First year of life
Canu (2020)	HR-ASD, HR-TD, LR	ADOS-G, AOSI	Atypical sensory oriented behavior at 12 months (but not at 6 months) in AOSI predicted ASD at 24 months (Zwaigenbaum et al., 2005).
		MSEL, VABS, parents' interview	More sensory concerns in HR-ASD parents than HR-TD and LR parents at 6 and 9 months (Sacrey et al., 2015).
		SEQ	Higher scores in sensory hyperresponsivity in HR-ASD than HR-TD and LR. Higher scores in tactile modality in HR-ASD than HR-TD at 12 months (Wolff et al., 2019).
Palomo (2006)	ASD, ID, DD, TD	Home video	ID and TD differed in the unusual visual inspection (fixation staring). No group differences in unusual visual inspection, orienting to tactile nonsocial novel stimulus between, orienting to auditory nonsocial novel stimulus, and aversive response to auditory stimulation (Baranek, 1999; Osterling & Dowson, 1994).
Canu	HR-ASD, HR-TD,	ADOS-G, AOSI	Second year of life Higher score on the subscale for atypical sensory behavior in HR-ASD and HR-TD than LR at 18 months (Brian et al., 2008).
(2020)	LR	ITSP	Higher scores in auditory processing in HR-ASD than HT-TD and LR at 24 months; HR-TD and LR did not differ. Groups did not differ in visual, tactile, vestibular and oral domains (Germani et al., 2014).

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS 22

		SEQ	Increased total score, hyperresponsivity and visual modality in HR-ASD and HR-TD from 12 to 24 months. Higher scores in all subtests in HR-ASD than HR-TD at 24 months (Wolff et al., 2019).
Palomo (2006)	ASD, ID, DD, TD	Home video	ASD and TD differed in the unusual visual inspection, and aversive response to auditory stimulation (Mars et al., 1998).
Visual proce	essing		
Canu (2020)	HR-ASD, HR-TD, HR-DD, LR	MSEL	First year of life Lower scores on the Visual Reception scale in HR-ASD than LR at 6 months. HR-ASD, HR-TD and LR did not differ on the Visual Reception scale at 12 months (Estes et al., 2015). HR-ASD more likely assigned to the developmental slowing class (TD at 6 months followed by attenuation in developmental rate and severe delay in visual processing) than HR-TD. HR-DD assigned to normative class (normative visual processing development; Landa et al., 2012). HR-ASD and HR-TD did not differ on the Visual Reception scale at 6 months (Libertus et al., 2014).
	HR, LR	Infants seated in a booster seat. Object presented	Excessive visual exploration of objects, irrespective of the novelty of the objects (i.e., excessive looking at the rattle at 6 months and at the koosh ball at 12 months) in HR than LR. Increased looking at the koosh ball in LR but not in HR at 12 to 15 months (Kaur et al., 2015).
Canu (2020)	HR-ASD, HR-TD, LR	MSEL	Second year of life Lower scores on the Visual Reception scale in HR-ASD than HR-TD and LR at 24 months (Estes et al., 2015). HR-ASD and HT- TD did not differ in visual processing at 14 months. Lower increase over time in HR-ASD than HT-TD. Lowest increase over time in HR-ASD (Landa & Garrett-Mayer, 2006).
		ITSP	HR-ASD, HR-TD, and LR did not differ in visual processing at 24 months (Germani et al., 2014).
	HR, LR	Infants seated in a booster seat. Object presented	Increased looking at the koosh ball in LR, but not in HR from 12 to 15 months (Kaur et al., 2015).
Attention			
Canu (2020)	HR-ASD, HR-TD, LR	AOSI	First year of life Poorer visual tracking in HR-ASD than LR at 7 months (Gammer et al., 2015). Disengagement score at 12 months predicted ASD at 24 months (Zwaigenbaum et al., 2005).

Second year of life

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS 23

Canu (2020)		AOSI, ADOS-G (videorecorded and coded)	HR-TD and LR did not differ in engagement of attention in AOSI at 14 months (Gammer et al., 2015). Less look away from the target before the grasp was complete and during the grasp in HR-ASD compared to HR-TD and LR from 12 months; no differences at 36 months. Less moves of infant's hand towards a target before visually engaging it in HR-ASD than HR-TD and LR. More disengagement and re-engagement on the target prior grasp it in HR-ASD than LR (group by age interaction no longer significant after post-hoc analyses) (Sacrey et al., 2013).
Feeding and Sleeping			
Athanasiadou (2019)	ADHD, controls	Parent interview	First year of life Feeding and sleeping difficulties in ADHD at 3 months. Feeding difficulties in ADHD at 6 months (Gurevitz et al., 2014).
Palomo (2006)	ASD, TD	Home video	ASD and TD did not differ in negative, positive, and flat affect (Maestro et al., 2001; Mars et al., 1999; Werner & Dawson, 2005).
Slattery (2012)	Neonatal AI stroke	Feeding assessment	Neonatal feeding problems not a predictor of speech delay (Barkat-Masih et al., 2010).
		NOMAS	Association of early feeding problems with neurodevelopmental delay (Meyer Palmer & Heyman, 1999; Mizuno & Ueda, 2005).

*: meta-analysis; NDD: Neurodevelopmental Disorders; HR: High-Risk; LR: Low-Risk; ADHD: Attention Deficit Hyperactivity Disorder; ASD: Autism Spectrum Disorder; PDD: Pervasive Developmental Disorders; ID: Intellectual Disabilities; DD: developmental disabilities; ELBW: Extremely Low Birth Weight; TD: Typically Developing children; HR-ASD: HR for ASD diagnosed with ASD; HR-TD: HR for ASD typically developing infants; HR-DD: HR for ASD diagnosed with developmental delay; GMs: General Movements; IQ: Intelligent Quotient; DDST: Denver Developmental Screening Test; NBAS: Neonatal Behavioral Assessment Scale; VWS: Van Wiechen Scheme, AI: arterial ischemic; Van Wiechen scheme is the Dutch equivalent of the Bayley scales; SSMTS: Skill Spector Motion Tracking Software; ADOS-G: Autism Diagnostic Observational Schedule-Generic; AOSI: Autism Observation Scale for Infants; MSEL: Mullen Scales of Early Learning; AIMS: Alberta Infant Motor Scale; NSMDA: Neuro-Sensory Motor Developmental Assessment; NOMAS: Neonatal Oral Motor Assessment Scale; CTS: Carey Temperament Scale; RITQ: Revised Infant Temperament Questionnaire; TTQ: Toddler Temperament Questionnaire; BSQ: Behaviour Style Questionnaire; IBQ: Infant Behavior Questionnaire; TBAQ: Toddler Behaviour Assessment Questionnaire; ITSP: Infant Toddler Sensory Profile; PDMS-2: Peabody Developmental Motor Scales, -2.

Language/communication assessment¹ includes British Ability Scales (BAS) Verbal subtests, Bus Story Test, Children's Communication Checklist – Second Edition (CCC-2), Test of Early Grammar Impairment (TEGI) (Bishop et al., 2012); Mean length of utterance in a language sample (MLU), MSEL Language subtests (Carson et al., 2003); MacArthur Communicative Development Inventories (CDI) Vocabulary, Grammar, and Abstract Language (Dale et al., 2003); MLU, McCarthy Scales of Children's Abilities (MSCA) Verbal subtests, number of different words in a language sample (NDW) (Feldman et al., 2005); CDI Vocabulary, index of productive syntax (IPSyn), MLU, NDW (Hadley & Holt, 2006); CDI Words and sentences form, Reynell Developmental Language Scales – Revised (RDLS-R), Preschool Language Scale – Third Edition (PLS-3) (Lee, 2011); (CDI Vocabulary, NDW, and PLS Semantic items) and (CDI Grammar, MLU, PLS-3 Syntax items) (Moyle et al., 2007); Évaluation du langage oral de l'enfant aphasique (ELOLA), Developmental Neuropsychological Assessment; (NEPSY) subtests (Peyre et al., 2014); Expressive One-Word Picture Vocabulary Test (EOWPVT), Illinois Test of Psycholinguistic Abilities (ITPA) (Whitehurst et al., 1991); IPSyn, MLU, RDLS-R Expressive (Rescorla & Schwartz, 1990); Early Language Inventory (ELI), MLU (Thal et al., 1991).

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS 24

Language/communication assessment² includes BAS Verbal subtests, Bus Story Test, CCC-2, TEGI (Bishop et al., 2012); EOWPVT, Illinois Test of; Psycholinguistic Abilities (ITPA) Verbal subtests (Fischel et al., 1989); CDI Vocabulary, IPSyn, MLU, NDW (Hadley & Holt, 2006); Early Social Communication Scales (ESCS) (Vuksanovic, 2015); Language Development Survey (LSD) Vocabulary (Henrichs et al., 2011); Boston Naming Test (BNT), Inflectional Morphology Test (Lyytinen et al., 2005); VABS Expressive subdomain,; Developmental Sentence Scoring (DSS) (Paul et al., 1991); PLS-3 Expressive subtests (Petinou & Spanoudis, 2014); IPSyn, MLU, RDLS-R (Rescorla & Schwartz, 1990); ELI, MLU (Thal et al., 1991).

Language/communication assessment³ includes CDI Vocabulary, Grammar, and Abstract Language (Dale et al., 2003); EOWPVT, ITPA Verbal subtests (Fischel et al., 1989); CDI Vocabulary, IPSyn, MLU, NDW (Hadley & Holt, 2006); CDI Words and sentences, PLS-3, Test of Language Development–3: Primary (TOLD-3), SALT = Systematic Analysis of Language Transcripts (Moyle et al., 2007); IPSyn, MLU, RDLS-R Expressive (Rescorla & Schwartz, 1990); ELI, MLU (Thal et al., 1991); MLU, NDW (Williams & Elbert, 2003).

Feeding assessment: Feeding minor dysfunctions/major dysfunctions assessment; Neonatal Oral-Motor Assessment Scale (NOMAS); Infants were evaluated during the bottle-feeding of room-temperature breast milk from their mother at the regular feeding time (Mizuno & Ueda, 2005).

