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Abstract

We obtain random vectors with null third-order cumulants by project-
ing the data onto appropriate subspaces. Statistical applications include,
but are not limited to, the robusti�cation of Hotelling�s T 2 test against
nonnormality. Our approach only requires the existence of the third-order
moments and leads to normal transformed variables when the parent dis-
tribution belongs to well-known classes of sample selection models.

Some key words: Finite mixture; Multivariate analysis of variance; Nonran-
dom sampling; Singular value decomposition; Symmetrization.

1 Introduction

Let � = (�1; :::; �d)
T be the mean of a d�dimensional random vector x =

(X1; :::; Xd)
T satisfying E (jXiXjXkj) < +1 for i; j; k = 1; :::; d. The third

cumulant of x is the d2 � d matrix �3 (x) = E
n
(x� �)
 (x� �)T 
 (x� �)

o
,

where "
" denotes the Kronecker product (see, for example, De Luca & Loper-
�do, 2012). In the following, when referring to a third cumulant, we implicitly
assume the existence of all the third-order moments of the corresponding ran-
dom vector. The third cumulant of x is a null matrix when x is symmetric about
a real vector c 2 Rd, that is if x� c and c� x are identically distributed. How-
ever, the converse is not necessarily true, as shown by many univariate examples.
Bearing this in mind, we shall refer to random vectors whose third cumulants
are null matrices as to weakly symmetric vectors. Weak symmetry, or lack of it,
plays a fundamental role in probability and statistics. As a �rst example, the
asymptotic distributions of commonly used MANOVA statistics greatly simplify
when the sampled distribution is weakly symmetric (Gupta et al, 2008). As a
second example, multivariate sample means admitting valid Edgeworth expan-
sions converge to normality at a quicker rate, when the observations are weakly
symmetric (Marsh, 2004). Similar comments hold for the asymptotic distribu-
tion of maximum likelihood estimates (Patriota & Cordeiro, 2011). As a third
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example, theoretical and empirical results (Mardia, 1970; Mardia, 1974; Everitt,
1979; Davis, 1982) hint that sampling distribution of Hotelling�s T 2 statistic is
quite robust to nonnormality, when the sampled distribution is weakly symmet-
ric. Moreover, theoretical results in Fujikoshi (1997) imply that the Kolmogorov
distance between the sampling distribution of Hotelling�s statistic and the chi-
squared distribution with d degrees of freedom converges to zero at a faster rate
when the sampled distribution is d�dimensional, weakly symmetric, centered
at the origin and has �nite moments of appropriate order.
Symmetry is usually pursued by means of power transformations, primar-

ily the Box-Cox one. Statistical applications include skewness removal from
Hotelling�s T 2 statistic when testing hypotheses about a multivariate mean
(Freeman & Modarres, 2006; Niaki & Abbasi, 2007). However, power trans-
formations su¤er from some serious drawbacks, as pointed out by Hubert &
Van der Veeken (2008) and Lin & Lin (2010), among others. In the �rst place,
the transformed variables are neither a¢ ne invariant nor robust to outliers. In
the second place, they might not be easily interpretable nor jointly normal.
For the sake of completeness, we shall mention two symmetrization tech-

niques di¤erent from power transformations. Hall (1992) studied empirical
transformations for removing most of the skewness of an asymmetric statis-
tic using a monotone and an invertible cubic polynomial. Fujioka & Maesono
(2000) also propose a transformation for removing skewness from U-statistics.
Both transformations are limited to univariate data.
The present paper deal with the above issues by means of appropriate linear

transformations, with special emphasis on Hotelling�s T 2 statistic and nonran-
dom sampling. The approach is nonparametric in nature, since it applies to any
multivariate data with �nite third-order moments. It also leads to multivariate
normal transformed variables, under some additional assumptions. Both real
and simulated data encourage its use in statistical practice.
The rest of the paper is organized as follows. Sections 2 and 3 describe

the symmetrization methods for the bivariate case and the multivariate case,
respectively. Section 4 applies the method described in Section 3 to nonrandom
samples from multivariate normal distributions. Sections 5 and 6 assess the
practical relevance of the theoretical results in the previous sections by means
of simulation studies and numerical examples, respectively. Section 7 contains
some concluding remarks and hints for future research. All proofs are deferred
to the Appendix.

