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a Department of Industrial Engineering and Mathematical Sciences, Marche Polytecnic University,
Via Brecce Bianche 1, 60131 Ancona, Italy

b Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina,
842 48 Bratislava, Slovakia

c Mathematical Institute of Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia

Received 23 May 2013; revised 11 October 2013

Available online 4 November 2013

Abstract

We apply dynamical system methods and Melnikov theory to study small amplitude perturbation of some
implicit differential equations. In particular we show persistence of such orbits connecting singularities in
finite time provided a Melnikov like condition holds.
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1. Introduction

Quasilinear implicit differential equations such as

A(x)ẋ = f (x) + εg(x, t, ε, κ), ˙ = d

dt
(1.1)
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where x ∈ R
n and A(x) is an n × n-matrix of constant rank, find applications in a large number

of physical sciences and have been studied by several authors [11,14–17,19–22]. As an example,
motivated by [12,23], in [2] an equation modeling a nonlinear RLC circuit with nonlinear ca-
pacity has been studied. It has been shown there that such an equation exhibits I-singularities in
the sense explained in [22] and that such points persist under perturbations. On the other hand,
there are many other works on implicit differential equations [1,9,7,8,10,13] dealing with more
general implicit differential systems by using analytical and topological methods.

Equations like (1.1) are usually handled by multiplying them by the adjugate matrix adjA(x)

(transpose of the matrix of cofactors). It is obtained, then, the implicit ODE (IODE)

ω(x)ẋ = F(x) + εG(x, t, ε, κ), (1.2)

where

ω(x) = detA(x),

F (x) = adjA(x)f (x),

G(x, t, ε, κ) = adjA(x)g(x, t, ε, κ). (1.3)

Assuming that A ∈ C2(Rn,L(Rn)), f ∈ C2(Rn,Rn) and g ∈ C2(Rn+m+2,Rn) is 1-periodic in t ,
then ω ∈ C2(Rn,R), F ∈ C2(Rn,Rn) and G ∈ C2(Rn+m+2,Rn) is 1-periodic in t .

As this paper is a continuation of [2], we shall look directly at Eq. (1.2), without consid-
ering condition (1.3) assuming ω ∈ C2(Rn,R), F ∈ C2(Rn,Rn) and G ∈ C2(Rn+m+2,Rn) is
1-periodic in t . Our objective is to give Melnikov like conditions for the existence of homoclinic
like solutions of (1.2) connecting a singular point in finite time. Thus we assume the following
conditions hold.

(C1) The unperturbed (1.2):

ω(x)ẋ = F(x) (1.4)

possesses a noncritical singularity at x0, i.e. ω(x0) = 0 and ω′(x0) �= 0.
(C2) The ODE:

x′ = F(x), ′ = d

ds
(1.5)

has the hyperbolic equilibrium x0 [i.e. F(x0) = 0 and the spectrum σ(DF(x0)) has
no eigenvalues on the imaginary axis] and a solution γ (s) homoclinic to it, that is
lims→±∞ γ (s) = x0, and ω(γ (s)) �= 0 for any s ∈ R. Moreover G(x0, t, ε, κ) = 0 for any
t ∈R, κ ∈R

m and ε sufficiently small. Without loss of generality, we may, and will, assume
ω(γ (s)) > 0 for any s ∈ R.

(C3) It results

lim
1

log
∣∣γ (s) − x0

∣∣ = μ−, lim
1

log
∣∣γ (s) − x0

∣∣ = μ+ (1.6)

s→∞ s s→−∞ s
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where μ∓ are simple eigenvalues of F ′(x0) with the corresponding eigenvectors γ± and
all the other eigenvalues of F ′(x0) have real parts either less than μ− of greater than μ+.

(C4) 〈∇ω(x0), γ±〉 > 0 (or else ω′(x0)γ± > 0).
(C5) γ ′(s)

ω(γ (s))
is the unique bounded solution, up to a multiplicative constant, of the linear system

x′ =
[
F ′(γ (s)

) − F(γ (s))

ω(γ (s))
ω′(γ (s)

)]
x

= F ′(γ (s)
)
x − ω′(γ (s))x

ω(γ (s))
F

(
γ (s)

)
. (1.7)

Remark 1.1.

(1) There is no straightforward change of variable so that (1.4) can be changed into (1.5). How-
ever in Section 3 (see Eq. (3.2)) we will see that a change of time t = θ(s) exists that converts
the solution γ (s) of (1.5) into a solution of (1.4).

(2) As the reader may have guessed, throughout the paper we use the notation ẋ = dx
dt

and
x′ = dx

ds
. We hope this won’t lead any misunderstanding since we will also write ω′(x) and

F ′(x) for the derivative of ω(x), F(x) with respect to x.
(3) Since γ ′(s) = F(γ (s)) we immediately infer that γ ′(s)

ω(γ (s))
solves (1.7). In Section 3 we will

also prove that γ ′(s)
ω(γ (s))

has finite limits as s → ±∞. Thus in condition (C5) only uniqueness
matters.

(4) It would seem more natural to assume conditions on the linearization

x′ = F ′(γ (s)
)
x (1.8)

of (1.5) along γ (s) rather than on (1.7). However we will see in next Section 2 that assuming
conditions on (1.7) is in some sense more natural. By the way it follows from remark (c) in
Section 6 that, under conditions (C1)–(C4) assumption (C5) is actually equivalent to the fact
that γ ′(s) is the unique (up to a multiplicative constant) solution of (1.8) which is bounded
on R.

The paper is organized as follows. Section 2 is devoted to deeper explanation of the main
assumptions (C3), (C4) and (C5). The main existence result is derived in Section 3 by obtaining
a Melnikov function. A relationship between the Melnikov function and an adjoint linear problem
is explained in Section 4. Several roughness theorems for exponential dichotomies of linear ODE
which are used in Section 4 are presented in Section 5. Finally, some remarks are collected in
Section 6.

2. Comments on the assumptions

In this section we pause to comment on conditions (C3), (C4) and (C5). First, concerning (C3)
we prove the following result.

Proposition 2.1. Suppose the following holds:

(D) There is a positive function ϕ ∈ C2(R,R) such that lims→±∞ ϕ(s) = 0, lims→±∞ γ (s)−x0
ϕ(s)

=
γ± �= 0 and lims→±∞ ϕ′(s) = μ∓ �= 0.
ϕ(s)
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Then μ− (resp. μ+) is a negative (resp. positive) eigenvalue of F ′(x0) with γ+ (resp. γ−) as
eigenvector and (1.6) holds.

Vice versa if Eq. (1.6) holds then μ− (resp. μ+) is a negative (resp. positive) real part of an
eigenvalue of F ′(x0). Moreover if

(C) μ± are eigenvalues of F ′(x0), and no other eigenvalues of F ′(x0) have μ± as real parts

then (D) holds.

Proof. Suppose (D) holds. Since ϕ(s) > 0 we certainly have μ− < 0 < μ+. Then setting

η(s) := γ (s) − x0

ϕ(s)

one has lims→±∞ η(s) = γ± and

η′(s) = F(x0 + ϕ(s)η(s))

ϕ(s)
− ϕ′(s)

ϕ(s)
η(s).

Then

lim
s→±∞η′(s) = lim

s→±∞
F ′(x0)ϕ(s)η(s) + o(ϕ(s)η(s))

ϕ(s)
− ϕ′(s)

ϕ(s)
η(s) = F ′(x0)γ± − μ∓γ±.

But, since η(s) is bounded and the limits lims→±∞ η′(s) exist, they must be zero. So

F ′(x0)γ± = μ∓γ±

that is μ∓ are eigenvalues of F ′(x0) with γ± as corresponding eigenvectors.
Next, to prove (1.6), consider the function ϕ0(s) := ϕ(s)e−μ−s . We have

ϕ′
0(s)

ϕ0(s)
= ϕ′(s)

ϕ(s)
− μ− → 0 as s → ∞.

Hence for any δ > 0 there exists s̄ > 0 such that

−δ <
ϕ′

0(s)

ϕ0(s)
< δ

for any s � s̄. Integrating in [s̄, s] we get

ϕ(s̄)e(μ−−δ)(s−s̄) < ϕ(s) < ϕ(s̄)e(μ−+δ)(s−s̄)

or

ϕ(s̄)e−δ(s−s̄)+μ− s̄ <
ϕ(s)

eμ−s
< ϕ(s̄)eδ(s−s̄)+μ− s̄ .

As a consequence:
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−δ � lim inf
s→∞

1

s
log

ϕ(s)

eμ−s
� lim sup

s→∞
1

s
log

ϕ(s)

eμ−s
� δ

from which we deduce

lim
s→∞

1

s
log

ϕ(s)

eμ−s
= 0.

So, for s > s̄ we get

1

s
log

∣∣γ (s) − x0
∣∣ − μ− = 1

s
log

|γ (s) − x0|
eμ−s

= 1

s

[
log

|γ (s) − x0|
ϕ(s)

+ log
ϕ(s)

eμ−s

]
and then

lim
s→∞

1

s
log

∣∣γ (s) − x0
∣∣ = μ−.

Similarly we prove that

lim
s→−∞

1

s
log

∣∣γ (s) − x0
∣∣ = μ+.

Vice versa, suppose that (1.6) holds. Then u(s) = γ (s)−x0 is a non-zero solution of the equation:

u′ = F ′(x0)u + [
F(x0 + u) − F(x0) − F ′(x0)u

]
and F(x0 + u) − F(x0) − F ′(x0)u = O(u2). Moreover, since x0 is hyperbolic and u(s) → 0 as
s → ∞ we know that |u′(s)| � Ke−μs , for a suitable μ > 0. Then

∣∣u(s)
∣∣ � ∞∫

s

∣∣u′(s)
∣∣ds � Kμ−1e−μs

and

lim
s→∞

log |u(s)|
s

� −μ < 0.