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Risk of biases assessment

The case 2A intra-class correlation between reviewers was high (0.95; 95% CI = 0.93)-0.97). Risk of bias overall rating ranged from 2.5 to 13.5 (Mean = 5.58; Standard Deviation = 3.76). One study was rated as having moderate risk bias and the other six having a critically low risk of bias, indicating not satisfactory methodological quality in the included literature. Moderate rating was assigned when the systematic review had more than one weakness in non-critical domains. Critically low rating was assigned to a systematic review when presented weaknesses in more than one critical domain and not provided an accurate and comprehensive summary of the available studies (Shea et al., 2017). Critical domains were the following: item 1, protocol not registered before the commencement of the review; item 4, lack of adequacy of the literature search; item 7, no justification for excluding individual studies and no list of excluded studies; item 9, risk of bias from individual studies not being included in the review; item 11, meta-analytical methods not appropriate; item 13, lack of consideration of risk of bias when interpreting the results of the review; item 15, lack of assessment of publication bias. In the included studies, the most common weaknesses were observed for the critical domains number 2, 7, 9, and 13. Risk of bias ratings of the included systematic reviews are reported in the Supplementary Material 1.

Developmental domains

The early markers detected in each behavioral domain are presented by age group: first, second and third year of the child life. The present narrative synthesis provides an overall picture of the relevant findings and aims to suggest early markers of NDD useful for timely clinical detection.

Motor development

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Both fine and gross motor impairments have been associated with NDD occurrence in the general population (Athanasiadou et al., 2019) and high-risk infants (i.e., siblings of children with a diagnosis of ASD, preterm and low birth weight infants; Canu et al., 2020; Fuentefria et al., 2017; Garrido et al., 2017; Palomo et al., 2006). The first early motor signs of NDD were mainly the abnormality in fluency, complexity, and variability of general movements. It should be noted that early motor signs have been mainly assessed directly by clinicians or trained researchers.

First year. ADHD diagnosis in infants at both low and high-risk for NDD was found to be predicted in the first year of life by delays in gross motor milestones (Gurevitz et al., 2014; Jaspers et al., 2013), abnormal general movements (Hadders-Algra & Groothius, 1999), and less motor maturity on the composited Brazelton factor compared to sex- and agematched comparison groups (Jacobvitz & Soufe, 1987; in Athanasiadou et al., 2019). In the Athanasiadou's review, only the paper by Johnson and colleagues (2014) did not find any correlations between motion variables at 12 months and ADHD diagnosis at 7 years. The motor skills assessed through the Abnormal Involuntary Movement Scale (AIMS) at 4 months in children born very preterm (< 32 months) were associated with motor coordination abilities evaluated by the Movement ABC-2 at age 4 (Spittle et al., 2015). The strength of the association was improved when results from longitudinal assessment (4, 8, and 12 months) at each time points were combined (Fuentefria et al., 2017). Poorer fine and gross motor skills and unusual postures have been reported in siblings of children with ASD compared to the general population (Estes et al., 2015; Kaur et al., 2015; Landa & Garrett-Mayer, 2006; Sacrey et al., 2018; in Canu et al., 2020; Garrido et al., 2017; Osterling et al., 2002; in Palomo et al., 2006). In addition, fine motor skills – but not gross motor skills – and visualmotor integration at 6 months predicted 24-36 months ASD diagnosis (Iverson et al., 2019; LeBarton & Landa, 2019; in Canu et al., 2020). It should be noted that some studies did not

27

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

confirm these findings (Brian et al., 2008; Choi et al., 2018; LeBarton & Landa, 2019; Libertus et al., 2014; in Canu et al., 2020; Baranek, 1999; Osterling & Dowson, 1994; Werner & Dowson, 2005; in Palomo et al., 2006). Early unusual postures have been observed in siblings of children with ASD and infants later diagnosed with intellectual disabilities (Baranek, 1999; in Palomo et al., 2006) compared to the general population.

Second year. The motor skills in extremely low birth weight infants were strongly associated with clinical measures of attention at 7-9 years old (Jeyasseelan et al., 2006; in Athanasiadou et al., 2019). Children later diagnosed with ADHD showed heterogenous fine and gross motor skills developmental deviations: 13.6% of children started to walk independently before 11 months of age, while the 11.3 % later than 15 months, and the 8.4% sat alone after 8 months (Lemcke et al., 2016; in Athanasiadou et al., 2019). As at 9 months, Gurevitz and colleagues (2014) showed that delays in gross motor milestones at 18 months predicted a later ADHD diagnosis. Poorer fine (Choi et al., 2018; Estes et al., 2015; Kaur et al., 2015; Landa & Garrett-Mayer, 2006; in Canu et al., 2020; Garrido et al., 2017) and gross motor skills were observed in siblings of children with ASD compared to the general population (Landa & Garrett-Mayer, 2006, but not in Garrido et al., 2017). In addition, siblings of children with ASD, who later received the same diagnosis showed atypical motor control compared to typically developing (TD) siblings of children with ASD and LR infants (Brian et al., 2008; in Canu et al., 2020). Motor control skills at 18 months contributed to predict later ASD diagnosis (Brian et al., 2008; in Canu et al., 2020). No differences between HR and LR infants were observed on postures (Nickel et al., 2013; in Canu et al., 2020).

Third year. Garrido and colleagues (2017) identified only one study that assessed gross motor skills in children at 36 months, so a meta-analysis was not conducted for that age. The only study (Leonard et al., 2015) identified showed larger differences in gross motor

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

skills between high-risk and low-risk children compared to comparison children group at 7 months of age.

Language development

Delays in language acquisition were observed in children that later were diagnosed with ADHD in the first two years of life and poorer language skills in children with ASD compared to TD children in the first three years of life. Language skills were again mainly assessed using tests performed by experts.

First year. Delay in language and speech development (combined words) at 9 months assessed with the Denver Developmental Screening Test (DDST) was observed in children later diagnosed with ADHD (Gurevitz et al., 2014; in Athanasiadou et al., 2019). Children later diagnosed with ASD or pervasive developmental disorder not otherwise specified (PDD-NOS) or Autism (for brevity, ASD) showed differences compared to TD in making simple vocalizations in the first 6 months of life, complex vocalizations and pronouncing words at 12 months of life (Maestro et al., 2002; Werner & Dowson, 2005; in Palomo et al., 2006). Children at high risk of developing ASD showed poorer expressive and receptive language skills compared to TD at 12 months (Garrido et al., 2017).

Second year. As well as in the first year of life, also at 18 months were observed significant delays in speech and language development such as fewer words or not putting together words in children later diagnosed with ADHD compared to comparison groups (Gurevitz e al., 2014; Lemcke et al., 2016; in Athanasiadou et al., 2019). Palomo and colleagues (2006) highlighted the presence of differences between children with ASD and TD children in pronouncing complex vocalizations, following verbal instructions, initiate vocalizations between 12 and 30 months, and in the pronunciation of words and two words/phrases at 24 months (Mars et al., 1998; Maestro et al., 2001; Werner & Dowson,

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

2005). Children at risk of developing ASD showed poorer expressive and receptive language skills compared to low-risk children (Garrido et al., 2017).

Third year. The Garrido and colleagues (2017) meta-analysis showed that children at risk for developing ASD had poorer expressive and receptive language skills compared to low-risk children at 36 months assessed with the Clinical Evaluation of Language Fundamentals-Preschool (CELF-P), Reynell Developmental Language Scales (RDLS), Mullen Scales of Early Learning (MSEL), MacArthur-Bates Communicative Development Inventories (MCDI) and Vineland Adaptive Behaviour Scales-2nd Edition (VABS).

Temperament

Temperament differences have been observed between children with NDD and TD infants, and predicted later diagnosis of ASD and ADHD (Athanasiadou et al., 2019; Canu et al., 2020; Palomo et al., 2006). Temperament has been assessed using the AOSI, parent questionnaires (i.e., Carey Temperament Scale; Toddler Behaviour Assessment Questionnaire; Early Childhood Behavior Questionnaire; Infant Behavior Questionnaire) (Canu et al., 2020), and home videos (Palomo et al., 2006).

First year. Children later diagnosed with ASD significantly differed to TD in positive affect (including social smiles), conventional communicative gestures from birth to 6 months and from 8 to 10 months (Maestro et al., 2001, 2002; Werner et al., 2002; in Palomo et al., 2006), reported lower level of approach (del Rosario et al., 2014), adaptability and less active behavior at 6 and 12 months (del Rosario et al., 2014; Zwaigenbaum et al., 2015), higher scores in distress to limitations and fear (Garon et al., 2016) and more frequent and intense distress reactions, less inhibitory control, less positive anticipation and affective responses at 12 months (Zwaigenbaum et al., 2015), and lower surgency scores from 8 to 14 months (Pijl et al., 2019; in Canu et al., 2020). Lower positive affect scores at 12 months predicted ASD

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

symptoms at 36 months (Garon et al., 2016; in Canu et al., 2020). Difficult temperament was found more frequently in the group that later developed ADHD compared to TD (Guerevitz et al., 2014; in Athanasiadou et al., 2019).

Second year. Siblings of children with ASD, who later received the same diagnosis showed less effortful control than TD starting from 14 months (Pijl et al., 2019), and higher scores on effortful emotion regulation at 24 months (del Rosario et al., 2014). In addition, effortful control at 24 months (Garon et al., 2009), transition and reactivity scores (Brian et al., 2008) predicted ASD symptoms at 36 months (Canu et al., 2020).

Third year. Higher scores in temperament scores in siblings of children with ASD, who later received the same diagnosis than TD has been reported at 36 months (del Rosario et al., 2014; in Canu et al., 2020).

Repetitive/stereotyped behavior

Differences in repetitive and stereotyped behaviors between siblings of children with ASD and general population have been observed through the first two years of the infants' life using standardized tests (i.e., Autism Diagnostic Observational Schedule, ADOS; Repetitive and Stereotyped Movement Scales), report of parents' concerns (Canu et al., 2020), and home videos (Palomo et al., 2006).

