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ARTICLE INFO ABSTRACT

Keywords: This work provides a study on three-dimensional exact electro-elastic static and free vibration solutions of mul-
Multilayered plates tilayered plates, focused on a comprehensive evaluation of well-known benchmarks for piezoelectric and/or
Electroelasticity

composite laminates as well as soft core sandwich plates, adding much to thus far available in the literature.
The exact solution method for simply supported multilayered plates is fully described in line with earlier leading
works, compiled in a single study in a consistent form throughout. The layers involved can be either piezoelectric
layers poled through-thickness (i.e. extension mode) or purely elastic layers, including composite layers. For each
layer, the form of the through-thickness exact solution depends strongly on its material properties, thus each case
arising from an orthotropic, transversely isotropic or simply isotropic layer is considered specifically. Within the
free vibration solution, in agreement with an in-plane mode (n,, n,), the so-called special modes for either n, = 0
orn,=0, though often overlooked, are purposely addressed, along with thickness modes for each pair (n,, ny).
The benchmarks cover purely elastic solutions, as in composite laminates and soft core sandwich plates, as well
as electro-elastic solutions, namely piezoelectric composite laminates, involving not only but especially thick
plates. For each multilayered plate, the static solution considers either an applied load or an applied electric
potential, providing a detailed through-thickness evaluation of displacements and stresses, and when present,
the electric potential and electric displacements. The respective free vibration solution reveals the first twenty
natural frequencies and associated modes, including all together special modes and thickness modes.

Three-dimensional exact solution
Piezoelectric layers
Composite layers

1. Introduction

The advances of composite materials science alongside the ever-
growing piezoelectric technology continues to drive forward structural
design in a wide range of engineering applications. Over the years, in
light of the increasing challenges posed to multilayered piezoelectric
composite structures, three-dimensional (3D) exact solutions became
paramount to assess the accuracy of various laminated plate and shell
theories, along with related finite element models.

Early on, as composite laminates and sandwich plates started to raise
interest, pioneer works on 3D exact elasticity solutions brought forth an
immense knowledge on static and free vibration, all together, namely by
Pagano [1], Pagano and Hatfield [2], Jones [3] as well as Srinivas and
Rao [4], most notably. Later on, further advances on 3D exact solutions
came to light to address additional effects, including electroelasticity
and thermoelasticity. In line with the progress in smart structures tech-
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nology, in which piezoelectric sensors and actuators continue to be most
often favoured, 3D exact electroelasticity solutions provided far more
insight into the behaviour of piezoelectric composite laminates. Specifi-
cally, the leading works on 3D exact static and free vibration solutions,
first by Heyliger [5,6] and also Heyliger and Saravanos [7], consider-
ing embedded extension mode piezoelectric layers, followed by Vel and
Batra [8] as well as Baillargeon and Vel [9], considering shear mode
piezoelectric layers instead. Actually, in the scope of 3D exact free vi-
bration solutions, the outstanding work by Batra and Aimmanee [10] is
particularly noteworthy. It highlights that previous 3D exact solutions
overlooked some in-plane modes of vibration (n,, ny), for either n, =0
or n, = 0, addressing both composite laminates and piezoelectric plates,
though only exploring extension mode piezoelectric layers. Soon after,
Deii and Benjeddou [11] also examined such modes for either n, = 0 or
n, =0, named as special modes, in another remarkable work, in which

y
shear mode piezoelectric layers are considered expressly. Beyond that,
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recognizing the critical effects of high temperature environments, 3D ex-
act thermoelasticity solutions also emerged, including the primary work
by Tungikar and Rao [12], shortly followed by further developments by
Xuetal. [13,14] on 3D thermoelectroelasticity solutions. More recently,
the usefulness of 3D exact electroelasticity solutions, as developed all to-
gether in the original works by Heyliger and Saravanos [5-7], gave rise
to additional benchmarks for both static and free vibration, as pursued
likewise by Moleiro et al. [15,16]. Furthermore, in line with cutting-
edge structural design technology, the increasing attention to the effects
of hygrothermal environments led to a quite novel work on 3D exact hy-
grothermal elasticity solutions, also by Moleiro et al. [17], addressing
composite laminates, fibre metal laminates as well as sandwich plates.

