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We study the second order Emden–Fowler type differential equation

(
a(t)

∣∣x′∣∣α sgn x′)′ + b(t)|x|β sgnx = 0

in the super-linear case α < β. Using a Hölder-type inequality, we resolve the
open problem on the possible coexistence on three possible types of nononscillatory
solutions (subdominant, intermediate, and dominant solutions). Jointly with this,
sufficient conditions for the existence of globally positive intermediate solutions are
established. Some of our results are new also for the Emden–Fowler equation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider the second order nonlinear differential equation(
a(t)

∣∣x′∣∣α sgn x′)′ + b(t)|x|β sgn x = 0, (1)

where α > 0, β > 0 are constants and a, b are continuous functions on [0,∞) such that a(t) > 0, b(t) � 0,
sup{b(t): t � T} > 0 for all T > 0 and

Ia =
∞∫
0

a−1/α(s) ds = ∞, Ib =
∞∫
0

b(s) ds < ∞.

Jointly with (1), we study the special case a(t) ≡ 1, that is equation(∣∣x′∣∣α sgn x′)′ + b(t)|x|β sgn x = 0. (2)
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If α = β, then (1) is called half-linear equation. If α �= β, then (1) is usually called Emden–Fowler type
equation, because its prototype is the well-known Emden–Fowler equation

x′′ + b(t)|x|β sgn x = 0, β �= 1, (3)

widely studied in the literature; see, e.g., [18,22] or [3,12] for dynamic equations on time scales.
By a solution of (1) we mean a function x, defined on some ray [τx,∞), τx � 0, such that a|x′|α sgn x′ is

continuously differentiable and satisfies (1) for any t � τx. Observe that if either α � β or a, b are sufficiently
smooth and α < β, then any solution of (1) is continuable up to infinity, see, e.g., [23]. As usual, a solution x

of (1) is said to be nonoscillatory if x(t) �= 0 for large t and oscillatory otherwise. Eq. (1) is said to be
nonoscillatory if any solution is nonoscillatory. Notice that, if α �= β, nonoscillatory solutions of (1) may
coexist with oscillatory ones, while if α = β this fact is impossible, see, e.g., [10].

For the sake of simplicity, in the sequel we will consider only nonoscillatory solutions of (1), which are
positive for large t.

For any solution x of (1), denote by x[1] the quasiderivative of x, i.e. the function

x[1](t) = a(t)
∣∣x′(t)

∣∣α sgn x′(t).

Clearly, any eventually positive solutions x of (1) is increasing and the quasiderivative x[1] is positive
nonincreasing for large t. Moreover, the class P of all eventually positive solutions of (1) can be divided into
the three subclasses, see, e.g., [11]:

M
+
∞,� =

{
x ∈ P: x(∞) = ∞, x[1](∞) = �x, 0 < �x < ∞

}
,

M
+
∞,0 =

{
x ∈ P: x(∞) = ∞, x[1](∞) = 0

}
, (4)

M
+
�,0 =

{
x ∈ P: x(∞) = �x, x[1](∞) = 0, 0 < �x < ∞

}
.

The superscript symbol + means that solutions are eventually positive increasing. Following [7,8,13], so-
lutions in M

+
∞,�, M

+
∞,0, and M

+
�,0 are called dominant solutions, intermediate solutions and subdominant

solutions, respectively. Our main subject here will be intermediate solutions. Sometimes, they are called
weakly increasing solutions, see [15].

The interesting problem is whether all three types of nonoscillatory solutions can simultaneously exist.
Since there are well-known necessary and sufficient conditions for the existence of subdominant and dominant
solutions (see below), the coexistence problem leads to the problem on the nonexistence of intermediate
solutions.

This problem has a long history. For Eq. (3), it started sixty years ago by Atkinson [1], Moore and
Nehari [19] in case β > 1 and Belohorec [5] in case β < 1. In particular, in [5,19] it is proved that this
triple coexistence is impossible and intermediate solutions of (3) cannot coexist with dominant solutions or
subdominant ones. Moreover, in [19] the question of existence of globally nonoscillatory solutions, that is
solutions different from zero for any t � 0, is posed.