From [6, Theorem 4.3, p. 335] it follows that μ− := lims→∞ log |u(s)|
s

� −μ < 0 is the real part of
an eigenvalue of F ′(x0) and from [6, Theorem 4.5, p. 338] it follows also that a positive number
δ > 0 and solution v(t) of the equation x′ = F ′(x0)x exist such that∣∣u(s) − v(s)

∣∣ = O
(
e(μ−−δ)s

)
. (2.1)

Moreover, from the proof of [6, Theorem 4.5, p. 338] and (C) it follows that

v(s) = q−(s)eμ−s ,
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where q−(s) is a non-zero vector valued polynomial whose degree d− is less than the algebraic
multiplicity of the eigenvalue μ−. So using also (2.1):

lim
s→∞

γ (s) − x0

sd−eμ−s
= γ+ �= 0. (2.2)

A similar argument works as s → −∞ that is there exists d+ � 0 and a vector γ− �= 0 such that

lim
s→−∞

γ (s) − x0

sd+eμ+s
= γ−. (2.3)

To complete the proof of the proposition we set

ϕ(s) = 1

ϕ−(s)−1 + ϕ+(s)−1

where

ϕ−(s) =
√

s2d− + 1eμ−s and ϕ+(s) =
√

s2d+ + 1eμ+s .

As a matter of fact, using (2.2), (2.3) and

lim
s→∞

ϕ′−(s)

ϕ−(s)
= μ−, lim

s→−∞
ϕ′+(s)

ϕ+(s)
= μ+,

lim
s→∞

ϕ−(s)

ϕ(s)
= 1, lim

s→−∞
ϕ+(s)

ϕ(s)
= 1,

ϕ′(s)
ϕ(s)

= ϕ′−(s)

ϕ−(s)

1

1 + ϕ−(s)
ϕ+(s)

+ ϕ′+(s)

ϕ+(s)

1

1 + ϕ+(s)
ϕ−(s)

we easily see that ϕ(s) satisfies assumption (D) and then μ∓ are eigenvalues of F ′(x0) with
eigenvectors γ±. �

Of course condition (C3) is stronger than both conditions (C) and (D). It will be clear later
why we need it.

Next, in the light of Proposition 2.1 we derive

lim
s→±∞

ω(γ (s))

ϕ(s)
= lim

s→±∞
ω′(x0)(γ (s) − x0) + o(γ (s) − x0)

ϕ(s)
= 〈∇ω(x0), γ±

〉
.

By (C2), we know ω(γ (s)) > 0 for any s ∈R, so 〈∇ω(x0), γ±〉� 0. Hence condition (C4) means
that γ (s) tends transversally to the singular manifold ω−1(0) at x0.

Next we look at assumption (C5). First we note that

γ ′(s) = F(γ (s)) = F ′(x0)(γ (s) − x0) + o(γ (s) − x0)

′
ω(γ (s)) ω(γ (s)) ω (x0)(γ (s) − x0) + o(γ (s) − x0)
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and then

lim
s→±∞

γ ′(s)
ω(γ (s))

= F ′(x0)γ±
ω′(x0)γ±

= μ∓γ±
ω′(x0)γ±

. (2.4)

Hence γ ′(s)
ω(γ (s))

is bounded on R and it is easy to check that it solves (1.7). Next let

θ(s) :=
s∫

0

ω
(
γ (τ)

)
dτ

and set Γ (t) = γ (θ−1(t)). Then Γ (t) satisfies ω(x)ẋ = F(x) whose linearization along Γ (t) is

F ′(Γ (t)
)
z = Γ̇ (t)ω′(Γ (t)

)
z + ω

(
Γ (t)

)
ż = F

(
Γ (t)

)ω′(Γ (t))z

ω(Γ (t))
+ ω

(
Γ (t)

)
ż

i.e.

ω
(
Γ (t)

)
ż = F ′(Γ (t)

)
z − F

(
Γ (t)

)ω′(Γ (t))z

ω(Γ (t))
(2.5)

and (1.7) is derived from (2.5) taking x(s) = z(θ(s)). This fact should clarify why we need to
consider the linear system (1.7) instead of (1.8). We set

ϕ(s) := 1

e−μ−s + e−μ+s

and note that, from assumption (C3) and the proof of Proposition 2.1 we have

lim
s→±∞

γ (s) − x0

ϕ(s)
= γ± �= 0. (2.6)

We emphasize the fact that many of the results obtained in the next section depend on the fact
that (2.6) holds with

lim
s→±∞

ϕ′(s)
ϕ(s)

= μ∓.

Remark 2.2. An alternative way for condition (C2) would be to assume that there is a bounded
solution Γ (t) of (1.4) on a finite open interval asymptotic to x0 such that ω(Γ (t)) �= 0. But then
it would be awkward to define the hyperbolicity of (1.1) at x0. For this reason, we follow our
way by transforming the problem into common one on the infinite interval R.
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3. Existence of bounded solutions

In this section we construct a Melnikov like function to characterize the bifurcation to a solu-
tion of the perturbed equation (1.2) tending to x0 in finite time. First, from (C1) we get

ω(x) = 〈∇ω(x0), x − x0
〉 + O

(|x − x0|2
)

(3.1)

for a scalar product 〈·,·〉 in R
n. Then taking the shift and change of time

t = α + θ(s), θ(s) :=
s∫

0

ω
(
γ (r)

)
dr (3.2)

we get

ω(z)z′ = ω
(
γ (s)

)(
F(z) + εG

(
z,α + θ(s), ε, κ

))
(3.3)

with z(s) = x(α + θ(s)). By (3.1) we have

T± := lim
s→±∞ θ(s) =

±∞∫
0

ω
(
γ (r)

)
dr < ∞.

We are looking for solutions z(s) of Eq. (3.3) tending to x0 at the same rate as γ (s). Then
x(t) = z(θ−1(t − α)) is a solution of Eq. (1.2) tending to x0 as t → ±T + α at the same rate as
Γ (t − α) − x0.

So in (3.3) we make the change of variables

z(s) = γ (s) + ϕ(s)y(s) = x0 + ϕ(s)
(
η(s) + y(s)

)
(3.4)

where η(s) is the bounded function γ (s)−x0
ϕ(s)

. First we note (see (3.1))

ω
(
z(s)

)
�

〈∇ω(x0), ϕ(s)
(
η(s) + y(s)

)〉 − K1
∣∣ϕ(s)

(
η(s) + y(s)

)∣∣2

= ϕ(s)
(〈∇ω(x0), η(s) + y(s)

〉 − K1ϕ(s)
∣∣(η(s) + y(s)

)∣∣2) (3.5)

for a constant K1 > 0 and any s ∈R, |y|� 1. Then, using (C4), (3.5) implies

ω
(
z(s)

)
� 1

2
ϕ(s)

〈∇ω(x0), γ±
〉
> 0 (3.6)

for |s| > 0 large and |y| small. Then (3.6) and ω(γ (t)) > 0 imply the existence of M > 0 and
δ > 0 so that

ω
(
z(s)

)
� Mϕ(s)

for any s ∈R and |y| � δ. Now plugging (3.4) into (3.3) we derive the equation



F. Battelli, M. Fečkan / J. Differential Equations 256 (2014) 1157–1190 1165
y′ = ω(γ )

ϕω(γ + ϕy)
F (γ + ϕy) − F(γ )

ϕ
− ϕ′

ϕ
y

+ ε
ω(γ )

ϕω(γ + ϕy)
G

(
γ + ϕy, θ(s) + α, ε, κ

)
. (3.7)

Note that, from G(x0, t, ε, κ) = 0 it follows that the quantity

G(γ + ϕy,α + θ(s), ε, κ)

ϕ
= G(x0 + ϕ(η + y),α + θ(s), ε, κ)

ϕ

is bounded uniformly in s ∈R, κ ∈Rm and (y, ε) small.
Then the linearization of (3.7) at y = 0, ε = 0 is

y′ =
[
F ′(γ (s)

) − F(γ (s))ω′(γ (s))

ω(γ (s))
− ϕ′(s)

ϕ(s)
I

]
y. (3.8)

We are interested in the limiting equation of (3.8) as s → ±∞. To this end we need to evaluate
the limits:

lim
s→±∞

F(γ (s))

ω(γ (s))
ω′(γ (s)

)
y = lim

s→±∞
F(γ (s))

ω(γ (s))
ω′(x0)y

= lim
s→±∞

F(x0 + ϕ(s)η(s))

ω(x0 + ϕ(s)η(s))
ω′(x0)y

= lim
s→±∞

F ′(x0)η(s)

ω′(x0)η(s)
ω′(x0)y

= F ′(x0)γ±
ω′(x0)γ±

ω′(x0)y = μ∓γ±
ω′(x0)γ±

ω′(x0)y.

So the limiting equation of (3.8) at ±∞ is respectively

y′ =
[
F ′(x0) − μ∓γ±

ω′(x0)γ±
ω′(x0) − μ∓I

]
y.

Then we are lead to find the spectrum of the linear maps:

y �→ F ′(x0)y − μ−γ+
ω′(x0)γ+

ω′(x0)y − μ−y (3.9)

and

y �→ F ′(x0)y − μ+γ−
ω′(x0)γ−

ω′(x0)y − μ+y. (3.10)

Setting L = F ′(x0) − μ∓I, v0 = γ± and

ω∗
0 = μ∓

′ ω′(x0),

ω (x0)γ±
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(3.9) and (3.10) have a form

v �→ Υ v = Lv − (
ω∗

0v
)
v0.

Note Lv0 = 0. We prove the following.

Lemma 3.1. Let V be a (real or complex) finite dimensional vector space and L : V → V be a
linear map. Suppose that Lv0 = 0 and that a subspace W of V exists such that V = W ⊕ [v0]
and L : W → W . Let ω∗

0 ∈ V ∗ be such that ω∗
0v0 �= 0. Then for the spectrum of the linear map

Υ : v �→ Lv − (ω∗
0v)v0 the following hold:

(a) all the eigenvalues of L different from 0 and −ω∗
0v0 are also eigenvalues of Υ with the same

algebraic and geometric multiplicities and vice versa;
(b) the geometric multiplicity of 0 as eigenvalue of Υ is one less of the geometric multiplicity

of 0 as eigenvalue of L;
(c) −ω∗

0v0 is an eigenvalue of Υ and its geometric multiplicity is either equal to or one more
than the geometric multiplicity of −ω∗

0v0 as eigenvalue of L.

Moreover, in case (c) the second situation occurs if and only if all eigenvectors of L of the
eigenvalue −ω∗

0v0 satisfy ω∗
0v = 0.

Proof. Let F = R or C be the field of scalars, λ0 = −ω∗
0v0 �= 0 and U = {u ∈ V | ω∗

0u = 0}. We
split any v = u + cv0, u ∈ U and c ∈ F. We have

Υ v = Lu + cλ0v0.

Then Υ v = 0, for some v �= 0 if and only if

(i) either c = 0 and Lu = 0, u �= 0;
(ii) or c �= 0 and Lu = −cλ0v0.