First year. Repetitive/stereotyped behaviors have been reported in siblings of children with ASD compared to the general population at 6-12 months (Brian et al., 2008; Elison et al., 2014; Sacrey et al., 2015; in Canu et al., 2020; Osterling et al., 2002; in Palomo et al., 2006). On the contrary, other studies did not find any differences between children with ASD, intellectual disabilities and TD (Baranek, 1999; Mars et al., 1998; Osterling & Dowson, 1994; Werner & Dowson, 2005; in Palomo et al., 2006).

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Second year. Also, in the second year of infants' life, repetitive/stereotyped behaviors have been observed in siblings of children with ASD compared to the general population (Sacrey et al., 2015; Damiano et al., 2013; in Canu et al., 2020), and - at 18 months - predicted later ASD diagnosis (Chawarska et al., 2014; in Canu et al., 2020).

Third year. Damiano and colleagues (2013) found no clear differences in repetitive body movements between siblings of children with ASD and typically developing siblings of children with ASD.

Play and object use

Starting from 9 months of infants' age, differences in play and object use have been observed between infants at risk for NDD and TD. Play was assessed by parent questionnaire, free play to explore functional, symbolic and repeated play (Canu et al., 2020), and home videos (Palomo et al., 2006).

First year. Significant differences were observed at 9 to 12 months between children that later were diagnosed with ASD, TD, and children with intellectual disabilities in mouthing objects (Baranek, 1999; in Palomo et al., 2006) and play skills (Sacrey et al., 2015; in Canu et al., 2020). Children with intellectual disabilities between 9 to 12 months differed in the play with objects' flexibility, variability and appropriateness compared to TD (Baranek, 1999; in Palomo et al., 2006).

Second year. At 18 months, siblings of children with ASD, who later received the same diagnosis compared to TD had significantly fewer novel self-directed and otherdirected functional play behavior, greater levels of non-functional repeated play (Christensen et al., 2010; in Canu, 2020), differed in nonsocial gaze/looking at the object being held by another person/orienting to nonsocial novel stimulus, differed in the appropriate use of the object and exploratory activity with the object, and symbolic play (Mars et al., 1998; Maestro

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

et al., 2001; Werner & Dowson, 2005; in Palomo et al., 2006). On the contrary, Christensen and collaborators (2010) found that siblings of children with ASD, who later received the same diagnosis and TD did not differ in functional repeated and symbolic play (Canu, 2020).

Social development

Social development as early marker of NDD was explored only by Palomo and colleagues (2006) in their systematic review. Home videos reported differences between children with ASD and TD in social behaviors from birth to 24 months. In addition, similar differences between children with intellectual disabilities and TD were observed from 9 to 12 months.

First year. Palomo and colleagues (2006) described studies exploring home movies showing that children later diagnosed with ASD were significantly different from TD in social orienting and interactions from birth to 12 months, in pointing's understanding, and in looking at the objects held by others at 12 months. They were also different in the initiating pointing to request from 12 to 30 months. Children with intellectual disabilities compared to TD differed in avoiding physical and social contacts from 9 to 12 months, in looking at the object held by name, initiating pointing to request and looking at the object held by name, initiating pointing to request and looking at the 2001, 2002; Osterling & Dowson, 1994; Osterling et al., 2002; Werner et al., 2000; in Palomo et al., 2006).

Second year. Children later diagnosed with ASD showed in their second year of life differences compared to TD in social engagement, gaze alternation, and in looking at faces from 12 to 30 months. They differed in sharing attention from 18 to 24 months, in looking at people, responding when called by names at 24 months, and initiating pointing to share

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

interest from 12 to 24 months (Mars et al., 1998; Maestro et al., 2001; Werner & Dowson, 2005; in Palomo et al., 2006).

Sensory processing

Early differences in sensory processing between children with ASD, intellectual disabilities and TD started to be observed at 6 months (Canu et al., 2020; Palomo et al., 2006), using the Infant Toddler Sensory Profile (ITSP), the clinical observation during the administration of standardized test (i.e., Autism Observation Scale for Infants, AOSI), parent-report measures such as Sensory Experience Questionnaire (Canu et al., 2020), and home videos (Palomo et al., 2006).

First year. Parents' first concerns for sounds, texture and visual inspection in siblings of children with ASD, who later received the same diagnosis compared to TD and LR has been observed starting from at 6 months (Sacrey et al., 2015); at 12 months parents were concerned for higher tactile and hyper-sensory responsivity (Wolff et al., 2019). In addition, the use of parts of the body or play materials in stereotyped, self-stimulatory ways at 12 months, but not at 6 months, predicted ASD at 24 months (Zwaigenbaum et al., 2005). Significant differences between children with intellectual disabilities and TD in unusual visual inspection (fixation/staring) were observed in home videos between 9 to 12 months (Baranek, 1999; Osterling & Dowson, 19994; in Palomo et al., 2006).

Second year. Parents' concerns for higher tactile and hyper-sensory responsivity in siblings of children with ASD, who later received the same diagnosis compared to TD and LR, increased from 12 to 24 months (Wolff et al., 2019). Siblings of children with ASD diagnosed with the same diagnosis showed more atypical sensory behaviors compared to LR at 18 months (Brian et al., 2008), abnormalities in the auditory processing at 24 months

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

(Germani et al., 2014; in Canu et al., 2020), unusual visual inspection, and aversive response to auditory stimulation (Mars et al., 1998; in Palomo et al., 2006).

Visual processing

Canu and colleagues (2020) showed abnormal visual processing in infants at risk for developing ASD compared to TD and LR infants starting from 6 months of age, using clinical observation during the administration of the MSEL, the overall looking behavior during free play situations, and one of the sensory domains of the ITSP questionnaire (Canu et al., 2020).

First year. At 6 months of infants' age, abnormal visual processing discriminated children with high ADOS scores, eligible for later diagnosis of ASD, from HR and LR infants (Landa et al., 2012). In addition, siblings of children with ASD, who later received the same diagnosis had excessive visual exploration irrespective of the novelty of the objects compared to LR infants at 6 and 12 months (Kaur et al., 2015), and lower scores in visual reception at 6 months (Estes et al., 2015). In contrast, Libertus and collaborators (2014) did not find any differences at 6 months between infants at risk for ASD and TD.

Second year. Siblings of children with ASD, who later received the same diagnosis compared to TD and LR showed lower scores in visual processing at 24 months (Estes et al., 2015), and atypical looking at the object at 12 to 15 months (Kaur et al., 2015). On the contrary, in other studies, the differences in abnormal visual processing were not observed at 14 months (Landa & Garrett-Mayer, 2006) and at 24 months (Germani et al., 2014; in Canu et al., 2020).

Attention

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

In the Canu and colleagues (2020) study, poorer attentional skills (e.g., disengagement of attention, and poorer visual tracking) were observed in infants at risk for ASD. Attention was explored through various play situations, the administration of standardized test (i.e., ADOS; AOSI), a visual orienting task, and parent report (i.e., Infant Behavior Questionnaire) (Canu et al., 2020).

First year. Poorer visual tracking was observed at 7 months in sibling of children with ASD later diagnosed with ASD compared to LR infants (Gammer et al., 2015). In addition, disengagement of attention scores at 12 months predicted the diagnosis of ASD at 24 months (Zwaigenbaum et al., 2015).

Second year. siblings of children with ASD, who later received the same diagnosis showed from 12 until 24 months no disengagement of attention from the target after it was grasped compared to TD and LR infants (Sacrey et al., 2013). No group differences were observed in looking time towards the target before the hand movement (Gammer et al., 2015; Sacrey et al., 2013) and visual tracking at 14 months (Gammer et al., 2015).

Feeding and sleeping

First year. Feeding or sleeping difficulties were observed being significantly correlated with ADHD and neurodevelopmental delay, but not with speech delay (Slattery et al., 2012). Neurodevelopmental delay risk was observed being higher for children with a disorganized early sucking (Tsai et al., 2010; in Slattery et al., 2012). Infants at high risk for NDD (i.e., very low birth weight) presenting difficulties in early sucking were more likely to show delays at 6 and 12 months on motor skills assessed with the Psychomotor Developmental Index of the Bayley Scales of Infant Development (Medoff-Cooper & Gennaro, 1996; Tsai et al., 2010; in Slattery et al., 2012). Barkat-Masih and colleagues

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

(2010) did not find that feeding difficulties in infants with neonatal ischemic stroke were predictive of later speech delay or cerebral palsy (Slattery et al., 2012).

Discussion

More than 1500 publications were screened. The eligible studies were two metaanalyses and five systematic reviews from critically low to moderate risk of bias. This overview of reviews provided evidence for delays in motor and language development, and temperament through the first three years of life in children later diagnosed with NDD. In addition, repetitive/stereotyped behaviors, reduced social engagement, atypicalities or delays in play, object use, attention, visual and sensory processing, and social engagement in the first and second year has been reported in children later diagnosed with or presenting NDD symptoms compared to TD peers. Feeding and sleeping difficulties have been observed in infants at high risk for NDD only in their first year of life. These results suggest that language and motor skills are crucial during the first three years of the child's life and confirm the well-established strong interaction between language, motor, and social domains either in clinical/at-risk or in the general population (e.g., Bedford et al., 2016; Benassi et al., 2016; Leonard & Hill, 2014). In the first year of infants' life, poorer fine and gross motor skills, repetitive motor behaviors, stereotypes, and unusual postures have been observed in infants at high risk for NDD in some (Canu et al., 2020; Garrido et al., 2017; Osterling et al., 2002; in Palomo et al., 2006), but not all studies (Brian et al., 2008; Choi et al., 2018; LeBarton & Landa, 2019; Libertus et al., 2014; Nickel et al., 2013; in Canu et al., 2020; Baranek, 1999; Osterling & Dowson, 1994; Werner & Dowson, 2005; in Palomo et al., 2006). These discrepancies in the results may be partially due to a lack of power due to the small samples size of some studies and to the heterogeneity of the motor development assessments.