For the more general equation (1), this study was continued in nineties of the last century in [11,13,17]
and in the recent years in [7,8,20]. In particular, the question of the possible triple coexistence has been
solved in negative way in [7] when α = β, in [20] in the sub-linear case, i.e. when α > β, and partially in [8]
in the super-linear case, i.e. when α < β and 0 < α < 1.

Hence the following two questions arise:

1. When 1 < α < β, can these three types of nonoscillatory solutions of (1) simultaneously coexist?
2. When α < β, does (1) have globally nonoscillatory solutions, in particular intermediate solutions?
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Observe that, in the super-linear case, necessary and sufficient conditions for existence of intermediate
solutions are difficult to establish due to the problem to find sharp upper and lower bounds, as it is pointed
out in [2, p. 241] and [15, p. 3].

Motivated by [20], here we give an answer to both these questions. In particular, we completely resolve
the problem on the triple coexistence and, as regards properly nonoscillatory solutions, a sufficient condition
for their existence is given. As a consequence, by means of a topological limit process, an existence result
for intermediate solution is obtained too. Observe that, until now, the existence of intermediate solutions
was an open problem also for Eq. (3) with β > 1.

Some auxiliary results are given in Section 2. The coexistence problem is considered in Section 3 for
Eq. (2). The existence results for properly nonoscillatory (intermediate) solutions of (2) are presented in
Section 4. The extension of these results to Eq. (1) is given in Section 5 and examples with some open
problems conclude the paper.

2. Auxiliary results

The following integral relations play an important role in our approach. These are based on the following
necessary and sufficient conditions for the existence of subdominant and dominant solutions of (1), as the
following results summarize, see e.g. [11].

Define

J =
∞∫
0

1
a1/α(s)

( ∞∫
s

b(r) dr
)1/α

ds, K =
∞∫
0

b(s)
( s∫

0

1
a1/α(r)

dr

)β

ds.

For the particular case (2), integrals J,K read as

J1 =
∞∫
0

( ∞∫
s

b(r) dr
)1/α

ds, K1 =
∞∫
0

sβb(s) ds.

Proposition 1. The following hold for (1):

i1) The class M
+
∞,� is nonempty if and only if K < ∞. Moreover, for any �, 0 < � < ∞, there exists

x ∈ M
+
∞,� such that limt→∞ x[1](t) = �.

i2) The class M
+
�,0 is nonempty if and only if J < ∞. Moreover, for any �, 0 < � < ∞, there exists x ∈ M

+
�,0

such that limt→∞ x(t) = �.
i3) Let α > β. Eq. (1) is oscillatory if and only if K = ∞.
i4) Let α < β. Eq. (1) is oscillatory if and only if J = ∞.

Remark 1. Claims i1), i2) of Proposition 1 are slightly more general than those proved in [14]. Claims i1), i2)
hold also in the half-linear case α = β, see, e.g. [7, Theorem 6, Theorem 7]. Observe that these results are
proved in [7] by assuming the positivity of the function b. Nevertheless, it is easy to verify that they continue
to hold also in case b(t) � 0, and sup{b(t): t � T} > 0 for all T > 0.

Results in Proposition 1 follow also from other papers, in which more general equations than (1) are
considered, see, e.g., [2, Theorems 3.13.11, 3.13.12], [16, Sections 18, 19], [18, Theorems 17.1, 17.2].

Remark 2. The relations between integrals J and K when α �= β have been proved in [6]. From here we get
the following possible cases of mutual behavior of integrals J,K:
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C1) J = ∞, K = ∞;
C2) J = ∞, K < ∞ and α > β;
C3) J < ∞, K = ∞ and α < β;
C4) J < ∞, K < ∞.

In case C1), all continuable solutions are oscillatory, see, e.g., [18, Theorems 11.3, 11.4]. Clearly, this fact
is not true in the half-linear case, as the Euler equation illustrates, see, e.g., [10, Theorem 1.4.4]. Moreover,
the case C2) occurs only if α > β, and the case C3) only for α < β. Finally, in view of Proposition 1, if any
of the case Ci), i = 2, 3, 4, holds, then the class P+ is nonempty. By the quoted result [20], in the sub-linear
case α > β Eq. (1) has intermediate solutions if and only if the case C2) occurs. Hence, in the sub-linear
case, by Proposition 1 the triple coexistence of nonoscillatory solutions is impossible also for (1).