2 The bivariate case

This section investigates the simplest case of linear transformations to symme-
try, which involves two random variables only. We shall motivate it with the
following example. Let Z1, Z2, Z3 be three independent, identically distributed
gamma variables. Also, let W1 = Z1�Z3 and W2 = Z2�Z3. Then W1 and W2

are symmetric random variables but the third cumulant of w = (W1;W2)
T is

not a null matrix. As a direct consequence, no componentwise power transfor-
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mation
�
W a
1 ;W

b
2

�T
, with a; b 2 R, has a third cumulant which is a null matrix.

However, there are three linear functions of w which are symmetric: W1, W2

and W1 �W2.
A natural question to ask is whether any two random variables with �nite

third moments X1 and X2 might be linearly combined to form another ran-
dom variable a1X1 + a2X2 whose third cumulant is zero. Surprisingly enough,
the answer is in the a¢ rmative, as it can be shown constructively. When the
third cumulant of either variable is zero, the linear function might be taken
as the variable itself. Hence, without loss of generality, we shall assume that
the third cumulants of both X1 and X2 are di¤erent from zero. The third cu-
mulant �3 (W ) of the random variable W = wX1 +X2 is E

n
(wY1 + Y2)

3
o
=

w3E
�
Y 31
�
+3w2E

�
Y 21 Y2

�
+3wE

�
Y1Y

2
2

�
+E

�
Y 32
�
; where Y1 = X1�E (X1) and

Y2 = X2 � E (X2). The third cumulant of W is then a cubic polynomial in w:
�3 (W ) = aw

3+bw2+cw+d, where a = E
�
Y 31
�
, b = 3E

�
Y 21 Y2

�
, c = 3E

�
Y1Y

2
2

�
,

d = E
�
Y 32
�
. By elementary algebra the the cubic equation ax3+bx2+cx+d = 0

has at least one real root, that is s + t � v, where s = 3
p
r + u, t = 3

p
r � u,

u =
p
q3 + r2, q =

�
3ac� b2

�
=
�
9a2
�
, r =

�
9abc� 27a2d� 2b3

�
=
�
54a3

�
, v =

E
�
Y 21 Y2

�
=E
�
Y 31
�
.

Sample moments provide convenient choices for the variables X1 and X2 in
many statistical applications. For example, let Mn and Qn be the �rst and
second sample moment of n random variables with �nite sixth-order moments.
Then there is a real value w such that the third cumulant of wMn+Qn is zero.
As a direct consequence, under very general conditions, it is possible to �nd
an a¢ ne function of the �rst and second sample moment which converges to
the standard normal distribution at a faster rate than the standardized sample
mean itself.
The method naturally generalizes to any d�dimensional random vector x =

(X1; :::; Xd)
T , with d > 2 and �nite third-order moments. Without loss of gener-

ality, we can assume that the variance of x is a positive de�nite matrix and that
all components of x are standardized random variables whose third moments
are di¤erent from zero. Also, let �1; :::; �d be d�dimensional real vectors such
that the i�th component of �i is zero, for i = 1; :::; d. We can then apply the
above described method to the pairs

�
X1; �

T
1 x
�
, ...,

�
Xd; �

T
d x
�
to obtain the

weakly symmetric random variables Y1 = �1X1 + �
T
1 x, ..., Yd = �dXd + �

T
d x,

where �i 2 R0, for i = 1; :::; d. Judiciously chosen vectors �1; :::; �d will yield
a vector y = (Y1; :::; Yd)

T whose variance is a positive de�nite matrix. As an
example, consider the trivariate random vector x = (X1; X2; X3)

T and apply
the method described to the pairs (X1; X2), (X2; X3) and (X3; X1) to obtain
the weakly symmetric random variables Y1 = �1X1 + X2, Y2 = �2X2 + X3,
Y3 = �3X3 +X1. It follows that the variance of (Y1; Y2; Y3)

T is a positive def-
inite matrix and that �1 = (0; 1; 0)

T , �2 = (0; 0; 1)
T , �3 = (1; 0; 0)

T . However,
the vector y = (Y1; :::; Yd)

T is not in general weakly symmetric, despite the fact
that all its components are. We shall deal with this problem in the next section,
by making some assumptions about the rank of the third cumulant.
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3 The multivariate case

This section deals with linear transformations to symmetry of several vari-
ables, motivated by the problem of testing the hypothesis that the mean � =
(�1; :::; �d)