Case (i) holds if and only if 0 is an eigenvalue of L with geometric multiplicity greater than 1.
Indeed if Lv1 = 0 for some v1 independent of v0, then its projection u on U along v0 solves
Lu = 0. Next, case (ii) holds if and only if v0 ∈ RL. Indeed from (ii) it immediately follows that
v0 ∈ RL (since c,λ0 �= 0), vice versa if v0 = Lv1 then the same equality holds for the projection
u of v1 on U along v0 so (ii) holds with c = −λ−1

0 �= 0. Finally, if (i) does not hold then v0 is the
unique eigenvector of the 0 eigenvalue of L but then

v0 ∈RL ⇔ NL2 �=NL

since NL = span{v0}. So Υ v = 0, for some v �= 0 if and only if either 0 is an eigenvalue of L

with geometric multiplicity greater than 1 or 0 is an eigenvalue of L with geometric multiplicity
equal to 1 but algebraic multiplicity greater than 1, i.e.

0 /∈ σ(Υ ) if and only if 0 is a simple eigenvalue of L.
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Now consider the splitting V = W ⊕ span{v0} with L : W → W . Let λ ∈ F, λ �= 0 and
write v = w + cv0. Then Lv − λv = 0 if and only if Lw − λw = λcv0 ⇒ c = 0 since
W ∩ span{v0} = {0} and Lw = λw. As a consequence for any λ �= 0 it results

N (L − λI) ∩ W =N (L − λI). (3.11)

Next from Grassman formula, and v0 ∈ NL, v0 /∈ W we easily get

dim[NL ∩ W ] = dimNL − 1, (3.12)

hence we may suppose that W contains all the eigenvectors of the 0 eigenvalue of L that are
independent of v0.

We split any vector v ∈C
n as v = w + cv0, w ∈ W , c ∈C. Then, for any 0 �= λ ∈ C, we have

(Υ − λI)v = Lv − (
ω∗

0v
)
v0 − λv = (L − λI)w − ω∗

0(w + cv0)v0 − λcv0

= (L − λI)w − (
ω∗

0w
)
v0 − c(λ − λ0)v0

= (L − λI)

[
w + 1

λ

[
ω∗

0w + c(λ − λ0)
]
v0

]
= (L − λI)Tλv, (3.13)

where

Tλ : w + cv0 → w + 1

λ

[
ω∗

0w + c(λ − λ0)
]
v0

is a linear isomorphism on V for any λ /∈ {λ0,0}. So

σ(Υ ) \ {λ0,0} = σ(L) \ {λ0,0}, (3.14)

and both the geometric and algebraic multiplicities of eigenvalues in (3.14) are preserved since
Tλ is an isomorphism and det(Υ − λI) = det(L − λI)detTλ. This proves (a).

Next the equality (Υ − λI)v = (L − λI)w − (ω∗
0w)v0 − c(λ − λ0)v0 with λ = 0 reads

Υ v = Lw − [
ω∗

0w − cλ0
]
v0

and hence Υ v = 0 if and only if Lw = 0 and c = ω∗
0w

λ0
, so from (3.12) we deduce that the

geometric multiplicity of 0 as eigenvalue of Υ is one less than its geometric multiplicity of 0 as
eigenvalue of L. This proves (b).

Finally if λ = λ0 then from (3.13) it follows

(Υ − λ0I)v = (L − λ0I)w − (
ω∗

0w
)
v0.

Hence v0 is an eigenvector of Υ with eigenvalue λ0 and (Υ −λ0I)v = 0 if only if (L−λ0I)w = 0
and ω∗

0w = 0 that is w ∈ N (L − λ0I) ∩ W ∩ U =N (L − λ0I) ∩ U (see (3.11)). Since

dim
[
N (L − λ0I) ∩ U

] = dimN (L − λ0I) + dimU − dim
[
N (L − λ0I) + U

]
and dimU = n − 1 we have the following possibilities:
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(i) dim[N (L − λ0I) ∩ U ] = dimN (L − λ0I),
(ii) dim[N (L − λ0I) ∩ U ] = dimN (L − λ0I) − 1.

In the first case the geometric multiplicity of λ0 as an eigenvalue of Υ is one more than the
geometric multiplicity of λ0 as an eigenvalue of L while in the second, the geometric multiplicity
of λ0 as eigenvalue of Υ equals to the geometric multiplicity of λ0 as eigenvalue of L. This
proves point (c). �

Let mL
a (λ), mL

g (λ) be the algebraic and geometric multiplicities of the eigenvalue λ of L.
Lemma 3.1 implies that

mL
a (0) + mL

a (λ0) = mΥ
a (0) + mΥ

a (λ0) (3.15)

since, according to Lemma 3.1 (a)
∑

λ�=0,λ0
mL

a (λ) = ∑
λ�=0,λ0

mΥ
a (λ). Furthermore mL

a (0) � 1,

mΥ
a (λ0) � 1.
Now, suppose that 0 is a semi-simple eigenvalue of L i.e. mL

a (0) = mL
g (0) and that λ0 is not

an eigenvalue of L i.e. mL
a (λ0) = 0. Applying Lemma 3.1 (b)–(c), to (3.15) we obtain

0 �mΥ
a (λ0) − 1 = mΥ

g (0) − mΥ
a (0) � 0

that is

mΥ
a (λ0) = 1, mΥ

a (0) = mΥ
g (0) = mL

g (0) − 1.

So we proved the following.

Corollary 3.2. Suppose the conditions of Lemma 3.1 hold and moreover, that 0 is a semi-simple
eigenvalue of L and −ω∗

0v0 is not an eigenvalue of L. Then

σ(Υ ) = σ(L) ∪ {−ω∗
0v0

} \ {0}.

Moreover 0 is a semi-simple eigenvalue of Υ of multiplicity one less than the multiplicity of 0
as eigenvalue of L, −ω∗

0v0 is a simple eigenvalue of Υ and the multiplicities of all the other
eigenvalues of Υ are the same as eigenvalues of L.

When applying Lemma 3.1 to (3.9), (3.10) we note that λ0 = −ω∗
0v0 = −μ∓ and then λ0 is

an eigenvalue of F ′(x0) − μ∓I if and only if the equation:

F ′(x0)v − μ∓v = −μ∓v ⇔ F ′(x0)v = 0

has a non-zero solution. But this contradicts the hyperbolicity of x0. So, according to
Corollary 3.2, from assumption (C3) we conclude that the spectrum of (3.9) is {μ − μ− |
μ ∈ σ(F ′(x0)), μ �= μ−} ∪ {−μ−} and, similarly, that the spectrum of (3.10) is {μ − μ+ |
μ ∈ σ(F ′(x0)), μ �= μ+} ∪ {−μ+}.

As a consequence (3.9) has k− − 1 eigenvalues with negative real parts, counted with multi-
plicities, and n − k− + 1 with positive real parts and (3.10) has k− + 1 eigenvalues with negative
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real parts, counted with multiplicities, and n − k− − 1 with positive real parts. Here k− is the
number of eigenvalues of F ′(x0) with negative real parts counted with multiplicities.

Then the linear system:

y′ = F ′(x0)y − μ−γ+
ω′(x0)γ+

ω′(x0)y − μ−y (3.16)

has an exponential dichotomy on R with projection P 0+ with rankP 0+ = k− − 1, and

y′ = F ′(x0)y − μ+γ−
ω′(x0)γ−

ω′(x0)y − μ+y

has an exponential dichotomy on R with projection P 0− with rankP 0− = k− + 1. As a conse-
quence (see [3]) the linear system (3.8) has an exponential dichotomy on both R+ and R− with
projections P± such that

rankP+ = k− − 1 and rankP− = k− + 1

or dimRP+ = k− − 1, dimNP− = n − k− − 1. Using

dimRP+ + dimNP− = dim[RP+ +NP−] + dim[RP+ ∩NP−]
we get then

dim[RP+ +NP−] + dim[RP+ ∩NP−] = n − 2.

We want to show that, if (C5) holds, then RP+ ∩ NP− = {0}. As a matter of facts it is easy to
check that Eq. (3.8) is obtained from (1.7) by the change x = ϕ(s)y. Indeed plugging this change
into Eq. (1.7) we get

ϕ(s)y′ + ϕ′(s)y = x′ =
[
F ′(γ (s)

) − F(γ (s))

ω(γ (s))
ω′(γ (s)

)]
ϕ(s)y

that gives (3.8). So, if x(0) ∈ RP+ we have y(0) ∈ RP+ and hence y(s) is a bounded solution
of the linear equation (3.8) and then the solution of (1.7) starting from ϕ(0)y(0) would tend to
zero exponentially as s → ∞. Similarly, if y(0) ∈ NP− then the solution of (1.7) starting from
ϕ(0)y(0) would tend to zero exponentially as s → −∞. As a consequence if RP+ ∩NP− �= {0}
Eq. (1.7) should have a non-zero solution tending to zero exponentially as |s| → ∞ contradicting
assumption (C5).

Hence dim[RP+ +NP−] = n − 2 and the space of bounded solutions of the equation

y′ = −
[
F ′(γ (s)

)∗ − ω′(γ (s))∗F(γ (s))∗

ω(γ (s))
− ϕ′(s)

ϕ(s)
I

]
y (3.17)

adjoint to (3.8) (i.e. the space of solutions of (3.17) with initial values in the space [RP+ +
NP−]⊥ = NP ∗+ ∩ RP ∗−) has dimension 2. Let the space of bounded solutions of (3.17) be
spanned by ψ1(s),ψ2(s). Then from the general theory (see e.g. [5]) we deduce the following
result.
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Theorem 3.3. Suppose conditions (C1)–(C5) hold and κ ∈ R. Then Eq. (3.17) has a two-
dimensional space of bounded solution. Let ψ1(s) and ψ2(s) be a basis for the space of bounded
solutions of (3.17). If the Poincaré–Melnikov function:

(
M1(α, κ)

M2(α, κ)

)
:=

(∫ ∞
−∞

ψ∗
1 (s)

ϕ(s)
G(γ (s),α + θ(s),0, κ) ds∫ ∞

−∞
ψ∗

2 (s)

ϕ(s)
G(γ (s),α + θ(s),0, κ) ds

)
(3.18)

has a simple zero at (α0, κ0), then there exist ρ > 0, ε̄ > 0 and κ̄ > 0 such that for any |ε| < ε0
and |κ| < κ̄ Eq. (3.7) has a unique bounded solution y(s, ε, κ) such that sups∈R |y(s, ε, κ)| < ρ.
Moreover

lim
(ε,κ)→(0,0)

sup
s∈R

∣∣y(s, ε, κ)
∣∣ = 0.