We close this section with a Hölder-type inequality, which is needed in the following.

Lemma 1. Let λ, μ be such that μ > 1, λμ > 1 and let f, g be nonnegative continuous functions for t � T .
Then ( t∫

T

g(s)
( t∫

s

f(τ) dτ
)λ

ds

)μ

� λμ

(
μ− 1
λμ− 1

)μ−1
( t∫

T

f(τ)
( τ∫

T

g(s) ds
)μ

dτ

)( t∫
T

f(τ) dτ
)λμ−1

.

Proof. First, assume f is positive for t � T . Integrating by parts, we have

t∫
T

f(s)
( t∫

s

f(τ) dτ
)λ−1( s∫

T

g(σ) dσ
)
ds

= − 1
λ

t∫
T

d

ds

( t∫
s

f(τ) dτ
)λ( s∫

T

g(σ) dσ
)
ds = 1

λ

t∫
T

g(s)
( t∫

s

f(τ) dτ
)λ

ds.

Thus, using the Hölder inequality, we obtain

t∫
T

g(s)
( t∫

s

f(τ) dτ
)λ

ds

= λ

t∫
T

f1/p(s)f1/q

( t∫
s

f(τ) dτ
)λ−1( s∫

T

g(σ) dσ
)
ds

� λ

( t∫
T

f(s)
( s∫

T

g(σ) dσ
)p

ds

)1/p( t∫
T

f(s)
( t∫

s

f(τ) dτ
)(λ−1)q

ds

)1/q

,

where p > 1, p−1 + q−1 = 1. Choosing

p = μ, q = μ

μ− 1 ,

we get
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t∫
T

g(s)
( t∫

s

f(τ) dτ
)λ

ds

� λ

( t∫
T

f(s)
( s∫

T

g(σ) dσ
)μ

ds

)1/μ( t∫
T

f(s)
( t∫

s

f(τ) dτ
)ν

ds

)(μ−1)/μ

, (5)

where ν = (λ− 1)μ/(μ− 1) > −1. Moreover, we have

t∫
T

f(s)
( t∫

s

f(τ) dτ
)ν

ds = 1
ν + 1

( t∫
T

f(s) ds
)ν+1

.

Hence, from (5) we obtain

t∫
T

g(s)
( t∫

s

f(τ) dτ
)λ

ds � h

( t∫
T

f(s)
( s∫

T

g(σ) dσ
)μ

ds

)1/μ( t∫
T

f(τ) dτ
)(λμ−1)/μ

,

where

h = λ

(
μ− 1
λμ− 1

)(μ−1)/μ

,

i.e. the assertion.
If f has zeros for t � T , for any s ∈ [T, t) consider the subset of the interval (s, t) in which f is positive

and let I(s) its closure, that is I(s) = cl{r ∈ (s, t): f(r) > 0}. Since
∫ t

s
f(τ) dτ =

∫
I(s) f(τ) dτ , the assertion

follows using the same argument as before. �
3. The coexistence problem

In this section we consider the problem whether intermediate solutions may coexist with subdominant
and dominant solutions. In view of Proposition 1, necessarily both integrals J , K must be convergent. As
claimed above, the recent result [20, Theorem 1.2.] states that this triple coexistence is not possible in the
sub-linear case α > β.

Now, we prove that intermediate solutions of (2) do not exist when α < β and both integrals J1, K1
are convergent. For sub-linear and super-linear equations (3) this result has been proved in [5] and [19],
respectively, using the property that intermediate solutions of (3) satisfy

lim
t→∞

tx′(t)
x(t) = 1.

When α �= 1, this approach cannot be used and we use the following property of intermediate solutions.

Lemma 2. Let 1 < α < β and assume

∞∫
0

sβb(s) ds < ∞.