T of a d�dimensional random vector x = (X1; :::; Xd)
T equals a

known real vector �0 = (�01; :::; �0d)
T . In a nonparametric setting, the natural

test statistic is Hotelling�s T 2, whose distribution is approximately chi-squared
when the sample size is large and the parent population is not too skewed. When
this is not the case, the power method approaches the problem by looking for

a transformation y =
�
X�1
1 ; :::; X

�d
d

�T
which is symmetric, where �i 2 R for

i = 1; :::; d. Under the null hypothesis, the mean of y is in general di¤erent from�
��101 ; :::; �

�d
0d

�T
, and it is impossible to obtain without additional information

about the distribution of x. On the other hand, assume the existence of a matrix
A 2 Rk � Rd, with 1 � k < d, such that w = Ax is a weakly symmetric vector.
Under the null hypothesis, the mean of w is known, being equal to A�0. Weak
symmetry of w improves the chi-squared approximation to the null distribution
of Hotelling�s T 2 statistics based on the transformed data. The following propo-
sition shows that such a matrix exists when the third cumulant of x is not of
full rank, and its rows belong to the linear space generated by the right singular
vectors associated with its null singular values.

Proposition 1 Let x be a d�dimensional random vector whose third cumulant
�3 (x) has rank d� k, with 0 < k < d. Moreover, let A be a k� d matrix whose
rows span the null space of �T3 (x)�3 (x). Then the third cumulant of Ax is a
null matrix.

The above proposition might be applied to mixtures of multivariate normal
distributions. Let the distribution of the d�dimensional random vector x be
the mixture, with weights �1, ..., �k of the normal distributions Nd (�1;
1), :::,
Nd (�k;
k). In the general case, the third cumulant of x is not a null matrix.
Consider now a k � d matrix A satisfying A�i = 0k for i = 1; ..., d. It follows
that Ax is both centrally and weakly symmetric, being the scale mixture of
normal distributions centered at the origin. Moreover, Ax is normal when the
variances 
1, ..., 
k are equal.
Third cumulants of rank one provide the simplest, yet nontrivial applications

of the above theoretical result. Statistical multivariate models whose third cu-
mulants are rank one matrices include, but are not limited to, the extended
skew-normal distribution (Arnold & Beaver, 2002), the normal-gamma distrib-
ution (Adcock & Shutes, 2012), a special case of the SGARCH model (De Luca
& Loper�do, 2012) and mixtures of two homoscedastic symmetric components
(Loper�do, 2013). Any third-order cumulant of rank one corresponding to a
d�dimensional random vector might be represented as � 
 �T 
 �, where � is
a d�dimensional, real, nonnull vector (see, for example, Christiansen & Loper-
�do, 2014). Hence weakly symmetric random vectors which are linear functions
of a d�dimensional random vector x are of the form

�
�T1 x; :::; �

T
d�1x

�
, where
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�i 2 Rd0 and �Ti � = 0, for i = 1, :::, d� 1.
In practice, inference on the symmetrizing matrix A is sought. The matrix

�T3 (x)�3 (x) might be estimated by Mn = k
T
3;n (X) k3;n (X), where k3;n (X) is

the third sample cumulant n�1
P

i (xi � x) 
 (xi � x) T 
 (xi � x), where xTi
is the i�th row of the data matrix X, x is the sample mean and n is the
number of units. The eigenvalues and the eigenprojections of Mn converge to
the corresponding quantities of �T3 (x)�3 (x), under mild assumptions (Tyler,
1981). This suggests to choose the rows of A among the right singular vectors
associated with the smallest right singular values of k3;n (X). Also, asymptotic
results in Tyler (1981) allow for hypothesis testing on A.
The symmetrization methods illustrated in the previous section and in this

one complement each other. The former is applicable to any random vector of
dimension greater than one, but it might lead to nonnegligible information loss.
The former might retain more information, but it is not always applicable.