It is worth noticing that the present study found just a few systematic reviews exploring early markers of NDD. Despite the high prevalence of developmental language disorders (7%; Laasonen et al., 2018) and Specific Learning Disorder (8%; Boat & Wu, 2015), we have not found any systematic reviews which satisfy our inclusion criteria. Intellectual Disabilities (Palomo et al., 2006) and Motor Disorders (Fuentefria et al., 2017) were marginally explored; more studies have been performed on ASD (Canu et al., 2020; Garrido et al., 2017; Palomo et al., 2006) and ADHD (Athanasiadou et al., 2019). In addition, among the systematic reviews explored, some developmental domains such as cognitive skills, play, sensory processing, visual processing, attention, feeding, and sleeping were rarely described. Future systematic reviews should collect data on the specific tool or technology used to identify early markers of NDD. Moreover, it urges to systematize the assessment and the developmental domains that should be investigated in order to orient professionals toward an accurate and prompt neurodevelopmental surveillance of NDD. The majority of the studies included in the systematic reviews were conducted in the USA. More research efforts should be dedicated to describing how NDD screening has been developed in other countries besides the USA.

The seven systematic reviews included in our work (Athanasiadou et al., 2019; Canu et al., 2020; Fuentefria et al., 2017; Fisher et al., 2017; Garrido et al., 2017; Palomo et al., 2006; Slattery et al., 2012) focused on the population at risk such as sibling of children with ASD, late talkers, and children born preterm, but none took into consideration the behavioral patterns that may alert parents and professionals in the general population. The need for detecting early signs of NDD come up from evidence showing that infants/toddlers with developmental delays and/or behavioral deficits improved their language and cognitive skills when underwent through early individualized and appropriated interventions (Cioni et al.,

37

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

2016; Dawson et al., 2010; Landa et al., 2011; Oberklaid & Drever, 2011; Wetherby & Woods, 2006).

Pediatricians play a key role in the early recognition of NDD signs. In the clinical settings, the early behavioral markers for NDD identification need to be routinely assessed in the pediatric surveillance protocol. Recently, the American Academy of Pediatrics (AAP) described a model of active developmental surveillance at any well-baby check-ups for the early identification of neurodevelopmental and medical conditions (https://www.aap.org/ accessed in July 2019). Developmental surveillance is a longitudinal process that relies on repeated clinical observation of the child (Smith, 2016). The surveillance aims not only at detecting delays or disorders very early in life but also at intervening promptly to promote child development (Glascoe & Robertshaw, 2007). The administration of disorder-specific or developmental delays screening tests may be part of the surveillance practice (Lipkin et al., 2019; Schonwald et al., 2009). However, there is lack of consensus on screening tools for NDD other than ASD (Vitrikas et al., 2017), and the effectiveness of universal screenings for ASD has been widely debated (Vitrikas et al., 2017; Robins et al., 2016; Silverstein & Radesky 2016; Yuen et al., 2018; Siu et al., 2016). Moreover, the minority of pediatricians tend to administer general developmental screenings (Radecki et al., 2011) mainly for time constraints due to clinical demands and staffing requirements (Vitrikas et al., 2017).

Several screening programs are already in place in the clinical practice, but, to our knowledge, no standardized protocols have been developed for the assessment of all developmental domains and targeted to the identification of all NDD. Thus, future research should be devoted to design and implement an easy, feasible, affordable, and multi-observational protocol including a set of standardized observational items that will improve the early detection of NDD in the general and at-risk population. This tool should be as flexible as possible to be included in the already established well-child care visits and

Journal Pre-proof

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

adaptable to the different socio-cultural contexts. The tool should be able to explore all areas of development, detect the failure in typical developmental pathways, and point out the atypical signs. Moreover, it should be evidenced-based and accurate as possible to minimize under detection and over-referrals, and it should be able to be applied to all ages. It should be affordable, brief, and appropriate for the general and at-risk population. Finally, it should catch the specific domains where the child shows flaws or differences/delays to the typical developing trajectories to promote specific support. The behavioral observation of red flags for NDD (unlike for instance the biological assessment) is not invasive, relatively easy to perform for pediatricians during well-baby check-ups and affordable for the health care system. In addition, caregivers can be actively involved in the monitoring program of their child development by observing, for example, feeding, sleeping, social behaviors, and communicative vocalizations emitted already in the first year of their child's life. Finally, clinicians should empower parents by providing them with examples of typical, atypical and delayed developmental trajectories.

This overview of reviews may lead to defining the scientific framework through which professionals will be able to develop a new tool for the early detection of NDD. Here, we provided an overall picture of the relevant findings on early markers of NDD potentially useful to refer the child at the child psychiatric units and make a timely clinical diagnosis. However, given the paucity of data collected among systematic reviews, the present protocol should be updated when the scientific literature will provide further systematic reviews that explore early behavioral markers for any NDD. Future systematic reviews, as it was for the included studies here, should consider collecting data on the tools available to identify early markers of NDD and/or the specific behavioral item-red flag that supported clinicians in detecting the behavioral delay. It urges to systematize the assessment of early markers of NDD in order to orient professionals toward the most specific and sensible tool.

39

Conclusions

To our knowledge, the present overview of systematic reviews is the first work collecting systematic reviews on early NDD signs. We aimed to identify behavioral markers useful for blending evidence-based surveillance protocols for the early NDD' detection to be implemented in every well-baby check-up. Delays or unusual patterns in several developmental domains such as motor, language, temperament, social, sensory, play, attention, visual processing, feeding, and sleeping should be identified and considered as early warnings in the first three years of life. Evidence highlights the importance of assessing the child's developmental domains using a holistic approach instead of considering them in isolation.

Despite the large presence of studies on early NDD markers in the scientific literature, the systematic reviews and meta-analyses are still scarce and, at present, they do not provide solid and consistent data. Thus, they do not provide sufficient background to define identifiable signs at specific timepoints for early NDD' recognition on the general population. For these reasons, high-quality systematic reviews and meta-analyses exploring early markers of NND in the first three years of life should be encouraged. In order to keep clinicians informed on the research state of the art on this specific field, the present overview of reviews should be updated when more systematic reviews on the topic will be available.

The present work may represent a fruitful starting point to outline an evidence-based monitoring program that may serve general and at risk for NDD population during programmed well-baby check-ups. Future studies should forthfill this monitoring program in order to empower the early identification of NDD which is a priority for the promotion of infants/toddlers specific competences programs and the improvement of children' developmental trajectories and parental outcomes.

40

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Declarations of interest

None.

Acknowledgements

This project has received funding from the Italian Ministry of Health Project – Capitolo 2S57 [Articolo 1, comma 401, Legge 28 dicembre 2015, n. 208, recante "Disposizioni per la formazione del bilancio annuale e pluriennale dello Stato (legge di stabilità 2016)"], the "Italian Autism Spectrum Disorders Network: filling the gaps in the National Health System care" NET-2013-02355263, the "Fetal ultrasound screening for Neurodevelopmental Disorders in normal and high-risk pregnancies" In H2020-ITN.2014-BRAINVIEW 'Integrated view on discreptions of early brain development' G.A. 642996.

This work has been promoted by the ISS Neurodevelopmental Disorders group, composed by representative members of: Federazione Italiana Medici Pediatri – FIMP (Paolo Biasci, Mattia Doria, Donella Prosperi, Antonio Gulino); Società Italiana di Pediatria – SIP (Alberto Villani, Giovanni Cerimoniale), Società Italiana di Neuropsichiatria dell'infanzia e dell'adolescenza – SINPIA (Antonella Costantino, Massimo Molteni, Annalisa Monti, Renato Scifo, Carlo Calzone, Roberto Tombolato, Francesco Nardocci), Associazione culturale Pediatri – ACP (Federica Zanetto, Michele Gangemi, Gherardo Rapisardi), Società Italiana di Neonatologia – SIN (Fabio Mosca, Odoardo Picciolini, Francesca Gallini), Sindacato Medici Pediatri di Famiglia – SiMPeF (Rinaldo Missaglia, Mariaconcetta Torrieri), Istituto Superiore di Sanità (Maria Luisa Scattoni, Francesca Fulceri, Martina Micai, Andrea Guzzetta, Elena Finotti).

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

We thank Giulia Galati for the logistic and technical organization of the ISS Neurodevelopmental Disorders group meetings and manuscript writing.

References

* Denotes included works in this overview of reviews

American Psychiatric Association (2013). *Diagnostic and statistical manual of mental disorders (DSM-5)*. American Psychiatric Pub.

* Athanasiadou A., Buitelaar J. K., Brovedani P., Chorna O., Fulceri F., Guzzetta A., & Scattoni M. L. (2019). Early motor signs of attention-deficit hyperactivity disorder: a systematic review. *European Child & Adolescent Psychiatry*, 1-14. https://doi.org/10.1007/s00787-019-01298-5

Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., ... &

Durkin, M. S. (2018). Prevalence of autism spectrum disorder among children aged 8 years-

Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States,

2014. Morbidity and Mortality Weekly Report: Surveillance Summaries, 67(6), 1.

https://doi.org/10.15585/mmwr.ss6706a1

Baranek, G. T. (1999). Autism during infancy: A retrospective video analysis of sensorymotor and social behaviors at 9–12 months of age. *Journal of Autism and Developmental Disorders*, 29(3), 213-224.