Then for any intermediate solution x of (2) we have

lim inf tx
′(t)

> 0.

t→∞ x(t)
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Proof. Since

(
x′(t)

)α =
∞∫
t

b(s)xβ(s) ds,

we can choose t1 large so that x(t) > 0, x′(t) > 0 for t � t1 and

∞∫
t1

rβb(r) dr < 1. (6)

Let t2 be large so that

k̃

( ∞∫
t2

rβb(r) dr
)(β−α)/α

< 1, (7)

where

k̃ = 1
α

(
α(β − 1)
β − α

)(β−1)/β

and set T = max{t1, t2}. From (2) we obtain for t � T

x(t) − x(T ) =
t∫

T

( t∫
s

b(r)xβ(r) dr +
∞∫
t

b(r)xβ(r) dr
)1/α

ds.

Thus, from the inequality

(X + Y )1/α � X1/α + Y 1/α,

where X,Y are two positive numbers, we obtain

x(t) − x(T ) �
t∫

T

( t∫
s

b(r)xβ(r) dr
)1/α

ds + t

( ∞∫
t

b(r)xβ(r) dr
)1/α

.

Using Lemma 1 with f(r) = b(r)xβ(r), g(r) ≡ 1, λ = 1/α and μ = β we have

x(t) − x(T ) � k̃

( t∫
T

rβb(r)xβ(r) dr
)1/β( t∫

T

b(τ)xβ(τ) dτ
)(β−α)/α

+ t

( ∞∫
t

b(r)xβ(r) dr
)1/α

or, in virtue of (7),

x(t) − x(T ) �
( t∫

T

rβb(r)xβ(r) dr
)1/β

+ t

( ∞∫
t

b(r)xβ(r) dr
)1/α

=
( t∫

T

rβb(r)xβ(r) dr
)1/β

+ tx′(t)

Since
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( t∫
T

rβb(r)xβ(r) dτ
)1/β

� x(t)
( ∞∫

T

rβb(r) dτ
)1/β

,

we obtain

1 − x(T )
x(t) �

( ∞∫
T

rβb(r) dτ
)1/β

+ tx′(t)
x(t)

or

tx′(t)
x(t) � 1 − x(T )

x(t) −
( ∞∫

T

rβb(r) dτ
)1/β

which, in view of (6), gives the assertion. �
Now, we can resolve the coexistence problem for (2).

Theorem 1. Let α < β and K1 < ∞. Then (2) does not have intermediate solutions.

Proof. If 0 < α � 1, as claimed, the assertion follows from [8, Theorem 4.1.]. Now, assume α > 1 and, by
contradiction, let x be an intermediate solution of (2) such that x(t) > 0, x′(t) > 0 for large t. In virtue of
Lemma 2, there exists t1 � 0 such that x(t) > 0, x′(t) > 0 for t � t1 and

tx′(t) > mx(t). (8)

Without loss of generality, suppose

∞∫
t1

sβb(s) ds < m/2. (9)

Since x is an intermediate solution, we have limt→∞ t−1x(t) = 0 and so there exists t2 � 0 such that for
t � t2

x(t) < t. (10)

Put T = max{t1, t2}. Integrating (2) on (T, t) we have

(
x′(t)

)α −
(
x′(T )

)α = −
t∫

T

b(s)xβ(s) ds

or, in view of (8), (9) and (10)

(
x′(T )

)α −
(
x′(t)

)α =
t∫

T

b(s)xβ−α(s)xα(s) ds < 1
m

t∫
T

sαb(s)xβ−α(s)
(
x′(s)

)α
ds

� (x′(T ))α

m

t∫
T

sβb(s) ds � (x′(T ))α

2 .

Thus
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(x′(T ))α

2
<

(
x′(t)

)α
,

which gives a contradiction as t → ∞, since limt→∞ x′(t) = 0. �
From Theorem 1 we get the following corollaries.

Corollary 1. Let α < β. If (2) has a dominant solution, then it has also subdominant solution and all other
nonoscillatory solutions are either dominant or subdominant.

Proof. Since (2) has a dominant solution, from Proposition 1 and Remark 2 we get K1 < ∞, J1 < ∞. Again
from Proposition 1, Eq. (2) has subdominant solution. Hence, the assertion follows from Theorem 1. �
Corollary 2. Eq. (2) does not have simultaneously subdominant, intermediate and dominant solutions.