4 Weighted distributions

We shall now turn our attention to nonrandom samples, where the probability of
including a given unit depends on the variables�outcome associated with the unit
itself. Nonrandomness is usually modelled by weighted distributions of the form
f (x)w (x) =E fw (x)g, where f (x) is the sampled density, w (x) is the weight
function and E fw (x)g is the normalizing constant (Patil & Rao, 1978). When
the sampled distribution is multivariate normal and the weight function satis�es
0 � w (�a) = 1 � w (a) � 1 for a 2 Rd the weighted distribution is general-
ized skew-normal (Genton & Loper�do, 2005), with pdf 2�d (x; �;
)w (x� �),
�d (x; �;
) being the pdf of Nd (�;
). Several authors, including Genton &
Loper�do (2005), Ley & Paindaveine (2010a, 2010b), Hallin & Ley (2012) also
considered the special case w (x� �) = h

�
�T (x� �)

	
, where h (�) is a func-

tion satisfying 0 � h (�c) = 1 � h (c) � 1 for any real value c and � is a
d�dimensional real vector.
Let x1, ..., xn and y1, ..., ym be two samples drawn from Nd (�1;�) and

Nd (�2;�), respectively, for testing H0 : �1 = �2 versus H1 : �1 6= �2, where
det (
) > 0 and n + m > d. The problem is straightforward under random
sampling, but becomes very di¢ cult when one or both samples are nonrandom.
In the �rst place, the distribution of Hotelling�s T 2 statistics is not known any
more. Moreover, the two samples might be biased in di¤erent ways, so that
E (xi) = �1+ �1 and E (yj) = �2+ �2 , with �1; �2 2 Rd, i = 1, :::, n and j = 1,
:::, m. As a direct consequence, the two sample means might be very similar
while the populations means are not and vice versa. Similar problems arise in
other multivariate techniques and cannot be solved by power transformations
to symmetry.
The multivariate skew-normal distribution (Azzalini & Dalla Valle, 1996) is

a very well-known model of weighted normal distribution, and we shall use it to
evaluate the e¤ect of biased sampling on the power of tests based on Hotelling�s
T 2 statistic. The distribution of a random vector x is multivariate skew-normal
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with location parameter �, scale parameter 
 and shape parameter �, that is x �
SNd (�;
; �), if its pdf is 2�d (x� �; 
)�

�
�T (x� �)

	
, where � (�) is the cdf of

a standardized normal variable and �d (x� �; 
) is the pdf of a d�dimensional
normal distribution with mean � and variance 
. Suppose we wish to use
Hotelling�s T 2 statistic for testing the hypothesis that the mean of a multivariate
distribution is a null vector. Furthermore, assume that the sampled distribution
is Nd (0d;
), with det (
) > 0. Finally, assume that biased sampling causes the
observations to be distributed as SNd (0d;
; �), with � 6= 0d, so that they are
skewed with means di¤erent from a null vector. The following theorem gives the
asymptotic distribution of Hotelling�s T 2 statistic when the above assumptions
hold.

Proposition 2 Let x and S be the mean and the variance of n observations
randomly drawn from the distribution SNd (0d;
; �), with det (
) > 0 and
� 6= 0d. Then the asymptotic distribution of

p
n
�
xTS�1x� 2


�
is normal

with mean zero and variance 8

�
1 + 
 + 2 (� � 4) 
2 + 4 (� � 3) 
3

	
, where 
 =

�T
a=
�
� + (� � 2)�T
a

	
.

A statistician might then be willing to sacri�ce a little information in order
to perform well-known, reliable and simple statistical analyses. The following
proposition might be helpful in pursuing such an approach.

Proposition 3 Let x be a random vector whose pdf is 2�d (x; �;
)h
�
�T (x� �)

	
,

where �d (x; �;
) is the pdf of Nd (�;
), h (�) is a function satisfying 0 �
h (�c) = 1 � h (c) � 1 for any real value c and � is a d�dimensional real
vector. Also, let A be a (d� 1)�d matrix satisfying A
a = 0d�1. Then y = Ax
is a (d� 1)�dimensional normal vector.

The Closed Skew-Normal distribution introduced by Gonzalez-Farias et al
(2003) provides another useful tool for modelling the sample bias. Its name
reminds that it is closed with respect to conditioning, a¢ ne transformations
and convolutions. Loper�do & Guttorp (2008) used it to model sample bias
in air quality monitoring. The random vector x has a Closed Skew-Normal
distribution of parameters �;
;	; �;�, and we write x � CSN (�;
;	; �;�) ; if
its density function is � (x; �;
) � [	 (x� �) ; �;�]/�

�
0; �;�+	
	T

�
, where

x 2 Rp, � 2 Rp, � 2 Rq, 	 2 Rq �Rp, 
 2 Rp �Rp, � 2 Rq �Rq, � (z;�;�) is
the cdf of Nd (�;�) evaluated at z 2 Rd, while 
 and � are symmetric positive
de�nite matrices. The following proposition gives a su¢ cient condition for the
existence of a linear transformation Ax of x which is normal due to the removal
of the sample bias.