Recall that G(γ (s),α+θ(s),0,κ)
ϕ(s)

is bounded on s ∈ R, and, because of the exponential dichotomy
on both R+ and R− of system (3.8), ψ1(s),ψ2(s) tend to zero exponentially as s → ±∞.

Remark 3.4.

(1) It follows from the discussion at the beginning of this section that, if assumptions of
Theorem 3.3 hold, the perturbed equation (1.2) has a solution x(t) on the open interval
(T− + α,T+ + α) tending to x0 in finite time and at the same rate as Γ (t − α) − x0.

(2) Let us look at the spectrum of the linear maps:

L+ : y �→ F ′(x0)y − μ−γ+
ω′(x0)γ+

ω′(x0)y − μ−y

and

L− : y �→ F ′(x0)y − μ+γ−
ω′(x0)γ−

ω′(x0)y − μ+y,

when ω(x) and F(x) are as in (1.3), i.e. when Eq. (1.4) is obtained from (1.1) with ε = 0
multiplying by the adjugate matrix. According to Section 6, generically, F ′(x0) has an
(n − 2)-dimensional kernel. But from (C2), it also has the eigenvectors γ± with (simple)
eigenvalues μ∓. Hence

σ
(
F ′(x0)

) = {0,μ±}
where 0 is a semi-simple eigenvalue of multiplicity n − 2 and μ± are simple. Then the
spectrum of

L− : y �→ F ′(x0)y − μ+y

is σ(L−) = {−μ+,0,μ− − μ+} where −μ+ < 0 is semi-simple with multiplicity n − 2,
and 0, μ− − μ+ < 0 are simple. Similarly the spectrum of

L+ : y �→ F ′(x0)y − μ−y
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is σ(L+) = {−μ−,0,μ+ − μ−} where −μ− > 0 is semi-simple with multiplicity n − 2,
and 0, μ+ − μ+ > 0 are simple. Then both L± satisfy the assumptions of Lemma 3.1 with
ω∗

0 = μ∓
ω′(x0)γ± ω′(x0), respectively.

Hence, according to Lemma 3.1 the spectrum of L+ is

σ(L+) = {μ+ − μ−,−μ−}

with μ+ − μ− > 0 of multiplicity 1 and the geometric multiplicity of −μ− > 0 is either
equal to or one more than n − 2 and hence, equal to n − 1. Similarly

σ(L−) = {μ− − μ+,−μ+}

with μ− − μ+ < 0 of multiplicity 1 and the geometric multiplicity of −μ+ < 0 equals
n − 1. So L+ has only positive eigenvalues (unstable) and L− has only negative eigenvalues
(stable). As a consequence the linear system:

y′ =
[
F ′(γ (s)

) − F(γ (s))ω′(γ (s))

ω(γ (s))
− ϕ′(s)

ϕ(s)
I

]
y

has an exponential dichotomy on R+ with projection P+ = 0 and on R− with projection
P− = I. This implies that

NP ∗+ ∩RP ∗− =R
n

that is all solutions of the adjoint system

y′ = −
[
F ′(γ (s)

)∗ − ω′(γ (s))∗F(γ (s))∗

ω(γ (s))
− ϕ′(s)

ϕ(s)
I

]
y

are bounded on R. Summarizing, when ω(x) and F(x) are as in (1.3) we have a codimen-
sion n problem.

4. Melnikov function and the original equation

In this section we want to express the Melnikov function (3.18) in terms of the solutions of
the equation adjoint to (2.5) and time t . Passing to time t = θ(s) we get

(
M1(α, κ)

M2(α, κ)

)
:=

⎛⎝∫ T+
T−

ψ∗
1 (θ−1(t))

ϕ(θ−1(t))ω(Γ (t))
G(Γ (t), t + α,0, κ) dt∫ T+

T−
ψ∗

2 (θ−1(t))

ϕ(θ−1(t))ω(Γ (t))
G(Γ (t), t + α,0, κ) dt

⎞⎠
where Γ (t) = γ (θ−1(t)) is a solution of ω(x)ẋ = F(x) such that limt→±T Γ (t) = x0. We recall
that ψ1,2(s) are (bounded) solutions of the adjoint system (3.17) and hence

ψ1,2(0) ∈RP ∗ ∩NP ∗ .
− +
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We already observed that ψ1,2(s) → 0 as |s| → ∞ exponentially fast. As a matter of fact we can
determine the exponential rate of ψ1,2(s). Indeed in Theorems 5.1 and 5.3 of the next section we
will prove that projections P± of ranks rankP+ = k− − 1, rankP− = k− + 1 exist such that the
fundamental matrix X(t) of (3.8) satisfies∥∥X

(
s′′)P+X

(
s′)−1∥∥� keα−(s′′−s′), 0 � s′ � s′′,∥∥X

(
s′′)(I− P+)X

(
s′)−1∥∥� ke−μ−(s′′−s′), 0 � s′′ � s′,∥∥X

(
s′′)P−X

(
s′)−1∥∥� ke−μ+(s′′−s′), s′ � s′′ � 0,∥∥X

(
s′′)(I− P−)X

(
s′)−1∥∥� keα+(s′′−s′), s′′ � s′ � 0 (4.1)

for some k > 0, where

max
{�μ − μ−

∣∣ μ ∈ σ
(
F ′(x0)

)
, �μ < μ−

}
< α− < max

{�μ − μ−
∣∣ μ ∈ σ

(
F ′(x0)

)
, �μ < μ−

} + δ < 0,

0 < min
{�μ − μ+

∣∣ μ ∈ σ
(
F ′(x0)

)
, �μ > μ+

} − δ

< α+ < min
{�μ − μ+

∣∣ μ ∈ σ
(
F ′(x0)

)
, �μ > μ+

}
and δ > 0 can be taken as close to 0 as we like. We observe that the exponents −μ± in the second
and third rows are the best we can expect. Indeed we have already observed that the eigenvalues
of the linear map (3.9) are{

μ − μ−
∣∣ μ ∈ σ

(
F ′(x0)

)
, μ �= μ−

} ∪ {−μ−}
and hence the limiting equation for s → ∞ (3.16) has and exponential dichotomy with exponents
α0 < 0 (larger than max{�μ−μ− | μ ∈ σ(F ′(x0)), �μ < μ−}, but as close to it as we like) and
μ− > 0 i.e. the fundamental matrix X0(s) of (3.16) satisfies∥∥X0

(
s′′)P 0+X0

(
s′)−1∥∥� keα0(s

′′−s′), 0 � s′ � s′′,∥∥X0
(
s′′)(

I− P 0+
)
X0

(
s′)−1∥∥� ke−μ−(s′′−s′), 0 � s′′ � s′

where P 0+ is the projections onto the space of generalized eigenvectors of the eigenvalues with
negative real parts of (3.9) and k > 0 is a suitable constant. Hence because of roughness of expo-
nential dichotomies we can only conclude that the second inequality of (4.1) holds with another
exponents μ̃− that in general is strictly larger than −μ−. Similarly, the standard roughness prop-
erty implies that the third inequality of (4.1) holds with another exponents μ̃+, in general strictly
smaller than −μ+.

From the second estimate in (4.1) with s′′ = 0 and s′ = s > 0, we get∥∥X−1(s)∗
(
I− P ∗+

)∥∥� keμ−s

whilst from the third with s′′ = 0 and s′ = s < 0 we get∥∥X−1(s)∗P ∗∥∥ � keμ+s .
−
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Hence the solutions of the adjoint system (3.17) starting from NP ∗+ tend to zero as s → +∞ at
the exponential rate eμ−s and the solutions of the adjoint system (3.17) starting from RP ∗− tend
to zero as s → −∞ at the exponential rate eμ+s . This implies the claim that

ψ1,2(s) = O
(
eμ∓s

)
as s → ±∞.

But, since μ± are simple eigenvalues of F ′(x0) we have

ϕ(s) = (
e−μ−s + e−μs

)−1 = O
(
eμ∓s

)
,

as s → ±∞. Hence

ψ1,2(s) = O
(
ϕ(s)

)
as s → ±∞.

Setting y = ϕ(s)x in (3.17) we obtain the system:

x′ = −
[
F ′(γ (s)

)∗ − ω′(γ (s))∗F(γ (s))∗

ω(γ (s))

]
x. (4.2)

As a consequence, the solutions of Eq. (4.2) starting from points in RP ∗− ∩ NP ∗+ are bounded
above by a constant both as s → +∞ and as s → −∞. In other words:

x(0) ∈RP ∗− ∩NP ∗+ ⇒ ∥∥x(s)
∥∥ = O(1) as |s| → ∞

for any solution of Eq. (4.2). Next note that, changing s with t = θ(s) in (4.2) and recalling that
Γ (t) = γ (θ−1(t)) we get the equation:

ω
(
Γ (t)

)
v̇ = ω′(Γ (t))∗

ω(Γ (t))
F

(
Γ (t)

)∗
v − F ′(Γ (t)

)∗
v (4.3)

(here we write v(t) for x(s) with t = θ(s)). Note that (4.3) is the equation adjoint to the lineariza-
tion of ω(x)ẋ = F(x) along its solution Γ (t). Setting y(s) = ϕ(s)v(θ(s)) and t = θ(s), in (4.2)
then we see that y satisfies (3.17). As a consequence ψj (s) = ϕ(s)vj (θ(s)) where vj (t) satisfies
(4.3) and ψj (0) ∈ RP ∗− ∩NP ∗+ if and only if vj (0) ∈RP ∗− ∩NP ∗+. So we conclude that

(
M1(α, κ)

M2(α, κ)

)
:=

(∫ T+
T− v∗

1(t)
G(Γ (t),t+α,0,κ)

ω(Γ (t))
dt∫ T+

T− v∗
2(t)

G(Γ (t),t+α,0,κ)
ω(Γ (t))

dt

)

where v1,2(t) are two independent solutions of Eq. (4.3) such that∣∣vj

(
θ(s)

)∣∣ = O(1) as |s| → ∞
that is ∣∣vj (t)

∣∣ = O(1) as t → T±

since
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lim
s→±∞

θ(s) ∓ T±
eμ∓s

= lim
s→±∞

ω(γ (s))

μ∓eμ∓s
= μ−1∓ lim

s→±∞
ω′(x0)(γ (s) − x0)

eμ∓s

= μ−1∓ lim
s→±∞

ω′(x0)(γ (s) − x0)

ϕ(s)

ϕ(s)

eμ∓s
= μ−1∓ ω′(x0)γ± �= 0.