Over time, comprehensive reviews on theories and computational
models for multilayered composite plates and shells became available,
relying much on established 3D exact solutions. Starting from the 1990s,
with major reviews by Noor and Burton [18,19], Mallikarjuna and Kant
[20], Reddy and Robbins [21] as well as Noor et al. [22], and by the
turn of the century, leading to thorough reviews by Carrera [23-25] and
the renowned book by Reddy [26]. Other than that, in light of the
state-of-the-art of smart structures, further reviews on the modelling of
piezoelectric composite laminates, in particular, also appeared around
the same time. Specifically, the excellent reviews by Tang et al. [27],
Saravanos and Heyliger [28], Gopinathan et al. [29], Benjeddou [30],
Trindade and Benjeddou [31] and also Chopra [32], among others. In
more recent times, as new developments arise through more refined the-
ories and improved models, many more crucial assessments continue to
come to light. Most noteworthy, the impressive book by Carrera et al.
[33] in addition to some of the latest reviews by Liew et al. [34], Zhang
et al. [35] and Li [36].

As demonstrated by the aforementioned reviews, benchmarks based
on 3D exact solutions play a fundamental role in the assessment of
any proposed model. In fact, some selected works in which established
benchmarks for multilayered piezoelectric and/or composite plates are
attentively reported may also be worth mentioning. Namely, on purely
elastic modelling by Carrera and Demasi [37] as well as Moleiro et al.
[38,39], on electro-elastic modelling by Heyliger et al. [40], Carrera
et al. [41] and Moleiro et al. [42,43], and quite recently, on hygro-
thermo-elastic modelling by Moleiro et al. [44].

This work provides a rather useful study on 3D exact electro-elastic
static and free vibration solutions of multilayered plates, focused on a
comprehensive evaluation of well-known benchmarks for piezoelectric
and/or composite laminates as well as soft core sandwich plates, adding
much to thus far available in the literature. Although not intended as a
review, the exact solution method for simply supported multilayered
plates is fully described in line with earlier leading works, compiled in a
single study in a consistent form throughout. It considers extension mode
piezoelectric layers and/or purely elastic layers, such as composite lay-
ers, including all particularities arising from an orthotropic, transversely
isotropic or simply isotropic layer. The benchmarks for each multilay-
ered plate cover both static and free vibration solutions. Most notewor-
thy, the static solution provides a detailed through-thickness evaluation
of displacements and stresses, and when present, the electric potential
and electric displacements, whereas the free vibration solution reveals
the first twenty natural frequencies and associated modes, including all
together special modes and thickness modes.

2. Electro-elastic problem governing equations

Consider, in general, the multilayered plate made of N layers, with a
rectangular planar geometry a x b and a total thickness h, as represented
in Fig. 1. In light of the 3D exact solution here described, the layers
involved can be either piezoelectric layers poled through-thickness (i.e.
extension mode) or purely elastic layers, including unidirectional fibre
reinforced composite layers. In any case, the materials of the different
layers can be orthotropic, transversely isotropic or simply isotropic, so
long as the multilayered plate, as a whole, is kept orthotropic (at most).
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Fig. 1. Multilayered plate: geometry and coordinate system.

Hence, the orientation of orthotropic layers relative to the multilayered
plate x-axis is limited to 0° and 90° alone.

In agreement with linear electroelasticity and assuming the absence
of both electric body charges and body forces, the coupled governing
equations for each layer of the multilayered plate are, all together, the
following:

Equations of motion and charge equation of electrostatics

—i_p )
Electro-elastic constitutive equations

o = Cijrr €x1 — ey Ex

D; = eygepg + e Ey ()

Strain-displacement and electric field-potential equations

1 [ ouy ou; ¢
=-(—=%+-—"), E =--2 3
e 2<0x, * 0x k 0xy @
To be precise, the electric and elastic field variables in Egs. (1)—(3)

for each layer, along with its material coefficients are also described
(including the respective SI units):

displacement vector components [m];

13 electric (scalar) potential [V];

o stress tensor components [Pa];

D, electric displacement vector components [C/m?];
& strain tensor components [dimensionless];

E, electric field vector components [V/m];

C,u  elastic stiffness tensor coefficients [Pa];

eijk piezoelectric tensor coefficients [C/m?];

€ dielectric tensor coefficients [F/m].

Most often, the layer material coefficients are used in line with the
contracted notation, such that the layer electro-elastic constitute equa-
tions are then expressed as shown:

o; = C,-ja—e,-kEk

Dy =e e +eyE 4
where i,j=1,...,6 and k,/ = 1,2, 3. As a result, notice that g =€y for
k=1land j = 1,2,3, otherwise £; =2ey fork # land j = 4,5,6.
Furthermore, in general, in view of an orthotropic layer with an ori-
entation of either 0° or 90°, it is implied in the layer constitutive equa-
tions a prior in-plane rotation between the layer material coordinate sys-
tem and the multilayered plate coordinate system (as necessary for the
latter). See Reddy [26] for further details. Therefore, to denote clearly
the layer rotated material coefficients, an overbar is used henceforth,
as standard. Along with this, considering, in general, an extension mode
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piezoelectric layer, the possible nonzero rotated material coefficients
are the following: Cy,, Cy,, Cj3, Cpy, Cas, Ca3, Cuy, Css and Cyq elastic
stiffness coefficients; &3, é3,, 33, &y, and &5 piezoelectric coefficients;
€)1, €y, and é3; dielectric coefficients (at most).