Proposition 4 Let �3 (x) be the third cumulant of the random vector x, where
x � CSN (�;
;	; �;�), 
 2 Rp � Rp, � 2 Rq � Rq and p > q. Then the rank
of �3 (x) is never greater than p nor q.
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5 A simulation study

This section uses simulations to assess the numerical performance of the pro-
posed symmetrization method, when applied to a normal distribution contam-
inated by a small fraction of outliers. We simulated 10000 samples of size 100,
200, 300 and 400 from the normal mixture �1N (0d; Id)+(1� �1)N (10 � 1d; Id),
where �1 = 0:05, 0:1, 0:15, and 0d, 1d, Id are the d�dimensional vector of zeros,
the d�dimensional vector of ones, the d � d identity matrix, respectively, for
d = 2, 4, 6, 8, 10. Large sample size are needed since the sampling distributions
of skewness and kurtosis are notoriously slow to converge to their limits, which
are instrumental in assessing the normality of the transformed variables. Small
values of �1 exemplify situations where large values of skewness and kurtosis
(Mardia, 1974) lead to sampling distributions of Hotelling�s T 2 statistic which
are very di¤erent from those obtained under the normality assumption (Davis,
1982).
Theoretical results in the previous section imply that a d�dimensional ran-

dom vector might be linearly transformed into a (d� 1)�dimensional normal
random vector, when its distribution is as above. For each dimension and each
weight, we computed the relative di¤erence of the average value of Mardia�s sam-
ple skewness from its expected value under normality. We also computed the
relative frequency of samples for which the normality hypothesis was rejected
at the 0:05 level when using the skewness-based test for multivariate normality
proposed by Mardia (1970). Table 1 reports simulation results, which can be
summarized as follows. Mardia�s skewness suggests that the transformed vari-
ables are normal, consistently with the theoretical properties of the proposed
method. Also, its performance does not seem to be noticeably in�uenced by
the vector�s dimension. The simulations�results are somewhat less satisfactory
for samples of size 100, maybe due to the aforementioned slow convergence of
Mardia�s skewness.
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0.05 0.1 0.15

100

dim
2
4
6
8
10

err rej
-7.68 4.46
-4.63 4.54
-4.56 4.12
-3.84 4.20
-3.63 3.81

err rej
-3.13 4.94
-6.01 4.05
-5.89 3.90
-5.59 3.30
-5.73 2.54

err rej
-11.51 3.78
-8.46 3.94
-8.44 3.02
-8.21 2.06
-8.49 1.27

200

dim
2
4
6
8
10

err rej
-1.65 4.70
-1.56 5.20
-1.23 4.60
-2.12 4.30
-2.03 3.60

err rej
-1.57 4.60
-3.02 5.40
-4.08 4.70
-2.79 4.00
-3.37 3.30

err rej
-1.08 4.90
-4.08 4.10
-3.42 4.90
-3.34 4.10
-3.97 2.70

300

dim
2
4
6
8
10

err rej
-2.18 4.69
-1.77 4.75
-1.85 4.79
-1.64 4.36
-1.45 4.50

err rej
-2.82 4.52
-1.89 5.09
-1.88 4.61
-1.92 4.68
-1.89 4.21

err rej
-4.01 4.57
-2.28 4.86
-2.28 4.59
-2.54 3.92
-2.24 3.83

400

dim
2
4
6
8
10

err rej
-1.37 4.68
-0.82 5.17
-1.21 5.18
-0.77 5.16
-1.08 4.34

err rej
-0.97 5.06
-1.74 5.13
-1.33 5.50
-1.06 5.12
-1.26 4.33

err rej
-4.15 4.57
-1.72 5.10
-1.87 4.62
-1.85 4.28
-1.82 4.18

Table 1: err denotes the relative di¤erence between the average value of
Mardia�s sample skewness and its expected value under normality, multiplied by
100. Also, rej denotes the relative frequency of samples for which the normality
hypothesis was rejected at the 0:05 level when using the skewness-based test for
multivariate normality proposed by Mardia (1970), multiplied by 100.