Barkat-Masih, M., Saha, C., Hamby, D. K., Ofner, S., & Golomb, M. R. (2010). Feeding problems in children with neonatal arterial ischemic stroke. *Journal of Child Neurology*, *25*(7), 867-872. https://doi.org/10.1177/0883073809348354

Bedford, R., Pickles, A., & Lord, C. (2016). Early gross motor skills predict the subsequent development of language in children with autism spectrum disorder. *Autism Research*, *9*(*9*), 993-1001. https://doi.org/10.1002/aur.1587

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Benassi, E., Savini, S., Iverson, J. M., Guarini, A., Caselli, M. C., Alessandroni, R., ... & Sansavini, A. (2016). Early communicative behaviors and their relationship to motor skills in extremely preterm infants. *Research in Developmental Disabilities, 48,* 132-144. https://doi.org/10.1016/j.ridd.2015.10.017

Benzies, K. M., Magill-Evans, J. E., Hayden, K. A., & Ballantyne, M. (2013). Key components of early intervention programs for preterm infants and their parents: a systematic review and meta-analysis. *BMC Pregnancy and Childbirth, 13*(S1), S10.

https://doi.org/10.1186/1471-2393-13-S1-S10

Bishop, D. V., Holt, G., Line, E., McDonald, D., McDonald, S., & Watt, H. (2012). Parental phonological memory contributes to prediction of outcome of late talkers from 20 months to 4 years: a longitudinal study of precursors of specific language impairment. *Journal of Neurodevelopmental Disorders*, *4*(*1*), 3. https://doi.org/10.1186/1866-1955-4-3

Boat TF, Wu JT, (Eds.) (2015). *Mental disorders and disabilities among low-income children. National Academies Press.* https://www.ncbi.nlm.nih.gov/books/NBK332880/

Brian, J., Bryson, S. E., Garon, N., Roberts, W., Smith, I. M., Szatmari, P., & Zwaigenbaum,

L. (2008). Clinical assessment of autism in high-risk 18-month-olds. *Autism*, *12*(5), 433-456. https://doi.org/10.1177/1362361308094500

Butcher, P. R., Van Braeckel, K., Bouma, A., Einspieler, C., Stremmelaar, E. F., & Bos, A. F. (2009). The quality of preterm infants' spontaneous movements: an early indicator of intelligence and behaviour at school age. *Journal of Child Psychology and Psychiatry*, *50*(*8*), 920-930. https://doi.org/10.1111/j.1469-7610.2009.02066 .x

* Canu, D., Van der Paelt, S., Canal-Bedia, R., Posada, M., Vanvuchelen, M., & Roeyers, H. (2020). Early non-social behavioural indicators of autism spectrum disorder (ASD) in siblings at elevated likelihood for ASD: a systematic review. *European Child & Adolescent Psychiatry*, 1-42.

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Carson, C. P., Klee, T., Carson, D. K., & Hime, L. K. (2003). Phonological profiles of 2year-olds with delayed language development. *American Journal of Speech-Language Pathology*, *12*, 28-39. https://doi.org/10.1044/1058-0360(2003/050)

Chandler, J., Churchill, R., Higgins, J., Lasserson, T., & Tovey, D. (2013). Methodological standards for the conduct of new Cochrane Intervention Reviews. *Sl: Cochrane Collaboration*.

Chawarska, K., Macari, S., & Shic, F. (2013). Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. *Biological Psychiatry*, *74*, 195–203. https://doi.org/10.1016/j.ijdevneu.2004.05.001

Chawarska, K., Shic, F., Macari, S., Campbell, D. J., Brian, J., Landa, R., ... & Young, G. S. (2014). 18-month predictors of later outcomes in younger siblings of children with autism spectrum disorder: a baby siblings research consortium study. *Journal of the American Academy of Child & Adolescent Psychiatry*, *53*(12), 1317-1327.

https://doi.org/10.1016/j.jaac.2014.09.015

Choi, B., Leech, K. A., Tager-Flusberg, H., & Nelson, C. A. (2018). Development of fine motor skills is associated with expressive language outcomes in infants at high and low risk for autism spectrum disorder. *Journal of Neurodevelopmental Disorders*, *10*(1), 14. https://doi.org/10.1186/s11689-018-9231-3

Christensen, L., Hutman, T., Rozga, A., Young, G. S., Ozonoff, S., Rogers, S. J., ... & Sigman, M. (2010). Play and developmental outcomes in infant siblings of children with autism. *Journal of Autism and Developmental Disorders*, *40*(8), 946-957.

https://doi.org/10.1007/s10803-010-0941-y

Cioni, G., Inguaggiato, E., & Sgandurra, G. (2016). Early intervention in neurodevelopmental disorders: underlying neural mechanisms. *Developmental Medicine & Child Neurology, 58,* 61-66. https://doi.org/10.1111/dmcn.13050

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Coonrod, E. E., & Stone, W. L. (2004). Early concerns of parents of children with autistic and nonautistic disorders. *Infants & Young Children*, *17(3)*, 258-268.

Curtin, S., & Vouloumanos, A. (2013). Speech preference is associated with autistic-like behavior in 18-months-olds at risk for autism spectrum disorder. *Journal of Autism and Developmental Disorders, 43,* 2114–2120. https://doi.org/10.1007/ s10803-013-1759-1. Dale, P. S., Price, T. S., Bishop, D. V., & Plomin, R. (2003). Outcomes of early language delay. Predicting persistent and transient language difficulties at 3 and 4 years. *Journal of Speech, Language, and Hearing Research, 46,* 544-560. https://doi.org/10.1044/1092-4388(2003/044)

Damiano, C. R., Nahmias, A., Hogan-Brown, A. L., & Stone, W. L. (2013). What do repetitive and stereotyped movements mean for infant siblings of children with autism spectrum disorders?. *Journal of Autism and Developmental Disorders*, *43*(6), 1326-1335. https://doi.org/10.1007/s10803-012-1681-y

Dawson, G., Toth, K., Abbott, R., Osterling, J., Munson, J., Estes, A., & Liaw, J. (2004). Early social attention impairments in autism: social orienting, joint attention, and attention to distress. *Developmental Psychology*, *40*(2), 271. https://doi.org/10.1037/0012-1649.40.2.271 De Giacomo, A., & Fombonne, E. (1998). Parental recognition of developmental abnormalities in autism. *European Child & Adolescent Psychiatry*, *7*(*3*), 131-136. https://doi.org/10.1007/s007870050058

Del Rosario, M., Gillespie-Lynch, K., Johnson, S., Sigman, M., & Hutman, T. (2014). Parentreported temperament trajectories among infant siblings of children with autism. *Journal of Autism and Developmental Disorders*, *44*(2), 381-393. https://doi.org/10.1007/s10803-013-1876-x

Droucker, D., Curtin, S., & Vouloumanos, A. (2013). Linking infant-directed speech and face preferences to language outcomes in infants at risk for autism spectrum disorder. *Journal of*

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Speech, Language, and Hearing Research, 56, 567–576. https://doi.org/10.1044/1092-4388(2012/11-0266

Ekberg, T.L., Falck-Ytter, T., Bölte, S., Gredebäck, G., & the EASE Team (2016). Reduced prospective motor control in 10-month-olds at risk for autism spectrum disorder. *Clinical Psychological Science*, *4*, 129–135. https://doi.org/10.1177/ 2167702615576697

Estes, A., Zwaigenbaum, L., Gu, H., John, T. S., Paterson, S., Elison, J. T., ... & Kostopoulos,

P. (2015). Behavioral, cognitive, and adaptive development in infants with autism spectrum

disorder in the first 2 years of life. Journal of Neurodevelopmental Disorders, 7(1), 24.

https://doi.org/10.1186/s11689-015-9117-6

Elison, J.T., Wolff, J.J., Reznick, J.S., Botteron, K.N., Estes, A.M., Gu, H., ... Piven J.

(2014). Repetitive behavior in 12month-olds later classified with autism spectrum disorder.

Journal of the American Academy of Child & Adolescent Psychiatry, 53, 1216–1224.

https://doi.org/10.1016/j.jaac.2014.08.004

Feldman, H. M., Dale, P. S., Campbell, T. F., Colborn, D. K., Kurs-Lasky, M., Rockette, H.

E., & Paradise, J. L. (2005). Concurrent and predictive validity of parent reports of child language at ages 2 and 3 years. *Child Development*, *76*(4), 856-868.

https://doi.org/10.1111/j.1467-8624.2005.00882.x

Fernald, A., & Marchman, V. A. (2012). Individual differences in lexical processing at 18 months predict vocabulary growth in typically developing and late-talking toddlers. *Child Development*, *83*(1), 203-222. https://doi.org/10.1111/j.1467-8624.2011.01692.x

Ference, J., & Curtin, S. (2013). Attention to lexical stress and early vocabulary growth in 5month-olds at risk for autism spectrum disorder. *Journal of Experimental Child Psychology*, *116*, 891–903. https://doi.org/10.1016/j.jecp.2013.08.006

Fischel, J. E., Whitehurst, G. J., Caulfield, M. B., & DeBaryshe, B. (1989). Language growth in children with expressive language delay. *Pediatrics*, *83*, 218–227.

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

* Fisher, E. L. (2017). A systematic review and meta-analysis of predictors of expressive-

language outcomes among late talkers. Journal of Speech, Language, and Hearing

Research, 60(10), 2935-2948. https://doi.org/10.1044/2017_JSLHR-L-16-0310

* Fuentefria, R. D. N., Silveira, R. C., & Procianoy, R. S. (2017). Motor development of

preterm infants assessed by the Alberta Infant Motor Scale: systematic review article. Jornal

de Pediatria, 93(4), 328-342. https://doi.org/10.1016/j.jped.2017.03.003

Gammer, I., Bedford, R., Elsabbagh, M., Garwood, H., Pasco, G., Tucker, L., ... & BASIS

Team. (2015). Behavioural markers for autism in infancy: scores on the Autism

Observational Scale for Infants in a prospective study of at-risk siblings. Infant Behavior and

Development, 38, 107-115. https://doi.org/10.1016/j.infbeh.2014.12.017

Gamliel, I., Yirmiya, N., & Sigman, M. (2007). The development of young siblings of

children with autism from 4 to 54 months. Journal of Autism and Developmental Disorders,

37, 171–183. https://doi.org/10.1007/s10803-006-0341-5

Gangi, D.N., Ibañez, L.V., & Messinger, D.S. (2014). Joint attention initiation with and without positive affect: Risk group differences and associations with ASD symptoms. *Journal of Autism and Developmental Disorders*, *44*, 1414–1424.

https://doi.org/10.1007/s10803-013-2002-9

Garon, N., Bryson, S. E., Zwaigenbaum, L., Smith, I. M., Brian, J., Roberts, W., & Szatmari, P. (2009). Temperament and its relationship to autistic symptoms in a high-risk infant sib cohort. *Journal of Abnormal Child Psychology*, *37*(1), 59-78. https://doi.org/10.1007/s10802-008-9258-0

Garon, N., Zwaigenbaum, L., Bryson, S., Smith, I. M., Brian, J., Roncadin, C., ... & Roberts,
W. (2016). Temperament and its association with autism symptoms in a high-risk
population. *Journal of Abnormal Child Psychology*, 44(4), 757-769.
ttps://doi.org/10.1007/s10802-015-0064-1

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

* Garrido, D., Petrova, D., Watson, L. R., Garcia-Retamero, R., & Carballo, G. (2017).