We conclude this section noting that from the preceding discussion it follows that Eq. (4.3) has
a two-dimensional space of bounded solutions as t → T± and {v1(t), v2(t)} is a basis of such a
space.

5. Roughness

In this section we want to prove (4.1). The basic results to obtain such inequalities are the
roughness Theorems 5.1 and 5.2. However we complete the treatment adding other similar re-
sults in this respect since we believe that these results concerning exponential dichotomies are
interesting themselves. We also note that a related result has been proved in [4].

To start with we note that the function u(s) := γ ′(s)
ω(γ (s))ϕ(s)

is a solution of the linear equa-
tion (3.8) that satisfies

c1

ϕ(s)
�

∣∣u(s)
∣∣ � c2

ϕ(s)

where

0 < c1 = inf
s∈R

γ ′(s)
ω(γ (s))

and c2 = sup
s∈R

γ ′(s)
ω(γ (s))

.

For 0 � s � t we have

ϕ(s)

ϕ(t)
= e−μ−t + e−μ+t

e−μ−s + e−μ+s
= 1 + e(μ−−μ+)t

1 + e(μ−−μ+)s
eμ−(s−t)

while for s � t � 0 we have

ϕ(s)

ϕ(t)
= 1 + e(μ+−μ−)t

1 + e(μ+−μ−)s
eμ+(s−t).

Hence

eμ−(s−t) � ϕ(s)

ϕ(t)
� 2eμ−(s−t)

for 0 � s � t , and

eμ+(s−t) � ϕ(s)

ϕ(t)
� 2eμ+(s−t)

for s � t � 0. As a consequence
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c1

c2

∣∣u(s)
∣∣ � ∣∣u(t)

∣∣eμ−(t−s) � 2c2

c1

∣∣u(s)
∣∣

for 0 � s � t and

c1

c2

∣∣u(s)
∣∣ � ∣∣u(t)

∣∣eμ+(t−s) � 2c2

c1

∣∣u(s)
∣∣ (5.1)

for s � t � 0. Note that −μ− (resp. −μ+) is the eigenvalue with the least positive (resp. largest
negative) real part of the linear map (3.9) (resp. (3.10)) and is simple. So the first two inequalities
in (4.1) are a consequence of the following.

Theorem 5.1. Let A(t) be a bounded matrix and suppose the following hold:

(a) limt→∞ A(t) = A;
(b) there exist a negative number α < 0 and a real simple eigenvalue μ∗ > 0 of A such that any

other eigenvalue of A satisfies either �μ < α or �μ > μ∗;
(c) there exists a non-zero solution u(t) of the linear equation ẋ = A(t)x such that

k1
∣∣u(s)

∣∣ � ∣∣u(t)
∣∣e−μ∗(t−s) � k2

∣∣u(s)
∣∣,

for some k1, k2 > 0 and 0 � s � t .

Then the linear equation ẋ = A(t)x has an exponential dichotomy on R+ with exponents α

and μ∗ i.e. there exists a projection P+ such that the fundamental matrix X(t) of equation ẋ =
A(t)x, with X(0) = I satisfies∥∥X(t)P+X−1(s)

∥∥ � keα(t−s), 0 � s � t,∥∥X(t)(I− P+)X−1(s)
∥∥ � keμ∗(t−s), 0 � t � s.

Proof. Let μ̄ > μ∗ and δ > 0 be such that the following hold

μ∗ < μ̄ < μ̄ + 2δ < min
{�μ

∣∣ μ ∈ σ(A), �μ > μ∗},
max

{�μ
∣∣ μ ∈ σ(A), �μ < 0

}
< α − δ.

From classical theory we know that there exist projections Qs , Qc, Qu in R
n with rankQc = 1

and Qs + Qc + Qu = I such that the fundamental matrix X0(t) of ẋ = Ax, with X0(0) = I,
satisfies ∥∥X0(t)QsX

−1
0 (s)

∥∥ � kse(α−δ)(t−s), s � t,∥∥X0(t)QcX
−1
0 (s)

∥∥ � kseμ∗(t−s), t � s,∥∥X0(t)QuX
−1
0 (s)

∥∥ � kse(μ̄+2δ)(t−s), t � s.

Setting Y0(t) = X0(t)e−(μ∗+2δ)t we get
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∥∥Y0(t)QsY
−1
0 (s)

∥∥ � kse(α−μ∗−3δ)(t−s) � kse−2δ(t−s), s � t,∥∥Y0(t)QcY
−1
0 (s)

∥∥ � kse−2δ(t−s), t � s,∥∥Y0(t)QuY
−1
0 (s)

∥∥ � kse(μ̄−μ∗)(t−s), t � s.

Now, Y0(t) is the fundamental matrix of the linear system ẏ = [A − (μ∗ + 2δ)I]y. Hence be-
cause of roughness of exponential dichotomies there exist a projection Q̃ : Rn → R

n with
rank Q̃ = rank[Qs + Qc] and a constant k such that the fundamental matrix Y(t) of ẏ =
[A(t) − (μ∗ + 2δ)I]y satisfies∥∥Y(t)Q̃Y−1(s)

∥∥ � ke−δ(t−s), 0 � s � t,∥∥Y(t)(I− Q̃)Y−1(s)
∥∥ � ke(μ̄−μ∗−δ)(t−s), 0 � t � s. (5.2)

Since the fundamental matrix X(t) of ẋ = A(t)x is X(t) = Y(t)e(μ∗+2δ)t we obtain∥∥X(t)Q̃X−1(s)
∥∥ � ke(μ∗+δ)(t−s), 0 � s � t,∥∥X(t)(I− Q̃)X−1(s)
∥∥ � ke(μ̄+δ)(t−s), 0 � t � s. (5.3)

Next, again from roughness of exponential dichotomies, we know that a projection P+ with
rankP+ = rankQs = rank Q̃ − 1 exists such that∥∥X(t)P+X−1(s)

∥∥ � keα(t−s), 0 � s � t,∥∥X(t)(I− P+)X−1(s)
∥∥ � ke(μ∗−δ)(t−s), 0 � t � s. (5.4)

Without loss of generality we may assume that the constants k in (5.3) and (5.4) are the same.
Next ∥∥Y(t)P+Y−1(s)

∥∥ � ke(−μ∗−2δ+α)(t−s), 0 � s � t,∥∥Y(t)(I− P+)Y−1(s)
∥∥ � ke−3δ(t−s), 0 � t � s. (5.5)

From (5.2) and (5.5) it follows that

RQ̃ = {
y0 ∈R

n
∣∣ ∣∣Y(t)y0

∣∣� k
∣∣y(0)

∣∣e−δt
}
,

RP+ = {
y0 ∈R

n
∣∣ ∣∣Y(t)y0

∣∣� k
∣∣y(0)

∣∣e(−μ∗−2δ+α)t
}
.

Hence

RP+ ⊂RQ̃

and has codimension 1 in RQ̃. Moreover we can take as NP+ (resp. N Q̃) any complement of
the range. Now, u(0) /∈RP+ since otherwise, for t � 0:

k1
∣∣u(0)

∣∣eμ∗t �
∣∣u(t)

∣∣ = ∣∣X(t)P+X−1(0)u(0)
∣∣ � keαt

∣∣u(0)
∣∣ → 0
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as t → ∞. But u(0) ∈RQ̃, indeed we have, for s � 0:∣∣(I− Q̃)u(0)
∣∣ = ∣∣X(0)(I− Q̃)X−1(s)u(s)

∣∣ � ke−(μ̄+δ)s
∣∣u(s)

∣∣
� kk2e−(μ̄−μ∗+δ)s

∣∣u(0)
∣∣ → 0,

as s → ∞. So u(0) ∈ RQ̃ and we may choose P+ so that

RP+ ⊂ RQ̃ and NP+ = N Q̃ ⊕ span
{
u(0)

}
.

Now, we take the projection S : NP+ → NP+ such that NS = N Q̃ and RS = span{u(0)} and
set P1 := S(I− P+), P2 := (I− S)(I− P+). We have

P 2
1 = S(I− P+)S(I− P+) = S2(I− P+) = S(I− P+) = P1

since (I− P+)S(I− P+) = S(I− P+). Similarly, using P+S = 0:

P 2
2 = (I− S)(I− P+)(I− S)(I− P+) = (I− S)(I− S − P+)(I− P+) = (I− S)(I− P+).

So P1 and P2 are projections and trivially satisfy P1 + P2 = I− P+. For any given projection P

(for example P+,P1, Q̃ etc.) we set

P(s) := X(s)PX−1(s).

We also set

S(s) = X(s)SX−1(s)|NP+(s).

Then note that

I− P+(s) := X(s)(I− P+)X−1(s) = P1(s) + P2(s).

It is clear that NP1 = RP+ ⊕N Q̃, RP1 = span{u(0)}, NP2 = RP+ ⊕ span{u(0)} and RP2 =
N Q̃ and then for any s ∈ R

NP1(s) = RP+(s) ⊕N Q̃(s), RP1(s) = span
{
u(s)

}
,

NP2(s) = RP+(s) ⊕ span
{
u(s)

}
, RP2(s) = N Q̃(s),

NP+(s) = N Q̃(s) ⊕ span
{
u(s)

}
.

Let x ∈ NP+(s). Then x = x1 + cu(s), where x1 ∈ N Q̃(s) (note, in general, c, x1 may depend
on s) or, using u(s) ∈RQ̃(s):

x = (
I− Q̃(s)

)
x + cu(s) = (

I− Q̃(s)
)
x + Q̃(s)x

where Q̃(s)x = cu(s). We have
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S(s)x = S(s)
[(
I− Q̃(s)

)
x + cu(s)

] = S(s)cu(s)

= cX(s)Su(0) = cX(s)u(0) = cu(s) = Q̃(s)x.

Hence (see (5.3)): ∥∥S(s)
∥∥ �

∥∥Q̃(s)
∥∥ � k

and then ∥∥P1(s)
∥∥ = ∥∥S(s)

(
I− P+(s)

)∥∥ � k2.

Next ∥∥X(t)(I− P+)X−1(s)
∥∥ �

∥∥X(t)P1X
−1(s)

∥∥ + ∥∥X(t)P2X
−1(s)

∥∥.