6 A numerical example

This section uses the �nancial data analized by De Luca & Loper�do (2012) to
illustrate the methods presented in the previous sections. They are percentage
logarithmic daily returns (simply returns, henceforth) recorded from June 25,
2003 to June 23, 2008 in the �nancial markets of France, Netherlands and Spain
(source: Morgan Stanley Capital International Inc.). Returns are arranged in
the matrix X where the value in the i�th row and j�th column is the return in
the i�th day and in the j�th market (markets being alphabetically ordered).
The third sample cumulant k3;n (X) is a 9� 3 matrix with negative entries,

consistently with previous theoretical and empirical results (De Luca & Loper-
�do, 2012). Its singular values are 2:130, 0:020 and 0:005, associated to the right
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singular vectors v1 = (0:587; 0:493; 0:642)
T , v2 = (0:443; 0:467;�0:765)T and

v3 = (0:677;�0:734;�0:056)T . The �rst singular value is almost two hundred
times greater than the sum of the remaining ones, suggesting that the sym-
metrization method based on Proposition 1 might be appropriate for the data
at hand. The third standardized moments of the three European countries and
those of the transformed variables are �0:349, �0:236, �0:461. The third stan-
dardized moments of the transformed variables Xv2 and Xv3 are much smaller,
being �0:055 and �0:058.
Let Y denote the transformed data, that is the matrix whose columns are

the transformed variables Xv2 and Xv3. We shall now compare the multivari-
ate skewness of the original data X and the transformed data Y by means of
several measures based on their third standardized cumulants. The measures
of multivariate skewness proposed by Mardia (1970), Malkovich & A�� (1973),
Mori et al (1993) equal 0:256, 0:237, 0:256 for X and 0:014, 0:010, 0:016 for Y .
Both univariate and multivariate measures of skewness clearly suggest that the
proposed transformation was successful in removing virtually all of the skewness.
However, the practical relevance of these results might be questioned, since

skewness is commonly believed to be less relevant than kurtosis in determining
nonnormality of returns. We shall therefore examine the e¤ect on kurtosis of
the proposed symmetrization method. The fourth standardized cumulants of
the three European returns are 4:657, 4:152 and 7:999. The fourth standardized
cumulants of the transformed variables of Xv2 and Xv3 are much smaller, being
1:185 and 0:957. We shall now compare the multivariate kurtosis of the original
data X and the transformed data Y by means of several measures based on their
fourth standardized cumulants. The measures of multivariate kurtosis proposed
by Mardia (1974), Malkovich & A�� (1973), Mori et al (1993) equal 15:070,
66:427, 12:067 for X and 2:643, 1:425, 2:725 for Y . We conclude that, for the
data at hand, the proposed transformation has a normalizing e¤ect, since it
signi�cantly removes most of the skewness and excess kurtosis.

6.1 Conclusions

In this paper, we investigated two methods for removing skewness from data
by means of linear transformations. Both methods overcome some limitations
of well-known symmetrization methods. The �rst method applies to bivariate
data and relies on the roots of third-degree polynomials. The second method
relies upon the singular value decomposition and it is especially appropriate
when sampling from multivariate, weighted distributions or normal mixtures.
Both real and simulated data encourage their use in statistical practice.
We therefore recommend using the proposed methods whenever the perfor-

mance of a statistical method is impaired by skewness, as it might happen when
using Hotelling�s T 2 statistic for testing the hypothesis that the mean of the
sampled distribution is a null vector. We also recommend their use in conjunc-
tion with projection pursuit, a statistical technique aimed at �nding interesting
features of multivariate data by means of suitably chosen linear projections (see,
for example, Huber, 1985). Once found, the interesting feature is removed in
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order to facilitate the search for other interesting features. Feature removal, also
known as structure removal, constitutes then an important part of projection
pursuit (Friedman, 1987). Projection pursuit might be based on skewness max-
imization (Huber, 1985), which has been successful in dealing with skew-normal
distributions (Loper�do, 2010) and normal mixtures (Loper�do, 2013). Sym-
metrization procedures might then be used to remove skewness before looking
for other features of the data, as for example kurtosis.
Both methods su¤er from some limitations. The �rst method is better suited

for bivariate data, while the second method might be unable to �nd the sym-
metrizing projections. Moreover, the transformed data su¤er from some in-
formation loss, since the original data are projected onto a lower dimensional
space. The loss might be substantial for the second method, when most of the
singular values are positive. A researcher faced with this problem might be will-
ing to stand a little skewness in order to retain more information. Subspaces
spanned by singular vectors associated with small singular values are natural
candidates for �nding projected data with negligible skewness. We are currently
investigating the problem.
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7 Appendix: proofs