Language and motor skills in siblings of children with autism spectrum disorder: A meta-

analytic review. Autism Research, 10(11), 1737-1750. https://doi.org/10.1002/aur.1829

Germani, T., Zwaigenbaum, L., Bryson, S., Brian, J., Smith, I., Roberts, W., ... &

Vaillancourt, T. (2014). Brief report: assessment of early sensory processing in infants at

high-risk of autism spectrum disorder. Journal of Autism and Developmental

Disorders, 44(12), 3264-3270. https://doi.org/10.1007/s10803-014-2175-x

Glascoe, F. P., & Robertshaw, N. S. (2007). New AAP policy on detecting and addressing developmental and behavioral problems. *Journal of Pediatric Health Care*, *21*(*6*), 407-412. https://doi.org/10.1016/j.pedhc.2007.08.008

Gurevitz, M., Geva, R., Varon, M., & Leitner, Y. (2014). Early markers in infants and toddlers for development of ADHD. *Journal of Attention Disorders, 18(1),* 14-22. https://doi.org/10.1177/10870 54712 447858

Hadders-Algra, M., & Groothuis, A. M. (1999). Quality of general movements in infancy is related to neurological dysfunction, ADHD, and aggressive behaviour. *Developmental Medicine and Child Neurology*, *41*(6), 381-391. https://doi.org/10.1017/S0012162299000845 Hadders-Algra, M., Bouwstra, H., & Groen, S. E. (2009). Quality of general movements and psychiatric morbidity at 9 to 12 years. *Early human Development*, *85*(1), 1-6. https://doi.org/10.1016/j.earlh umdev.2008.05.005

Hadley, P. A., & Holt, J. K. (2006). Individual differences in the onset of tense marking: A growth-curve analysis. *Journal of Speech, Language, and Hearing Research*, 49, 984-1000. https://doi.org/10.1044/1092-4388(2006/071)

Henrichs, J., Rescorla, L., Schenk, J. J., Schmidt, H. G., Jaddoe, V. W. V., Hofman, A., . . . Tiemeier, H. (2011). Examining continuity of early expressive vocabulary development: The

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Generation R Study. *Journal of Speech, Language, and Hearing Research, 54*, 854–869. https://doi.org/10.1044/1092-4388 (2010/09-0255)

Herlihy, L., Knoch, K., Vibert, B., & Fein, D. (2015). Parents' first concerns about toddlers with autism spectrum disorder: Effect of sibling status. *Autism*, *19*, 20–28.

https://doi.org/10.1177/1362361313509731

Hudry, K., Chandler, S., Bedford, R., Pasco, G., Gliga, T., Elsabbagh, M., ... Charman T. (2014). Early language profiles in infants at high-risk for autism spectrum disorders. *Journal of Autism and Developmental Disorders, 44*, 154–167. https://doi.org/10.1007/s10803-013-1861-4

Ibañez, L.V., Grantz, C.J., & Messinger, D.S. (2013). The development of referential communication and autism symptomatology in High-Risk infants. *Infancy*, *18*, 687–707. https://doi.org/10.1111/j.1532-7078.2012.00142.x

Iverson, J. M., Shic, F., Wall, C. A., Chawarska, K., Curtin, S., Estes, A., ... & Libertus, K. (2019). Early motor abilities in infants at heightened versus low risk for ASD: A Baby
Siblings Research Consortium (BSRC) study. *Journal of Abnormal Psychology*, *128*(1), 69. https://doi.org/10.1037/abn0000390

Jacobvitz, D., & Sroufe, L. A. (1987). The early caregiver-child relationship and attentiondeficit disorder with hyperactivity in kindergarten: A prospective study. *Child Development*, 1496-1504. https://doi.org/10.2307/1130689

Jaspers, M., de Winter, A. F., Buitelaar, J. K., Verhulst, F. C., Reijneveld, S. A., & Hartman, C. A. (2013). Early childhood assessments of community pediatric professionals predict autism spectrum and attention deficit hyperactivity problems. *Journal of Abnormal Child Psychology*, *41*(*1*), 71-80. https://doi.org/10.1007/s1080 2-012-9653-4

Jeyaseelan, D., O'Callaghan, M., Neulinger, K., Shum, D., & Burns, Y. (2006). The association between early minor motor difficulties in extreme low birth weight infants and

school age attentional difficulties. *Early Human Development*, 82(4), 249-255. https ://doi.org/10.1016/j.earlh umdev .2005.10.012

John, T.S., Estes, A.M., Dager, S.R., Kostopoulos, P., Wolff, J.J., Pandey, J., ... Piven, J. (2016). Emerging executive functioning and motor development in infants at high and low risk for autism spectrum disorder. *Frontiers in Psychology*, *7*,

https://doi.org/10.3389/fpsyg.2016.01016

Johnson, P., Ahamat, B., Mcconnachie, A., Puckering, C., Marwick, H., Furnivall, D., ... &

Wilson, P. (2014). Motor activity at age one year does not predict ADHD at seven

years. International Journal of Methods in Psychiatric Research, 23(1), 9-18.

https://doi.org/10.1002/mpr.1436

Kaur, M., Srinivasan, S. M., & Bhat, A. N. (2015). Atypical object exploration in infants atrisk for autism during the first year of life. *Frontiers in Psychology*, *6*, 798.

https://doi.org/10.3389/fpsyg.2015.00798

Key, A.P., & Stone, W.L. (2012). Same but different: 9-Month old infants at average and high risk for autism look at the same facial features but process them using different brain mechanisms. *Autism Research*, *5*, 253–266. https://doi.org/10.1002/ aur.1231

Klerk, C.C., Gliga, T., Charman, T., & Johnson, M.H. (2014). Face engagement during infancy predicts later face recognition ability in younger siblings of children with autism. *Developmental Science*, *17*, 596–611. https://doi.org/10.1111/ desc.12141

Laasonen, M., Smolander, S., Lahti-Nuuttila, P., Leminen, M., Lajunen, H. R., Heinonen, K., ... & Leppänen, P. H. (2018). Understanding developmental language disorder-the Helsinki longitudinal SLI study (HelSLI): a study protocol. *BMC Psychology*, *6*(1), 24. https://doi.org/10.1186/s40359-018-0222-7

Landa, R., & Garrett-Mayer, E. (2006). Development in infants with autism spectrum disorders: a prospective study. *Journal of Child Psychology and Psychiatry*, *47*(6), 629-638. https://doi.org/10.1111/j.1469-7610.2006.01531.x

Landa, R. J., Gross, A. L., Stuart, E. A., & Bauman, M. (2012). Latent class analysis of early developmental trajectory in baby siblings of children with autism. *Journal of Child Psychology and Psychiatry*, *53*(9), 986-996. https://doi.org/10.1111/j.1469-

7610.2012.02558.x

Lazenby, D.C., Sideridis, G.D., Huntington, N., Prante, M., Dale, P.S., Curtin, S., ... Tager-Flusberg, H. (2016). Language differences at 12 months in infants who develop autism spectrum disorder. *Journal of Autism and Developmental Disorders*, *46*, 899–909. https://doi.org/10.1007/s10803-0152632-1

LeBarton, E. S., & Landa, R. J. (2019). Infant motor skill predicts later expressive language and autism spectrum disorder diagnosis. *Infant Behavior and Development*, *54*, 37-47. https://doi.org/10.1016/j.infbeh.2018.11.003

Lee, J. (2011). Size matters: Early vocabulary as a predictor of language and literacy competence. *Applied Psycholinguistics*, *32*(1), 69-92.

https://doi.org/10.1017/S0142716410000299

Lemcke, S., Parner, E. T., Bjerrum, M., Thomsen, P. H., & Lauritsen, M. B. (2016). Early development in children that are later diagnosed with disorders of attention and activity: a longitudinal study in the Danish National Birth Cohort. *European Child & Adolescent Psychiatry*, *25(10)*, 1055-1066. https://doi.org/10.1007/s0078 7-016-0825-6

Leonard, H. C., & Hill, E. L. (2014). The impact of motor development on typical and atypical social cognition and language: A systematic review. *Child and Adolescent Mental Health*, *19*(*3*), 163-170. https://doi.org/10.1111/camh.12055

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Leonard, H.C., Bedford, R., Pickles, A., Hill, E.L., & BASIS Team. (2015). Predicting the rate of language development from early motor skills in at-risk infants who develop autism spectrum disorder. *Research in Autism Spectrum Disorders, 13,* 15–24. https://doi.org/10.1016/j.rasd.2014.12.012

Libertus, K., Sheperd, K.A., Ross, S.W., & Landa, R.J. (2014). Limited fine motor and grasping skills in 6-month-old infants at high risk for autism. *Child Development*, *85*, 2218–2231. https://doi.org/10.1111/cdev.12262

Lipkin, P.H., Macias, M.M., & COUNCIL ON CHILDREN WITH DISABILITIES, SECTION ON DEVELOPMENTAL AND BEHAVIORAL PEDIATRICS (2019).

Promoting optimal development: identifying infants and young children with developmental disorders through developmental surveillance and screening, *Pediatrics*, e20193449.

https://doi.org/10.1542/peds.2019-3449

Lyytinen, P., Eklund, K., & Lyytinen, H. (2005). Language development and literacy skills in late-talking toddlers with and without familial risk for dyslexia. *Annals of Dyslexia*, 55, 166–192.