So for 0 � t � s we have, using (I− Q̃)P2 = P2:∥∥X(t)P2X
−1(s)

∥∥ = ∥∥X(t)(I− Q̃)X−1(s)X(s)P2X
−1(s)

∥∥ � ke(μ̄+δ)(t−s)
∥∥P2(s)

∥∥.

Next, for any x ∈ R
n there exists c(s) ∈ R such that P1X

−1(s)x = c(s)u(0). Then, for 0 � t � s:∣∣X(t)P1X
−1(s)x

∣∣ = ∣∣X(t)c(s)u(0)
∣∣ = ∣∣c(s)u(t)

∣∣ � ∣∣c(s)∣∣∣∣u(t)
∣∣

�
∣∣c(s)∣∣k−1

1

∣∣u(s)
∣∣eμ∗(t−s) = k−1

1

∣∣X(s)c(s)u(0)
∣∣eμ∗(t−s)

= k−1
1

∣∣P1(s)x
∣∣eμ∗(t−s)

that is ∥∥X(t)P1X
−1(s)

∥∥ � k2
∥∥P1(s)

∥∥eμ∗(t−s)

where P1(s) = X(s)P1X
−1(s). As a consequence we obtain, for 0 � t � s:∥∥X(t)(I− P+)X−1(s)

∥∥ �
[
ke(μ̄−μ∗+δ)(t−s)

∥∥P2(s)
∥∥ + k2

∥∥P1(s)
∥∥]

eμ∗(t−s).

Since μ∗ < μ̄ the thesis follows provided we prove that P1(s) and P2(s) are bounded in s � 0
and this easily follows from ‖I − P+(s)‖ � k, ‖P1(s)‖ � k2 and the equality P1(s) + P2(s) =
I− P+(s). The proof is complete. �

Changing s, t with −s,−t in Theorem 5.1 and noting that the conditions

k1
∣∣u(s)

∣∣ � ∣∣u(t)
∣∣e−μ∗(t−s) � k2

∣∣u(s)
∣∣ for 0 � s � t

and

k−1
2

∣∣u(s)
∣∣ � ∣∣u(t)

∣∣e−μ∗(t−s) � k−1
1

∣∣u(s)
∣∣ for 0 � t � s

are obtained one from the other changing s with t , we obtain the following.
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Theorem 5.2. Let A(t) be a bounded matrix and suppose the following hold:

(a) limt→−∞ A(t) = A;
(b) there exist a positive number β > 0 and a real simple eigenvalue μ∗ < 0 of A such that any

other eigenvalue of A satisfies either �μ > β or �μ < μ∗;
(c) there exists a non-zero solution u(t) of the linear equation ẋ = A(t)x such that

k1
∣∣u(s)

∣∣ � ∣∣u(t)
∣∣e−μ∗(t−s) � k2

∣∣u(s)
∣∣

for some k1, k2 > 0 and s � t � 0.

Then the linear equation ẋ = A(t)x has an exponential dichotomy on R− with exponents μ∗
and β i.e. there exists a projection P− such that the fundamental matrix X(t) of equation ẋ =
A(t)x, with X(0) = I satisfies∥∥X(t)P−X−1(s)

∥∥ � keμ∗(t−s), s � t � 0,∥∥X(t)(I− P−)X−1(s)
∥∥ � keβ(t−s), t � s � 0.

The third and fourth inequalities in (4.1) follow from Theorem 5.2 and Eq. (5.1).
Since we believe that this kind of results concerning roughness of exponential dichotomies

are interesting themselves we state for completeness the following result whose proof is very
similar to that of Theorem 5.1.

Theorem 5.3. Let A(t) be a bounded matrix and suppose the following hold:

(a) limt→∞ A(t) = A;
(b) there exist a positive number β > 0 and a real and simple eigenvalue μ∗ < 0 of A such that

any other eigenvalue of A satisfies either �μ < μ∗ or �μ > β;
(c) there exists a non-zero solution u(t) of the linear equation ẋ = A(t)x such that

k1
∣∣u(s)

∣∣ � ∣∣u(t)
∣∣e−μ∗(t−s) � k2

∣∣u(s)
∣∣

for some k1, k2 > 0 and 0 � s � t .

Then the linear equation ẋ = A(t)x has an exponential dichotomy on R+ with exponents μ∗
and β i.e. there exists a projection P+ such that the fundamental matrix X(t) of equation ẋ =
A(t)x, with X(0) = I satisfies∥∥X(t)P+X−1(s)

∥∥ � keμ∗(t−s), 0 � s � t,∥∥X(t)(I− P+)X−1(s)
∥∥ � keβ(t−s), 0 � t � s. (5.6)

Proof. Let δ > 0 be such that �μ > β + 3δ for any eigenvalue μ of A with positive real part and
�μ < μ∗ − 3δ for any eigenvalue μ of A with negative real part. From classical theory we know
that there exist projections Qs , Qc and Qu on R

n such that Qs + Qc + Qu = I and a constant
k0 � 1 such that the fundamental matrix X0(t) of the linear system ẋ = Ax, satisfies
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∥∥X0(t)QsX
−1
0 (s)

∥∥ � k0e(μ∗−3δ)(t−s), s � t,∥∥X0(t)QcX
−1
0 (s)

∥∥ � k0eμ∗(t−s), s � t,∥∥X0(t)QuX
−1
0 (s)

∥∥ � k0e(β+3δ)(t−s), s � t.

Then the fundamental matrix Y0(t) = X0(t)e(δ−μ∗)t of ẏ = [A + (δ − μ−)I]y satisfies∥∥Y0(t)QsY
−1
0 (s)

∥∥ � k0e−2δ(t−s), s � t,∥∥Y0(t)QcY
−1
0 (s)

∥∥ � k0eδ(t−s), s � t,∥∥Y0(t)QuY
−1
0 (s)

∥∥ � k0e(β−μ∗+4δ)(t−s), s � t.

From the roughness of exponential dichotomies we deduce that the linear equation ẏ = [A(t) +
(δ − μ−)I]y has an exponential dichotomy on R+ with projections Q+ such that∥∥Y(t)Q+Y−1(s)

∥∥ � cse−δ(t−s), 0 � s � t,∥∥Y(t)(I− Q+)Y−1(s)
∥∥ � cue

δ
2 (t−s), 0 � t � s.

Note that, from [18] it follows Y(t)Q+Y−1(t) → Qs and then Y(t)(I − Q+)Y−1(t) = I −
Y(t)Q+Y−1(t) → Qc + Qu as t → ∞. We note that RQ+ is uniquely determined and indeed:

RQ+ = {
y ∈ R

n
∣∣ ∣∣Y(t)y

∣∣ � cs |y|e−δt
}

but its kernel NQ+ can be taken as any complement of the range. Using Y(t) = X(t)e(δ−μ∗)t

we get ∥∥X(t)Q+X−1(s)
∥∥ � cse(μ∗−2δ)(t−s), 0 � s � t,∥∥X(t)(I− Q+)X−1(s)
∥∥ � cue(μ∗− δ

2 )(t−s), 0 � t � s (5.7)

and also X(t)Q+X−1(t) → Qs and X(t)(I − Q+)X−1(t) → Qc + Qu as t → ∞. Now, from
the roughness of exponential dichotomies we know that a projection P+ exists such that Eq. (5.6)
holds with a μ̃∗, slightly bigger than μ∗, instead of μ∗ i.e.∥∥X(t)P+X−1(s)

∥∥ � keμ̃−(t−s), 0 � s � t,∥∥X(t)(I− P+)X−1(s)
∥∥ � keβ(t−s), 0 � t � s. (5.8)

Now, from (5.7), (5.8) it follows that RQ+ ⊂RP+. Moreover u(0) /∈ RQ+ since otherwise, for
t � 0:

0 < k1
∣∣u(0)

∣∣ � ∣∣u(t)
∣∣e−μ∗t = ∣∣X(t)Q+X−1(0)u(0)

∣∣e−μ∗t � cs

∣∣u(0)
∣∣e−2δt → 0

as t → ∞. Since NQ+ can be any complement of RQ+ we may assume that u(0) ∈ NQ+.
Next u(0) ∈RP+ since, for t � 0:
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∣∣(I− P+)u(0)
∣∣ = ∣∣X(0)(I− P+)X−1(t)u(t)

∣∣ � ke−βt
∣∣u(t)

∣∣
� ke−βt k2

∣∣u(0)
∣∣eμ∗t = kk2

∣∣u(0)
∣∣e(μ∗−β)t → 0,

as t → ∞. Then, because of dimensions: RP+ = RQ+ ⊕ V , where V := span{u(0)} and, be-
cause of invariance:

RP+(s) = RQ+(s) ⊕ span
{
u(s)

}
where, for any projection P we set P(s) = X(s)PX−1(s). Note, then, that u(s) ∈ NQ+(s) for
any s ∈R.

Now, we take the projection S : RP+ → RP+ such that RS = V and NS = RQ+. For
any x ∈ RP+(s) we write x = x1 + cu(s), x1 ∈ RQ+(s), and note that Q+(s)x = Q+(s)x1 +
cQ+(s)u(s) = Q+x1 = x1, since u(s) ∈NQ+(s) and x1 ∈ RQ+(s). Similarly, [I− Q+(s)]x =
cu(s). Then, for any x ∈RP+ we have

S(s)x = S(s)
[
I− Q+(s)

]
x + S(s)Q+(s)x = cS(s)u(s) = cu(s) = [

I− Q+(s)
]
x.

So

S(s) = [
I− Q+(s)

]
|RP+(s)

and then ∥∥S(s)
∥∥ �

∥∥I− Q+(s)
∥∥ � k.

Next set P1 := (I− S)P+, P2 := SP+. We have

P 2
1 = (I− S)P+(I− S)P+ = (I− S)P+(P+ − SP+) = (I− S)P+ = P1

since P+SP+ = SP+. Similarly

P 2
2 = SP+SP+ = SSP+ = SP+ = P2.

So P1 and P2 are projections. Next, RP1 = RQ+, NP1 = V ⊕ NP+, RP2 = V , NP2 =
RQ+ ⊕NP+ and P+ = P1 + P2. Hence∥∥X(t)P+X−1(s)

∥∥ �
∥∥X(t)P1X

−1(s)
∥∥ + ∥∥X(t)P2X

−1(s)
∥∥

and, using RP1 = RQ+:∥∥X(t)P1X
−1(s)

∥∥ = ∥∥X(t)Q+P1X
−1(s)

∥∥ � cse(μ∗−2δ)(t−s)
∥∥P1(s)

∥∥.