Proof of Proposition 1. The matrix A might be decomposed into the product
BC, where B is a nonsingular k � k matrix and C is a k � d orthonormal
matrix whose rows span the null space of �T3 (x)�3 (x). The third cumulant
of Cx is �3 (Cx) = (C 
 C)�3 (x)CT (see, for example, De Luca & Loper�do,
2012). Consider now the identities (C 
 C)T (C 
 C) =

�
CT 
 CT

�
(C 
 C) =�

CTC 
 CTC
�
= Id2 ; which follow from ordinary properties of the Kronecker

product and from orthonormality of C. We can then write �T3 (Cx)�3 (Cx)
= C�T3 (x)�3 (x)C

T : By construction, the rows of C span the null space of
�T3 (x)�3 (x), so that �

T
3 (Cx)�3 (Cx) is a k�k null matrix. The third cumulant

of Ax can be obtained from the third cumulant of Cx using the above mentioned
property: �3 (Ax) = (B 
B)�3 (Cx)BT : Since any product of a null matrix
with another matrix is also a null matrix, the third cumulant of Ax is a null
matrix and this complete the proof.
Proof of Proposition 2. Let � and � be the mean and the variance of a

random vector x whose distribution is SNd (0d;
; �). Let � = 
�=
p
1 + �T
�,

so that � = 
�1�=
p
1� �T
�1� and 
 = �T
�1�=

�
� � 2�T
�1�

�
. The �rst,

second, third and fourth cumulants of x are � =
p
2=��, � = 
 � (2=�) ��T ,

K3 =
p
2=� (4=� � 1) � 
 �T 
 �, K4 =

�
8=�2

�
(� � 3) � 
 �T 
 � 
 �T (see, for

example, De Luca & Loper�do, 2012; Loper�do, 2014).

10



The concentration matrix ��1 is the inverse of the sum of a matrix and
a matrix product. We can then apply the formula (A+BCD)�1 = A�1 �
A�1B

�
C�1 +DA�1B

��1
DA�1, where A 2 Rk � Rk, B 2 Rk � Rm, C 2

Rm�Rn, D 2 Rn�Rk and all the necessary inverses exist (Mardia et al, 1979,
page 459). By letting A = 
, B = �, C = �2=�, D = �T we obtain

��1 = 
�1 � 
�1��T
�1

�T
�1� � (�=2)
and ��1� =

�
�1�

� � 2�T
�1�
:

The asymptotic distribution of
p
n
�
xTS�1x� �T��1�

�
is normal with mean

zero and variance �T��, where

� =

�
� KT

3

K3 �

�
; � =

�
2�

�� 
 �

�
; � = ��1� =

p
2�
�1�

� � 2�T
�1�

and � is the variance of x 
 x (Kollo & von Rosen, 2005, page 312). We shall
now consider the summands which appear in the quadratic form

�T�� = 4�T�� � 4 (� 
 �)T K3� +
�
�T 
 �T

�
�(� 
 �) ;

beginning with 4�T�� = 4�T��1���1� = 4�T��1� = 8
. Basic properties
of the Kronecker product, together with the de�nitions of K3 and �, lead to
�4 (� 
 �)T K3� = �4

p
2=� (4=� � 1)

�
�T �

�3
= 16 (� � 4) 
3.

The matrix � is E
�
y 
 yT 
 y 
 yT

�
�vec (�) vecT (�), where y = x�� and

vec (�) is the vectorization of � (Kollo & von Rosen, 2005, page 285). The ma-
trix K4 is E

�
y 
 yT 
 y 
 yT

�
� (Id2 + Cd;d) (�
 �)� vec (�) vecT (�), where

Cd;d is the d2 � d2 commutation matrix (Magnus & Neudecker, 1979; Lop-
er�do, 2014). It follows that the quadratic form

�
�T 
 �T

�
�(� 
 �) equals�

�T 
 �T
�
K4 (� 
 �) +

�
�T 
 �T

�
(Id2 + Cd;d) (�
 �) (� 
 �). Basic proper-

ties of the Kronecker product, together with the de�nitions of K4 and �, lead
to
�
�T 
 �T