Macari, S.L., Campbell, D., Gengoux, G.W., Saulnier, C.A., Klin, A.J., & Chawarska, K. (2012). Predicting developmental status from 12 to 24 months in infants at risk for autism spectrum disorder: A preliminary report. *Journal of Autism and Developmental Disorders*, *42*, 2636–2647. https://doi.org/10.1007/ s10803-012-1521-0

Maestro, S., Muratori, F., Cavallaro, M. C., Pei, F., Stern, D., Golse, B., & Palacio-Espasa, F. (2002). Attentional skills during the first 6 months of age in autism spectrum disorder. *Journal of the American Academy of Child & Adolescent Psychiatry*, *41*(*10*), 1239-1245. https://doi.org/10.1097/00004583-200210000-00014

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Maestro, S., Muratori, F., Barbieri, F., Casella, C., Cattaneo, V., Cavallaro, M. C., ... & Stern, D. D. (2001). Early behavioral development in autistic children: the first 2 years of life through home movies. *Psychopathology*, *34*(*3*), 147-152. https://doi.org/10.1159/000049298 Mars, A. E., Mauk, J. E., & Dowrick, P. W. (1998). Symptoms of pervasive developmental disorders as observed in prediagnostic home videos of infants and toddlers. *The Journal of Pediatrics*, *132*(*3*), 500-504. https://doi.org/10.1016/S0022-3476(98)70027-7

McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. *Psychological Methods*, *1*(*1*), 30. https://doi.org/10.1037/1082-989X.1.1.30 Medoff-Cooper, B., & Gennaro, S. (1996). The correlation of sucking behaviors and Bayley Scales of Infant Development at six months of age in VLBW infants. *Nursing Research*, *45*(*5*), 291-296.

Messinger, D.S., Young, G.S., Webb, S.J., Ozonoff, S., Bryson, S.E., Carter, A.,

...Zwaigenbaum, L. (2015). Early sex differences are not autism-specific: A baby siblings research consortium (BSRC) study. *Molecular Autism*, *6*, 1. https://doi.org/10.1186/ s13229-015-0027-y

Meyer Palmer M, & Heyman MB. (1999). Developmental outcome for neonates with dysfunction and disorganized sucking patterns: preliminary findings. Infant-Toddler Intervention. *Transdisciplinary Journal*, *9*, 299–308.

Miller, M., Young, G.S., Hutman, T., Johnson, S., Schwichtenberg, A., & Ozonoff, S. (2015).
Early pragmatic language difficulties in siblings of children with autism: Implications for
DSM-5 social communication disorder?. *Journal of Child Psychology and Psychiatry*, 56,
774–781. https://doi.org/10.1111/jcpp.12342.

Mitchell, S., Brian, J., Zwaigenbaum, L., Roberts, W., Szatmari, P., Smith, I., & Bryson, S. (2006). Early language and communication development of infants later diagnosed with

autism spectrum disorder. *Journal of Developmental & Behavioral Pediatrics, 27*, S69–S78. https://doi.org/10.1097/00004703200604002-00004

Mizuno, K., & Ueda, A. (2005). Neonatal feeding performance as a predictor of

neurodevelopmental outcome at 18 months. Developmental Medicine & Child

Neurology, 47(5), 299-304. https://doi.org/10.1111/j.1469-8749.2005.tb01140.x

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for

systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal

Medicine, 151(4), 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135

Moyle, M. J., Weismer, S. E., Evans, J. L., & Lindstrom, M. J. (2007). Longitudinal relationships between lexical and grammatical development in typical and late-talking children. *Journal of Speech, Language, and Hearing Research, 50*, 508-528.

https://doi.org/10.1044/1092-4388(2007/035)

Mulligan, S., & White, B.P. (2012). Sensory and motor behaviors of infant siblings of children with and without autism. *American Journal of Occupational Therapy*, *66*, 556–566. https://doi.org/10.5014/ajot.2012.004077

Nickel, L. R., Thatcher, A. R., Keller, F., Wozniak, R. H., & Iverson, J. M. (2013). Posture development in infants at heightened versus low risk for autism spectrum disorders. *Infancy*, *18*(5), 639-661. https://doi.org/10.1111/infa.12025

Oberklaid, F., & Drever, K. (2011). Is my child normal? Milestones and red flags for referral. *Australian Journal of General Practice*, *40*(*9*), 666.

Osterling, J., & Dawson, G. (1994). Early recognition of children with autism: A study of first birthday home videotapes. *Journal of Autism and Developmental Disorders, 24(3),* 247-257.

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Osterling, J. A., Dawson, G., & Munson, J. A. (2002). Early recognition of 1-year-old infants with autism spectrum disorder versus mental retardation. *Development and*

Psychopathology, 14(2), 239-251. https://doi.org/10.1017/S0954579402002031

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. *Systematic Reviews*, *5*(1), 210.

https://doi.org/10.1186/s13643-016-0384-4

Ozonoff, S., Young, G.S., Belding, A., Hill, M., Hill, A., Hutman, T., ... Iosif, A.M. (2014).

The broader autism phenotype in infancy: When does it emerge?. Journal of the American

Academy of Child & Adolescent Psychiatry, 53, 398–407. e2.

https://doi.org/10.1016/j.jaac.2013.12.020

* Palomo, R., Belinchón, M., & Ozonoff, S. (2006). Autism and family home movies: a comprehensive review. *Journal of Developmental & Behavioral Pediatrics*, 27(2), S59-S68.

Paul, R., Fuerst, Y., Ramsay, G., Chawarska, K., & Klin, A. (2011). Out of the mouths of babes: Vocal production in infant siblings of children with ASD. *Journal of Child Psychology and Psychiatry*, *52*, 588–598. https://doi.org/10.1111/j.14697610.2010.02332.x

Paul, R., Looney, S. S., & Dahm, P. S. (1991). Communication and socialization skills at ages 2 and 3 in "late-talking" young children. *Journal of Speech and Hearing Research, 34*, 858–865.

Petinou, K., & Spanoudis, G. (2014). Early language delay phenotypes and correlation with later linguistic abilities. *Folia Phoniatrica et Logopaedica*, 66(1-2), 67-76.

https://doi.org/10.1159/000365848

Peyre, H., Bernard, J. Y., Forhan, A., Charles, M. A., De Agostini, M., Heude, B., & Ramus,
F. (2014). Predicting changes in language skills between 2 and 3 years in the EDEN mother– child cohort. *PeerJ*, 2, e335. https://doi.org/10.7717/peerj.335

Pijl, M. K. J., Bussu, G., Charman, T., Johnson, M. H., Jones, E. J., Pasco, G., ... & BASIS Team. (2019). Temperament as an early risk marker for Autism Spectrum Disorders? A longitudinal study of high-risk and low-risk infants. *Journal of Autism and Developmental Disorders*, *49*(5), 1825-1836. https://doi.org/10.1007/s10803-018-3855-8

Presmanes, A.G., Walden, T.A., Stone, W.L., & Yoder, P.J. (2007). Effects of different attentional cues on responding to joint attention in younger siblings of children with autism spectrum disorders. *Journal of Autism and Developmental Disorders, 37*, 133–144. https://doi.org/10.1007/s10803-0060338-0

Prins, S. A., Von Lindern, J. S., Van Dijk, S., & Versteegh, F. G. A. (2010). Motor development of premature infants born between 32 and 34 weeks. *International Journal of Pediatrics*, 2010, 1-4. https://doi.org/10.1155/2010/462048

Radecki, L., Sand-Loud, N., O'Connor, K. G., Sharp, S., & Olson, L. M. (2011). Trends in the use of standardized tools for developmental screening in early childhood: 2002–

2009. Pediatrics, 128(1), 14-19. https://doi.org/10.1542/peds.2010-2180

Rescorla, L., & Schwartz, E. (1990). Outcome of toddlers with specific expressive language delay. *Applied Psycholinguistics*, *11*(4), 393-407.

https://doi.org/10.1017/S0142716400009644

Robins, D., Adamson, L. B., Barton, M., Connell, J. E., Dumont- Mathieu, T., Dworkin, P.
H., et al. (2016). Universal autism screening for toddlers: Recommendations at odds. *Journal of Autism and Developmental Disorders*, 46(5), 1880–1882. https://doi.org/10.1007/s10803-016-2697-5.

Rogers, S. J., & DiLalla, D. L. (1990). Age of symptom onset in young children with pervasive developmental disorders. *Journal of the American Academy of Child & Adolescent Psychiatry*, 29(6), 863-872. https://doi.org/10.1097/00004583-199011000-00004

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Sacrey, L. A. R., Bryson, S. E., & Zwaigenbaum, L. (2013). Prospective examination of visual attention during play in infants at high-risk for autism spectrum disorder: A longitudinal study from 6 to 36 months of age. *Behavioural Brain Research*, *256*, 441-450. https://doi.org/10.1016/j.bbr.2013.08.028

Sacrey, L. A. R., Zwaigenbaum, L., Bryson, S., Brian, J., & Smith, I. M. (2018). The reachto-grasp movement in infants later diagnosed with autism spectrum disorder: a high-risk sibling cohort study. *Journal of Neurodevelopmental Disorders*, *10*(1), 41.

https://doi.org/10.1186/s11689-018-9259-4

Sacrey, L. A. R., Zwaigenbaum, L., Bryson, S., Brian, J., Smith, I. M., Roberts, W., ... & Vaillancourt, T. (2015). Can parents' concerns predict autism spectrum disorder? A prospective study of high-risk siblings from 6 to 36 months of age. *Journal of the American Academy of Child & Adolescent Psychiatry*, *54*(6), 470-478.

https://doi.org/10.1016/j.jaac.2015.03.014

Schendel, D. E., & Thorsteinsson, E. (2018). Cumulative Incidence of Autism Into Adulthood for Birth Cohorts in Denmark, 1980-2012. *JAMA*, *320(17)*, 1811-1813. https://doi.org/10.1001/jama.2018.11328

Schonwald, A., Huntington, N., Chan, E., Risko, W., & Bridgemohan, C. (2009). Routine developmental screening implemented in urban primary care settings: more evidence of feasibility and effectiveness. *Pediatrics*, *123(2)*, 660-668. https://doi.org/10.1542/peds.2007-2798

Schwichtenberg, A.J., Young, G.S., Hutman, T., Iosif, A., Sigman, M., Rogers, S.J., & Ozonoff, S. (2013). Behavior and sleep problems in children with a family history of autism. *Autism Research*, *6*, 169–176. https://doi.org/10.1002/aur.1278

Shea, B. J., Reeves, B. C., Wells, G., Thuku, M., Hamel, C., Moran, J., ... & Henry, D. A.