Moreover, for any x ∈ R
n one has P2X

−1(s)x = c(s)u(0) and then∣∣X(t)P2X
−1(s)x

∣∣ = ∣∣c(s)u(t)
∣∣ � k2

∣∣c(s)u(s)
∣∣eμ−(t−s) = k2

∣∣P2(s)x
∣∣eμ−(t−s)
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that is ∥∥X(t)P2X
−1(s)

∥∥ � k2
∥∥P2(s)

∥∥eμ−(t−s).

As a consequence∥∥X(t)P+X−1(s)
∥∥ �

(
cse−2δ(t−s)

∥∥P1(s)
∥∥ + k2

∥∥P2(s)
∥∥)

eμ−(t−s)

from which the thesis follows provided P1(s) and P2(s) are bounded. Since

P1(s) + P2(s) = P+(s)

and ‖P+(s)‖ � k, for P+(s) := X(s)P+X−1(s), it follows that P1(s) is bounded if and only if
so is P2(s) = X(s)SP+X−1(s). But∥∥P2(s)

∥∥ = ∥∥[
I− Q+(s)

]
|RP+(s)

P+(s)
∥∥ �

∥∥I− Q+(s)
∥∥∥∥P+(s)

∥∥ � k2.

The proof is complete. �
Changing s, t with −s,−t in Theorem 5.3 we obtain the following.

Theorem 5.4. Let A(t) be a bounded matrix and suppose the following hold:

(a) limt→−∞ A(t) = A;
(b) there exist a real simple eigenvalue μ∗ > 0 of A and α < 0 such that any other eigenvalue

of A satisfies either �μ < α or �μ > μ∗;
(c) there exists a non-zero solution u(t) of the linear equation ẋ = A(t)x such that

k1
∣∣u(s)

∣∣ � ∣∣u(t)
∣∣e−μ∗(t−s) � k2

∣∣u(s)
∣∣

for some k1, k2 > 0 and s � t � 0.

Then the linear equation ẋ = A(t)x has an exponential dichotomy on R− with exponents α

and μ∗ i.e. there exists a projection P− such that the fundamental matrix X(t) of equation ẋ =
A(t)x, with X(0) = I satisfies∥∥X(t)P−X−1(s)

∥∥ � keα(t−s), s � t � 0,∥∥X(t)(I− P−)X−1(s)
∥∥ � keμ∗(t−s), t � s � 0.

Theorems 5.1 and 5.3 can be applied simultaneously to obtain the following.

Theorem 5.5. Let A(t) be a bounded matrix and suppose the following hold:

(a) limt→∞ A(t) = A;
(b) there exist two real simple eigenvalues μ∗ > 0 and μ∗ < 0 of A such that any other eigen-

value of A satisfies either �μ < μ∗ or �μ > μ∗;
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(c) there exist two non-zero solutions u1(t) and u2(t) of the linear equation ẋ = A(t)x such that

k1
∣∣u1(s)

∣∣ � ∣∣u1(t)
∣∣e−μ∗(t−s) � k2

∣∣u1(s)
∣∣,

k1
∣∣u2(s)

∣∣ � ∣∣u2(t)
∣∣e−μ∗(t−s) � k2

∣∣u2(s)
∣∣

for some k1, k2 > 0 and 0 � s � t .

Then the linear equation ẋ = A(t)x has an exponential dichotomy on R− with exponents μ∗
and μ∗ i.e. there exists a projection P+ such that the fundamental matrix X(t) of equation ẋ =
A(t)x, with X(0) = I satisfies∥∥X(t)P+X−1(s)

∥∥ � keμ∗(t−s), 0 � s � t,∥∥X(t)(I− P+)X−1(s)
∥∥ � keμ∗(t−s), 0 � t � s.

Proof. Let δ > 0 sufficiently small. From Theorem 5.1 we know that there exist a constant k and
a projection P1 : Rn →R

n such that the fundamental matrix of ẋ = A(t)x satisfies∥∥X(t)P1X
−1(s)

∥∥ � ke(μ∗+δ)(t−s), 0 � s � t,∥∥X(t)(I− P1)X
−1(s)

∥∥ � keμ∗(t−s), 0 � t � s.

On the other hand from Theorem 5.3 we see that a projection P2 :Rn → R
n exists such that∥∥X(t)P2X

−1(s)
∥∥ � keμ∗(t−s), 0 � s � t,∥∥X(t)(I− P2)X

−1(s)
∥∥ � ke(μ∗−δ)(t−s), 0 � t � s.

Then we see that RP2 ⊂ RP1 and then RP2 = RP1 because they have the same dimension. So
P2P1 = P1 and P1P2 = P2. We get then, for 0 � s � t :∥∥X(t)P1X

−1(s)
∥∥ = ∥∥X(t)P2X

−1(s)P1(s)
∥∥ � k2eμ∗(t−s)

where P1(s) = X(s)P2X
−1(s). The thesis follows taking k2 instead of k and P+ = P1. �

Similarly, using Theorems 5.2 and 5.4 we obtain:

Theorem 5.6. Let A(t) be a bounded matrix and suppose the following hold:

(a) limt→−∞ A(t) = A;
(b) there exist two real simple eigenvalues μ∗ > 0 and μ∗ < 0 of A such that any other eigen-

value of A satisfies either �μ < μ∗ or �μ > μ∗;
(c) there exist two non-zero solutions u1(t) and u2(t) of the linear equation ẋ = A(t)x such that

k1
∣∣u1(s)

∣∣ � ∣∣u1(t)
∣∣e−μ∗(t−s) � k2

∣∣u1(s)
∣∣,

k1
∣∣u2(s)

∣∣ � ∣∣u2(t)
∣∣e−μ∗(t−s) � k2

∣∣u2(s)
∣∣

for some k1, k2 > 0 and s � t � 0.
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Then the linear equation ẋ = A(t)x has an exponential dichotomy on R− with exponents μ∗
and μ∗ i.e. there exists a projection P− such that the fundamental matrix X(t) of equation ẋ =
A(t)x, with X(0) = I satisfies∥∥X(t)P−X−1(s)

∥∥ � keμ∗(t−s), s � t � 0,∥∥X(t)(I− P−)X−1(s)
∥∥ � keμ∗(t−s), t � s � 0.

We conclude this section with a remark concerning homoclinic solutions of nonlinear systems.
Suppose that γ (t) is a solution of a nonlinear equation ẋ = g(x) asymptotic |t | → ∞ to a

hyperbolic fixed point x0 and that the first part of condition (C3) holds, i.e.

lim
s→∞

1

s
log

∣∣γ (s) − x0
∣∣ = μ− < 0.

Assume, further, that μ− is a real eigenvalue of g′(x0) and no other eigenvalues of g′(x0) have
μ− as real part. From the proof of Proposition 2.1 we know that, for some d > 0:

γ (s) − x0

sdeμ−s
= γ+ + O

(
e−δs

)
as s → ∞

with g′(x0)γ+ = μ−γ+ and γ+ �= 0. Let μ− < −δ < 0. We have

γ̇ (s)

sdeμ−s
= g(γ (s))

sdeμ−s
= g′(x0)(γ (s) − x0) + O(|γ (s) − x0|2)

sdeμ−s

= g′(x0)
[
γ+ + O

(
e−δs

)] + O
(
sdeμ−s

) = μ−γ+ + O
(
e−δs

)
.

Then

γ̈ (s)

|γ̇ (s)| = g′(γ (s))γ̇ (s)

sdeμ−s

sdeμ−s

|γ̇ (s)| = g′(γ (s)
) μ−γ+ + O(e−δs)

|μ−γ+| − O(e−δs)

= g′(γ (s)
)[ μ−γ+

|μ−γ+| + O
(
e−δs

)] = [
g′(x0) + O

(
sdeμ−s

)][− γ+
|γ+| + O

(
e−δs

)]
= −μ−v+ + O

(
e−δs

)
where v+ := γ+

|γ+| is a unitary eigenvector of g′(x0) with eigenvalue μ+. Now

d

ds
log

∣∣γ̇ (s)
∣∣ = 〈γ̇ (s), γ̈ (s)〉

|γ̇ (s)|2 = 〈−v+ + O
(
e−δs

)
,−μ−v+ + O

(
e−δs

)〉 = μ− + O
(
e−δs

)
,

since

γ̇ (s)

|γ̇ (s)| = γ̇ (s)

sdeμ−s

sdeμ−s

|γ̇ (s)| = μ−γ+
|μ−γ+| + O

(
e−δs

) = −v+ + O
(
e−δs

)
.

We get then
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d

ds
log

∣∣γ̇ (s)
∣∣ = μ− + r(s)

where 0 � |r(s)| = O(e−δs) as s → ∞. Integrating on [s, t] we get∣∣γ̇ (t)
∣∣e−μ−(t−s) = ∣∣γ̇ (s)

∣∣e∫ t
s r(σ ) dσ .

Since k2 := ∫ ∞
0 |r(s)|ds < ∞ we get

k−1
2

∣∣γ̇ (s)
∣∣ � ∣∣γ̇ (t)

∣∣e−μ−(t−s) � k2
∣∣γ̇ (s)

∣∣ for 0 � s � t.

So if the first part of condition (C3) holds, μ− is a real eigenvalue of g′(x0) and no other eigen-
values of g′(x0) have μ− as real part, then γ̇ (t) satisfies condition (c) of Theorem 5.3. Similarly,
if the second part of condition (C3) holds, μ+ is a real eigenvalue of g′(x0) and no other eigen-
values of g′(x0) have μ+ as real part, then γ̇ (t) satisfies condition (c) of Theorem 5.1.

6. Concluding remarks

(a) Condition (C1) for (1.1) means that

(C1)′ The unperturbed (1.1):

A(x)ẋ = f (x)

possesses a noncritical 0-singularity at x0 [22], i.e. detA(x0) = 0 and (detA)′(x0) �= 0.

(b) Let RL and NL be (resp.) the range and the kernel of a linear map L. Consider Eq. (1.4)
derived from (1.1) with ε = 0, i.e. with the condition (1.3). From [16, p. 430], [22] it follows that
F(x0) = 0 is equivalent to f (x0) ∈RA(x0) and (C1)′ implies dimNA(x0) = 1, R(adjA(x0)) =
NA(x0) and N (adjA(x0)) =RA(x0). Hence f (x0) = A(x0)g1 and R adjA(x0) = span{g2} for
some g1, g2 ∈ R

n. Next, we derive

F ′(x0)v = ([
adjA(x0)

]′
v
)
f (x0) + adjA(x0)

[
f ′(x0)v

]
. (6.1)

Differentiating detA(x)I = adjA(x)A(x), we get([
detA(x0)

]′
v
)
I = ([

adjA(x0)
]′
v
)
A(x0) + adjA(x0)

[
A′(x0)v

]
,

which implies([
adjA(x0)

]′
v
)
f (x0) = ([

adjA(x0)
]′
v
)
A(x0)g1

= ([
detA(x0)

]′
v
)
g1 − adjA(x0)

[
A′(x0)v

]
g1.