�
K4 (� 
 �) = 32 (� � 3) 
4. By de�nition, � = ��1�, so that

(�
 �) (� 
 �) = (�
 �)
�
��1 
 ��1

�
(�
 �) = �
 � and�

�T 
 �T
�
(Id2 + Cd;d) (�
 �) (� 
 �) = 4
2 +

�
�T 
 �T

�
Cd;d (�
 �) :

The identity vec (M) = Cd;dvec (M) holds for any d � d, symmetric matrix M
(Magnus & Neudecker, 1979). Also, ��T is a d � d, symmetric matrix and
�
 � = vec

�
��T

�
. It follows that

�
�T 
 �T

�
Cd;d (�
 �) =

�
�T�

�2
= 4
2 and

�T�� = 8

�
1 + 
 + 2 (� � 4) 
2 + 4 (� � 3) 
3

	
. This completes the proof.

Proof of Proposition 3. Without loss of generality we can assume that

 is a positive de�nite matrix. Let v1; :::; vd be nonnull d�dimensional real
vectors satisfying v1 = � and vTi 
vj = 0 for i 6= j and i = 1; :::; d: Also, let
y = V x, where y = (Y1; :::; Yd)

T and V is a d�d matrix whose i�th row is vTi for
i = 1; :::; d. It follows that the components of y are mutually independent and
the �rst component is univariate generalized skew-normal, while all other com-
ponents are normally distributed. The inverse of V may be represented as [A; b],
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where A is a n�(n� 1) matrix and b is a d�dimensional real vector. Hence x =
Ay�1 + Y1b, where y�1 = (Y2; :::; Yd)

T . Since y�1 and Y1 are independent, the
third cumulant of x is �3 (x) = �3 (Ay�1) + �3 (Y1b), which might be simpli�ed
into �3 (x) = �3 (Y1b) by recalling that Ay�1 is a normally distributed random
vector. We shall now apply well-known properties of third cumulants of linear
transformations to obtain �3 (x) = bT�3 (Y1) (b
 b) = �3 (Y1)

�
b
 bT 
 b

�
. The

right singular vectors are the eigenvectors of �T3 (x)�3 (x) = �
2
3 (Y1)

�
bT b
�2
bbT .

Hence there is only one positive singular value, and the corresponding right
singular vector is proportional to b. By Proposition 1, the projection of x onto
the subspace orthogonal to its dominant right eigenvector is a weakly symmet-
ric random vector. The same subspace is spanned by the rows of A. Hence
the weakly symmetric projection is also a (d� 1)�dimensional normal random
vector and this concludes the proof.
Proof of Proposition 4. Without loss of generality, we shall assume

that q < p. Let y and w be two random vectors whose joint distribution is
normal with E (y) = �, E (w) = ��, var (y) = 
, var (w) = � + 	
	T ,
cov (y; w) = 
	T . Also, let A = 
	T

�
�+	
	T

��1
and consider the decom-

position y = y � Aw + Aw. Basic properties of normal random vectors imply
that y � Aw and w are independent, normal random vectors. Gonzalez-Farias
et al (2003) showed that x and yjw > 0 are identically distributed, so that we
can write x � y � Aw + Aw+ where w+ = wjw > 0. The third cumulant of
the sum of independent random vectors is the sum of the third cumulants of
the random vectors themselves, hence �3 (x) = �3 (y �Aw) + �3 (Aw+). The
identity �3 (x) = �3 (Aw+) follows from y � Aw being a normally distributed
random vector. Apply now multilinear properties of the third cumulant (see, for
example, De Luca & Loper�do, 2012) to obtain �3 (x) = (A
A)�3 (w+)AT .
The rank of a matrix product is never greater than any of the matrices�ranks:
rank f�3 (x)g � min [rank f�3 (w+) ; rank (A) ; rank (A
A)g]. Also, the rank
of the Kronecker product of two matrices is the product of the matrices�ranks, so
that rank f�3 (x)g � min

�
rank

�
�3 (w+) ; rank (A) ; rank

2 (A)
	�
. By assump-

tion, A 2 Rp � Rq, �3 (w+) 2 Rq
2 � Rq and q < p. Hence we conclude that

rank f�3 (x)g � q.
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