Proof. The necessary and sufficient conditions for the existence of subdominant and dominant solutions are
given in Proposition 1. If α > β, then the assertion follows from [20, Theorem 1.2.] and from the relation
between integrals J,K, see Remark 2. If α < β, then the only possible cases are cases C3), C4). Hence, the
assertion immediately follows from Theorem 1 and Proposition 1. Finally, if α = β, the assertion follows
from [7, Theorems 4, 6 and 7]. �
4. Existence of intermediate solutions

In this section we study the existence of intermediate solutions of (2) in the super-linear case α < β. By
Remark 2, intermediate solutions can exist only when J < ∞ and K = ∞. First, we state conditions under
which all subdominant solutions of (2) are properly nonoscillatory on the whole interval [T,∞), T > 0.
Using this property of subdominant solutions, we construct intermediate solutions for (2).

Define the function

F (t) = tγb(t) (11)

where

γ = 1 + αβ + 2α
α + 1 .

If F is nondecreasing for large t, say t � T > 0, then eventually positive subdominant solutions of (2) are
properly nonoscillatory and equibounded on [T,∞), as the following result shows.

Theorem 2. Let α < β and F be nondecreasing on [T,∞), T > 0. Then any eventually positive subdominant
solution x of (2) satisfies on the whole interval [T,∞)

x(t) > 0, x′(t) � 0 (12)

and

0 < x(t) � ϕ(t) (13)

where

ϕ(t) = c
(
F (t)

)−1/(β−α)
tα/(α+1) (14)

and c is a suitable positive constant which depends on α and β.
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Proof. The argument is similar to the one in [4, Lemma 5 and Theorem 3]. Firstly, let us show that any
eventually positive subdominant solution x of (2) is positive on the whole interval [T,∞). By contradiction,
assume there exists t1 � T such that x(t1) = 0 and, without loss of generality, suppose x(t) > 0 for t > t1.
Since α < β and the uniqueness of solutions of (2) with respect to the initial data holds, we have

x′(t1) = x1 �= 0.

Hence, in virtue of [4, Lemma 5], we have that there exists t2 > t1 such that for any t � t2

x(t) � |x1|(t1)1/(α+1)

2 tα/(α+1).

Thus, x is unbounded as t tends to infinity, which is a contradiction. Hence x(t) > 0 for t � T .
Let us prove that x′(t) � 0 for t � T . By contradiction, suppose there exists τ � T such that x′(τ) < 0.

Since x′ is nonincreasing on [T,∞), we get for t > τ

x(t) � x(τ) +
(
x′(τ)

)1/α(t− τ)

and so x should be negative for large t, which is a contradiction. Then (12) is proved.
Now we prove that (13) holds for any subdominant solution x of (2) satisfying (12) for t � T > 0.

Integrating (2) we have

(
x′(t)

)α =
∞∫
t

b(s)xβ(s) ds =
∞∫
t

sγb(s)xβ(s)s−γ ds

� b(t)tγxβ(t)
∞∫
t

s−γ ds = 1
γ − 1 tb(t)x

β(t)

or

x′(t)
xβ/α(t)

� k
(
tγb(t)

)1/α
t(1−γ)/α,

where k = (γ − 1)−1/α. Hence, again integrating on (t,∞) we obtain

α

β − α

(
1

x(t)

)(β−α)/α

� α

β − α

(
1
x∞

)(β−α)/α

+ k
α + 1
β − α

(
tγb(t)

)1/α
t(α−β)/(α+1),

where x∞ = limt→∞ x(t). Thus for t � T we have

1
x(t) � k1

(
tγb(t)

)1/(β−α)
t−α/(α+1) = k1F

1/(β−α)(t)t−α/(α+1),

where

k1 =
(
k
α + 1
α

)α/(β−α)

,

which yields (13). �
Using Theorem 2, we obtain the following existence result for intermediate solutions of (2).



506 Z. Došlá, M. Marini / J. Math. Anal. Appl. 416 (2014) 497–510
Theorem 3. Let α < β and F be nondecreasing on [T,∞), T > 0. If J1 < ∞, K1 = ∞ and

∞∫
T

b(t)ϕβ(t) dt < ∞, (15)

where ϕ is given by (14). Then (2) has intermediate solutions x such that

0 < x(t) � ϕ(t) � kt
α

α+1

for t � T and some k > 0.