Then from (6.1) we get

F ′(x0)v = ([
detA(x0)

]′
v
)
g1 + adjA(x0)

([
f ′(x0)v

] − [
A′(x0)v

]
g1

) ∈ span{g1, g2}.
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Hence dimRF ′(x0) � 2 and then for n > 2, F ′(x0) is singular, so it cannot be hyperbolic. So,
(1.4) with ω(x) and F(x) as in (1.3) is degenerate for n > 2 (see also Remark 3.4). It seems that
passing from (1.1) to (1.2) with (1.3) is not effective for n > 2. On the other hand, in [2] we do
study the case n = 2 when assumptions (C1)–(C5) are satisfied and this paper is a continuation
and generalization of [2].

(c) In this remark we prove that under assumptions (C1)–(C4), the space of bounded solutions
of equations x′ = F ′(γ (s))x and x′ = F ′(γ (s))x − ω′(γ (s))x

ω(γ (s))
F (γ (s)) have the same dimension.

As a consequence assuming (C5) is equivalent to assuming that x′ = F ′(γ (s))x has only γ ′(s)
as solution bounded on R (up to a multiplicative constant). Setting

u1(s) = γ ′(s), ϑ(s) = −∇ω(γ (s))

ω(γ (s))
, B(s) = F ′(γ (s)

)
(6.2)

we want look for conditions assuring that the two systems

x′ = B(s)x (6.3)

and

x′ = B(s)x + [
ϑ(s)∗x

]
u1(s) (6.4)

have the same number of independent solutions bounded on R. Let ui(t) = (ui1(t), ui2(t), . . . ,

uin(t))
∗, i = 1, . . . , d be a basis of all bounded solutions of (6.3). We look for a solution of (6.4)

in the form

x(s) = ψ(s)u1(s) +
d∑

i=2

x0iui(s), ψ(0) = x01. (6.5)

Then (6.4) gives

x′(s) = ψ ′(s)u1(s) + ψ(s)u′
1(s) +

d∑
i=2

x0iu
′
i (s)

= ψ(s)u1(s) + ψ(s)B(s)u1(s) +
d∑

i=2

x0iB(s)ui(s)

= ψ(s)B(s)u1(s) +
d∑

i=2

x0iB(s)ui(s)

+
(

ψ(s)
(
ϑ(s)∗u1(s)

) +
d∑

x0i

(
ϑ(s)∗ui(s)

))
u1(s).
i=2
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So ψ is determined by the equation

ψ ′(s) = ψ(s)
(
ϑ(s)∗u1(s)

) +
d∑

i=2

x0i

(
ϑ(s)∗ui(s)

)
, ψ(0) = x01. (6.6)

Its solution is

ψ(s) = x01e
∫ s

0 ϑ(z)∗u1(z) dz +
d∑

i=2

x0i

s∫
0

e
∫ s
r ϑ(z)∗u1(z) dz

(
ϑ(r)∗ui(r)

)
dr.

So, if

sup
s∈R

(∣∣u1(s)
∣∣e∫ s

0 ϑ(z)∗u1(z) dz +
d∑

i=2

∣∣u1(s)
∣∣ s∫

0

e
∫ s
r ϑ(z)∗u1(z) dz

∣∣ϑ(r)∗ui(r)
∣∣dr

)
< ∞, (6.7)

then ψ(s)u1(s) is bounded on R. Varying the point (x01, . . . , x0d) ∈ R
d , we get d linearly inde-

pendent bounded solutions on R of (6.4). Hence, if condition (6.7) holds, the dimension of the
space of solutions of (6.4) bounded on R is at least d (i.e. is greater than or equal to the dimension
of the space of solutions of (6.3) bounded on R). In our case we have

s∫
r

ϑ(z)∗u1(z) dz = −
s∫

r

ω′(γ (z))γ ′(z)
ω(γ (z))

dz = log

(
ω(γ (s))

ω(γ (r))

)

then ∣∣u1(s)
∣∣e∫ s

0 ϑ(z)∗u1(z) dz = γ ′(s)ω(γ (s))

ω(γ (0))

and

ϑ(s)∗ui(s) = −ω′(γ (s)
) ui(s)

ω(γ (s))
.

Since ω(γ (s)) � γ (s)− x0 � eμ±s and μ± are simple eigenvalues any solution of (6.3) bounded
on R and different from γ ′(s) tends to zero as s → ±∞ faster than ω(γ (s)). Thus from (C3)
it follows that, for any solution ui(s) of (1.8) bounded on R, ϑ(s)∗ui(s) → 0 at an exponential
rate as s → ±∞. It follows then that condition (6.7) is satisfied and hence Eq. (1.7) has at least
as many independent solutions bounded on R as (1.8).

Now we prove the converse. Let

B̃(s)x := B(s)x + (
ϑ(s)∗x

)
u1(s)

and consider the two equations

x′ = B̃(s)x (6.8)
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and

x′ = B̃(s)x + (
ϑ̃(s)∗x

)
ũ1(s) (6.9)

with

ϑ̃(s) := −e− ∫ s
0 ϑ(z)∗u1(z) dzϑ(s),

ũ1(s) := e
∫ s

0 ϑ(z)∗u1(z) dzu1(s).

From (6.7) we deduce that ũ1(s) is a bounded solution on R of (6.8). Note

B̃(s)x + (
ϑ̃(s)∗x

)
ũ1(s) = B(s)x.

Let {ũ1(s), ũ2(s), . . . , ũd̃
(s)} be a basis for the space of solutions of (6.8), bounded on R. We

compute ∣∣ũ1(s)
∣∣e∫ s

0 ϑ̃(z)∗ũ1(z) dz = ∣∣u1(s)
∣∣,

∣∣ũ1(s)
∣∣ s∫

0

e
∫ s
r ϑ̃(z)∗ũ1(z) dz

∣∣ϑ̃(r)∗ũi (r)
∣∣dr = ∣∣u1(s)

∣∣ s∫
0

∣∣ϑ(z)∗ũi (z)
∣∣dz.

So, if

∣∣u1(s)
∣∣ s∫

0

∣∣ϑ(z)∗ũi (z)
∣∣dz (6.10)

is bounded on R we deduce, from the previous part that the number of independent solutions of
(6.9), i.e. x′ = B(s)x, bounded on R is greater than the number of solutions of the same kind
of (6.8). From the previous part we see that, if (6.7) holds together with (6.10), then (6.3) and
(6.4) have the same number of independent solutions bounded on R.

To conclude the proof we show that, taking u1(s) and ϑ(s) as in (6.2), the expression in (6.10)
is bounded. Assuming (6.2) and using the fact that ũi (z) is bounded on R we see that

∣∣u1(s)
∣∣∣∣ϑ(z)∗ũi (z)

∣∣ � ∣∣γ ′(s)
∣∣∣∣∣∣ω′(γ (z))

ω(γ (z))

∣∣∣∣ � eμ∓(s−z),

then, for s → ∞, we have

∣∣u1(s)
∣∣ s∫

0

∣∣ϑ(z)∗ũi (z)
∣∣dz �

s∫
0

eμ−(s−z) dz � 1

|μ−| .

A similar argument works when s → −∞. So we conclude that the dimension of the space
of solutions of (1.8) that are bounded on R equals the dimension of solutions of (1.7) that are
bounded on R.
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(d) Our approach can be modified to study coupled IODE such as

ω(x1)ẋ1 = F(x1) + εG1(x1, x2, t, ε, κ),

ω(x2)ẋ2 = F(x2) + εG2(x1, x2, t, ε, κ), (6.11)

where ω, F satisfy assumptions (C1)–(C5) and Gi ∈ C2(R2n+m+2,Rn), i = 1,2 are 1-periodic
in t with Gi(x0, x0, t, ε, κ) = 0 for any t ∈ R, κ ∈ R

m and ε sufficiently small. Assump-

tions (C1)–(C5) are assumed for (6.11), then we consider
(

γ (s)

γ (s)

)
for (6.11). Observing this,

we can consider a special case of (1.1) when n = 2k, x = (x1, . . . , xk), xi ∈ R
2 and A(x) =

diag{A0(x1), . . . ,A0(xk)}, f (x) = (f0(x1), . . . , f0(xk)) with A0 is a two-dimensional matrix and
f is a two-dimensional mapping. Then we perform in each xi the adj-construction. To be more
concrete, we may consider n = 4 and take

A0(x1)ẋ1 = f0(x1) + εg1(x1, x2, t, ε, κ),

A0(x2)ẋ2 = f0(x2) + εg2(x1, x2, t, ε, κ) (6.12)

with

xi :=
(

ui

vi

)
, A0(x) :=

(
f̃ (u) 0

0 1

)
,

f0(x) :=
(

v

f̄ (u)

)
,

gi(x1, x2, t, ε, κ) :=
(

v

g̃i(x1, x2, t, ε, κ)

)
.

Then (6.12) has a form of (6.11) with

ω(x) = f̃ (u),

F (x) =
(

v

f̃ (u)f̄ (u)

)
,

Gi(x1, x2, t, ε, κ) =
(

v

f̃ (ui)g̃i(x1, x2, t, ε, κ)

)
. (6.13)

So we suppose u∗ ∈ R exists such that f̃ (u∗) = 0, f̃ ′(u∗)f̄ (u∗) > 0. Then x0 =
(

u∗
0

)
,

F(x0) = 0, DF(x0) is hyperbolic and Gi(x0, x0, t, ε, κ) = 0. Next, (1.5) is a second order scalar
ODE ü = f̃ (u)f̄ (u) with a hyperbolic equilibrium u∗. We assume the existence of a homo-

clinic orbit γ ∗(s) to it. Then f̃ (γ ∗(s)) �= 0 for any s ∈ R. So taking γ (s) :=
(

γ ∗(s)
γ ∗(s)

)
, conditions

(C2)–(C5) are satisfied. We note that by [2], (6.12) is a codimension 4 problem, this fact being
consistent with Remark 3.4.
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