(2017). AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

or non-randomised studies of healthcare interventions, or both. Bmj, 358, j4008.

https://doi.org/10.1136/bmj.j4008

Silverstein, M., & Radesky, J. (2016). Embrace the complexity: The US Preventive Services Task Force recommendation on screening for autism spectrum disorder. *JAMA*, *315*(7), 661. https://doi. org/10.1001/jama.2016.0051.

Siu, A. L., the US Preventive Services Task Force (USPSTF), Bib- bins-Domingo, K.,

Grossman, D. C., Baumann, L. C., Davidson, K. W., et al. (2016). Screening for autism spectrum disorder in young children: US Preventive Services Task Force recommendation statement. *JAMA*, *315*(7), 691. https://doi.org/10.1001/jama.2016.0018.

* Slattery, J., Morgan, A., & Douglas, J. (2012). Early sucking and swallowing problems as predictors of neurodevelopmental outcome in children with neonatal brain injury: a

systematic review. Developmental Medicine & Child Neurology, 54(9), 796-806.

https://doi.org/10.1111/j.1469-8749.2012.04318.x

Smith, T. R. (2016). Developmental Surveillance and Screening in the Electronic Health

Record. Pediatric Clinics, 63(5), 933-943. https://doi.org/10.1016/j.pcl.2016.06.014

Spittle, A. J., Lee, K. J., Spencer-Smith, M., Lorefice, L. E., Anderson, P. J., & Doyle, L. W.

(2015). Accuracy of two motor assessments during the first year of life in preterm infants for

predicting motor outcome at preschool age. PLoS One, 10(5).

https://doi.org/10.1371/journal.pone.0125854

Stone, W.L., McMahon, C.R., Yoder, P.J., & Walden, T.A. (2007). Early socialcommunicative and cognitive development of younger siblings of children with autism spectrum disorders. *Archives of Pediatrics & Adolescent Medicine, 161,* 384–390. https://doi.org/10.1001/archpedi.161.4.384

Journal Pre-proof

59

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

Sullivan, K., Stone, W. L., & Dawson, G. (2014). Potential neural mechanisms underlying the effectiveness of early intervention for children with autism spectrum disorder. *Research in Developmental Disabilities*, *35(11)*, 2921-2932. https://doi.org/10.1016/j.ridd.2014.07.027 Talbott, M.R., Nelson, C.A., & Tager-Flusberg, H. (2015). Maternal gesture use and language development in infant siblings of children with autism spectrum disorder. *Journal of Autism and Developmental Disorders*, *45*, 4–14. https://doi.org/10.1007/s10803-015-2383z

Thal, D., Tobias, S., & Morrison, D. (1991). Language and gesture in late talkers: A 1-year follow-up. *Journal of Speech, Language, and Hearing Research, 34(3),* 604-612. https://doi.org/10.1044/jshr.3403.604

Toth, K., Dawson, G., Meltzoff, A.N., Greenson, J., & Fein, D. (2007). Early social, imitation, play, and language abilities of young non-autistic siblings of children with autism. *Journal of Autism and Developmental Disorders*, *37*, 145–157.

https://doi.org/10.1007/s10803-006-0336-2

Trauner, D. A. (2019). Neurodevelopmental disabilities. *Current Opinion in Neurology*, *32*(*4*), 610. https://doi.org/10.1097/WCO.000000000000720

Tsai, S. W., Chen, C. H., & Lin, M. C. (2010). Prediction for developmental delay on Neonatal Oral Motor Assessment Scale in preterm infants without brain lesion. *Pediatrics International*, *52(1)*, 65-68. https://doi.org/10.1111/j.1442-200X.2009.02882.x

Vitrikas, K., Savard, D., & Bucaj, M. (2017). Developmental delay: when and how to screen. *Am Fam Physician*, *96*(1), 36-43.

Vuksanovic, J. R. (2015). Relationship between social interaction bids and language in late talking children. *International Journal of Speech-Language Pathology*, *17*, 527–536.

Willcutt, E. G. (2012). The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. *Neurotherapeutics*, *9*(*3*), 490-499. https://doi.org/10.1007/s13311-012-0135-8

Wimpory, D. C., Hobson, R. P., Williams, J. M. G., & Nash, S. (2000). Are infants with autism socially engaged? A study of recent retrospective parental reports. *Journal of Autism and Developmental Disorders*, *30*(*6*), 525-536.

Werner, E., Dawson, G., Osterling, J., & Dinno, N. (2000). Brief report: Recognition of autism spectrum disorder before one year of age: A retrospective study based on home videotapes. *Journal of Autism and Developmental Disorders*, *30*(*2*), 157.

Werner, E., & Dawson, G. (2005). Validation of the phenomenon of autistic regression using home videotapes. Archives of General Psychiatry, 62(8), 889-895.

https://doi.org/10.1001/archpsyc.62.8.889

Wetherby, A. M., & Woods, J. J. (2006). Early social interaction project for children with autism spectrum disorders beginning in the second year of life: A preliminary study. *Topics in Early Childhood Special Education*, 26(2), 67-82.

https://doi.org/10.1177/02711214060260020201

Whitehurst, G.J., Smith, M., Fischel, J.E., Arnold, D.S., & Lonigan, C.J. (1991). The continuity of babble and speech in children with specific expressive language delay. *Journal of Speech and Hearing Research, 34*, 1121-1129. https://doi.org/10.1044/jshr.3405.1121 Williams, A. L., & Elbert, M. (2003). A prospective longitudinal study of phonological development in late talkers. *Language, Speech, and Hearing Services in Schools, 34*, 138–153.

Wolff, J. J., Dimian, A. F., Botteron, K. N., Dager, S. R., Elison, J. T., Estes, A. M., ... & IBIS Network. (2019). A longitudinal study of parent-reported sensory responsiveness in

EARLY BEHAVIORAL SIGNS FOR NEURODEVELOPMENTAL DISORDERS

toddlers at-risk for autism. *Journal of Child Psychology and Psychiatry*, 60(3), 314-324. https://doi.org/10.1111/jcpp.12978

Xu, G., Strathearn, L., Liu, B., & Bao, W. (2018). Prevalence of autism spectrum disorder among US children and adolescents, 2014-2016. *JAMA*, *319*(*1*), 81-82.

https://doi.org/10.1001/jama.2017.17812

Yeargin-Allsopp, M., Boyle, C., van Naarden-Braun, K., & Trevathan, E. (2008). The

epidemiology of developmental disabilities. In: P. J. Accardo & A. J. Capute (Eds.), *Capute* & *Accardo's Neurodevelopmental Disabilities in Infancy and Childhood:*

Neurodevelopmental diagnosis and treatment 3rd ed. (61–104). Baltimore: Paul H. Brookes Publishing Co.

Yirmiya, N., Gamliel, I., Shaked, M., & Sigman, M. (2007). Cognitive and verbal abilities of 24-to 36-month-old siblings of children with autism. *Journal of Autism and Developmental Disorders*, *37*, 218–229. https://doi.org/10.1007/s10803-006-0163-5

Young, G.S., Merin, N., Rogers, S.J., & Ozonoff, S. (2009). Gaze behavior and affect at 6 months: Predicting clinical outcomes and language development in typically developing infants and infants at risk for autism. *Developmental Science*, *12*, 798–814.

https://doi.org/10.1111/j.1467-7687.2009.00833.x

Young, G. S., Rogers, S. J., Hutman, T., Rozga, A., Sigman, M., & Ozonoff, S. (2011).
Imitation from 12 to 24 months in autism and typical development: A longitudinal Rasch analysis. *Developmental Psychology*, *47*(6), 1565. https://doi.org/10.1037/a0025418
Yuen, T., Carter, M. T., Szatmari, P., & Ungar, W. J. (2018). Cost-effectiveness of universal or high-risk screening compared to surveillance monitoring in autism spectrum disorder. *Journal of Autism and Developmental Disorders*, *48*(9), 2968-2979. https://doi.org/10.1007/s10803-018-3571-4

Zablotsky, B., Black, L. I., Maenner, M. J., Schieve, L. A., Danielson, M. L., Bitsko, R. H., ...

& Boyle, C. A. (2019). Prevalence and Trends of Developmental Disabilities among Children

in the United States: 2009–2017. Pediatrics, 144(4), e20190811.

https://doi.org/10.1542/peds.2019-0811

Zwaigenbaum, L., Bryson, S., Lord, C., Rogers, S., Carter, A., Carver, L., ... & Fein, D.

(2009). Clinical assessment and management of toddlers with suspected autism spectrum

disorder: insights from studies of high-risk infants. Pediatrics, 123(5), 1383-1391.

https://doi.org/10.1542/peds.2008-1606

Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005).

Behavioral manifestations of autism in the first year of life. International Journal of

Developmental Neuroscience, 23, 143-152. https://doi.org/10.1016/j.ijdevneu.2004.05.001

Zwaigenbaum, L., Thurm, A., Stone, W., Baranek, G., Bryson, S., Iverson, J., ... & Rogers, S.

(2007). Studying the emergence of autism spectrum disorders in high-risk infants:

methodological and practical issues. *Journal of Autism and Developmental Disorders*, *37(3)*, 466-480.