Proof. Since J1 < ∞, in view of Proposition 1, for any n > 0 Eq. (2) has a subdominant solution xn such
that

lim
t→∞

xn(t) = n,

In virtue of Theorem 2, we have 0 < xn(t) � ϕ(t) for t ∈ [T,∞), and so the sequence {xn} is equibounded
on every finite subinterval of [T,∞). Again in view of Theorem 2, from (2) we get for t � T

0 �
(
x′
n(t)

)α =
∞∫
t

b(r)xβ
n(r) dr �

∞∫
t

b(r)ϕβ(r) dr. (16)

Thus, the sequence {xn} is also equicontinuous on every finite subinterval of [T,∞). Moreover, from (2)
and (16) also the sequence {x′

n} is equibounded and equicontinuous on every finite subinterval of [T,∞).
Hence there exists a converging subsequence {x(i)

nj }, i = 0, 1, which uniformly converges to a function x(i)

on every finite subinterval of [T,∞). Clearly, x is an unbounded solution of (2). Since J2 = ∞, then x is an
intermediate solution of (2) and the proof is complete. �

Observe that the assumption “F nondecreasing for large t” is related with the existence of oscillatory
solutions. More precisely, the following well-known result holds, see, e.g., [16, Theorem 18.4], [4, Theorem 1].

Theorem A. If F is nondecreasing on [T,∞), T > 0 and b is locally of bounded variation on [T,∞), then
(2) has oscillatory solutions.

Hence, if b is sufficiently smooth, assumptions in Theorem 3 give not only the existence of two types of
nonoscillatory solutions for (2), namely subdominant and intermediate solutions, but also the existence of
oscillatory solutions.

Theorem 3 is new also for the Emden–Fowler equation (3) and reads as follows.

Corollary 3. Let β > 1, the function F1(t) = t(β+3)/2b(t) is nondecreasing on [T,∞), T > 0 and

∞∫
0

tb(t)dt < ∞,

∞∫
0

tβb(t) dt = ∞. (17)

If

∞∫
b(t)ϕβ

1 (t) dt < ∞, (18)

T
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where

ϕ1(t) = c
(
F1(t)

)−1/(β−1)
t1/2, (19)

then (3) has intermediate solutions x such that

0 < x(t) � ϕ1(t) � kt1/2 (20)

for t � T and some k > 0.

5. Extension to the general weight a

In this section we extend our main results on (non)existence of intermediate solutions to Eq. (1).
Set

A(t) =
t∫

0

a−1/α(σ) dσ.

In view of Ia = ∞, the change of variable

s = A(t), X(s) = x(t), t ∈ [0,∞), s ∈ [0,∞) (21)

transforms (1), t ∈ [0,∞), into

d

ds

(∣∣Ẋ(s)
∣∣α sgn Ẋ(s)

)
+ c(s)Xβ(s) = 0, s ∈ [0,∞), (22)

whereby t(s) is the inverse function of s(t), the function c is given by

c(s) = a1/α(t(s))b(t(s)) (23)

and the symbol ˙ denotes the derivative with respect to the variable s. Denote by G and Φ the functions

G(t) = Aγ(t)a1/α(t)b(t) (24)

and

Φ(t) = c

(
1

G(t)

)1/(β−α)

Aα/(α+1)(t). (25)

The change of variable (21) transforms subdominant, intermediate and dominant solutions of (1) into sub-
dominant, intermediate and dominant solutions of (22), respectively. From here, Theorem 1 and Corollary 2
we get the following.

Theorem 4. Let α < β. If K < ∞, then (1) does not have intermediate solutions.

Corollary 4. Eq. (1) does not admit simultaneously dominant, intermediate and subdominant solutions.

Similarly, from Theorem 3 we obtain the following.
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Theorem 5. Let α < β and assume that the function G, given by (24), is nondecreasing on [τ,∞), τ > 0. If
J < ∞, K = ∞, and

∞∫
τ

b(t)Φβ(t) dr < ∞,

where Φ is given by (25), then (1) has intermediate solutions x such that for t � τ

0 < x(t) � Φ(t) � kA
α

α+1 (t).

Proof. Since G is non decreasing on [τ,∞) and τ > 0, in view of (23) the function sγc(s) is nondecreasing
on [S,∞), where S = A(τ). Hence, since A(τ) > 0, the assertion follows applying Theorem 3 to (22). �
6. Examples and concluding remarks

The following examples illustrate our results in Section 4.

Example 1. Consider the Emden–Fowler equation

x′′ + 1
4(t + 1)(β+3)/2 |x|

β sgn x = 0, β > 1, t � 0. (26)

We have

F1(t) = 1
4

(
t

t + 1

)(β+3)/2

.

Hence F1 is increasing for t � 0 and a standard calculation shows that conditions (17), (18) are satisfied.
Thus, by Corollary 3, Eq. (26) has intermediate solutions satisfying 0 < x(t) � c

√
t for t > 0 and some

c > 0. Clearly, x(t) =
√
t + 1 is such solution. Moreover, by Theorem A, (26) has also oscillatory solutions,

and by Proposition 1 and Theorem 2 also subdominant solutions which are positive for t > 0.
Observe that the translation s = t + 1 transforms (26) into

d2

ds2 y(s) + 1
4s(β+3)/2 |y|

β sgn y = 0, β > 1, s � 1,

which has been deeply investigated in [19, pp. 33–35], where the following picture of solutions y passing
through the point y(1) = � > 0 was obtained. Denote by ẏ the derivative of y with respect to the variable s.
For ẏ(1) = �/2 ± d (d is a suitable positive constant), the solutions y are positive and tend to a finite limit
as t → ∞, for �/2− d < ẏ(1) < �/2 + d, ẏ(1) �= 1/2, the solutions are positive and intersect the solution

√
t

an infinity of times and for ẏ(1) < �/2−d and ẏ(1) > �/2+d, the solutions are oscillatory. This observation
shows that Eq. (3) can have infinitely many intermediate solutions.

Example 2. Consider the Emden–Fowler equation

x′′ + 1
(t + 2)2 log2(t + 2)

|x|2 sgn x = 0, t � 0. (27)

We have β = 2 and

F1(t) =
(

t
)2 √

t
2 , ϕ1(t) = 4c

(
t + 2

)2

log2 t.

t + 2 log t t
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Thus, condition (18) is satisfied. Since also (17) is valid, using Proposition 1, Theorem 2, Corollary 3 and
Theorem A, we get that (27) has oscillatory solutions, subdominant and intermediate positive solutions for
t > 0. Obviously, the function x(t) = log(t + 2) is such solution.

Concluding remarks.

(1) Consider (1) and the opposite case Ia < ∞, Ib = ∞. The same coexistence problem (Sections 3, 5) for
the sub-linear case α > β has been treated in the recent paper [14], for the super-linear case α < β is
considered in a forthcoming paper [9].

(2) The existence of intermediate solutions of (2), given by Theorem 3, requires in particular that J1 < ∞,
K1 = ∞ and (15). In view of Proposition 1 and Theorem 1, the conditions J1 < ∞, K1 = ∞ are also
necessary. It is a question whether the assumption “b(·)ϕβ(·) ∈ L1 in a neighborhood of infinity” is
necessary for the validity of Theorem 3.

(3) Theorem 3 ensures the existence of intermediate solutions when the function F is nondecreasing. Does
it hold the existence of intermediate solutions of (1) when F is eventually decreasing? The following
example illustrates this problem.

Example 3. Consider the Emden–Fowler equation

x′′ + 1
4(t + 2)5/2 log(t + 2)

|x|2 sgn x = 0, t � 0. (28)

We have β = 2 and

F1(t) =
(

t

t + 2

)5/2 1
log(t + 2) .

Thus, F1 is eventually decreasing and Corollary 3 cannot be applied. Nevertheless, x(t) = (t+2)1/2 log(t+2)
is an intermediate solution of (28) satisfying x(t) � kF−1

1 (t)
√
t for t > 0 and some k > 0.

7. Note added in proof

After this paper was written, an existence result for intermediate solution of (1), where the function b is,
roughly speaking, close to the function t−ν , ν > 0, and a ≡ 1, is given in [21].
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