In short, substituting Eqgs. (3) and (4) properly into Eq. (1) leads
to four coupled governing equations for each layer of the multilayered
plate, written only in terms of the displacements, u, v and w, and the
electric potential ¢, as follows:

Ciy Uxx t Cpp Uxy + Cl3 Wz + €3 ¢,J{z + C66(u,yy + U,xy)

+ CSS (”.zz + w,xz) +es ¢.yz = pii )

Ceg (”,xy + U.xx) +Ci, Uyy + Cy Uyy + Cy3 Wy, + e3 q.’)sz
+ C_‘44(1),7,,2 + w,yz) + ey ¢,yz = pi (6)

Css(Upg + W) + 815 + Cag (Vs +wyy ) + 024 by
+ 613 Uy t C_'23 Vyz t+ 633 W gy + 833 Py = pl0 @)

s (u,xz + w,xx) —€ ¢,xx + EZA(U,yz + w,yy) — €y d’yy

+ @31 Uy +E3p Uy + 833 W4y — €33 =0 ®)

where, for conciseness, the comma is used to denote a partial deriva-
tive with respect to the adjacent spacial coordinates. Naturally, for the
static solution all the time derivative terms are null, whereas for the free
vibration solution a periodic response is assumed.

In fact, the 3D exact static and free vibration solution, as described
here, is limited to simply supported multilayered plates with the follow-
ing edge conditions:

Atx=0,a:v=w=¢=0,,=0

Aty=0b:u=w=¢=0,=0 9)

In addition, the boundary conditions on the multilayered plate top
and bottom surfaces require the specification of one variable from each
of the pairs: (i, o,,), (v, o-yz), (w, o,,) and (¢, D,); thus, in total, 8 bound-
ary conditions for the top and bottom surfaces combined. Furthermore,
the interfaces between adjacent layers are also assumed to be perfectly
bonded together. Therefore, interlaminar continuity conditions must be
enforced for each pair of adjacent layers with respect to all the following
variables: u, v, w, ¢, o,, Oz Ozg and D,; thus, for the entire multilayered
plate made of N layers, in total, 8(N — 1) interlaminar continuity condi-
tions. In the end, considering all the aforementioned conditions brings
forth 8N equations relating the electric and elastic field variables of all
layers of the plate.

3. Exact static and free vibration solution method

In view of the rectangular simply supported multilayered plate, the
general form of the 3D exact solution assumed for each layer displace-
ments, u, v and w, and electric potential ¢, such that it satisfies a priori
the edge conditions stated in Eq. (9), is thus, as follows:

u = i(z) exp(iowt) cos(px) sin(qy), i(z) = U exp(sz)

v = 0(z) exp(iwt) sin(px) cos(qy), b(z) = V exp(sz)
w(z) = W exp(sz)

$(z) = Dexp(sz) 10)

w = w(z) exp(iot) sin(px) sin(qy),
¢ = d(2) exp(icot) sin(px) sin(qy),

where p = n r/a and q = n 7 /b. More precisely, the constants U, V/, W
and @ as well as the parameter s are to be determined by the solution of
the coupled governing equations for each layer, given by Egs. (5)—(8), to-
gether with the aforementioned boundary and interlaminar conditions.
In line with the free vibration solution, w denotes the frequency of nat-
ural vibration associated with the in-plane mode (n,, ny). In fact, for
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each pair (n,, n), it exists infinite through-thickness modes, commonly
known as thickness modes, which are also addressed herein. Moreover,
the so-called special modes for either n, = 0 or n, = 0, though quite often
overlooked by exact or analytical solutions, are purposely included as
well.

Accordingly, substituting the assumed form of the layer 3D exact
solution, as stated in Eq. (10), into its four coupled electro-elastic gov-
erning equations, given by Egs. (5)—(8), leads to the following system of
equations, for each layer:

Ay —Csss® Al Ajss Apys U 0
Ap Ap—Cys’ Ay Ays vi_Jo 11
—Apss —Agys Ay =Cys®  Ayy=8s” (| W 0
—Ayys —Ays Az —e35 Ayt+eys’ [ @ 0
where
—C 22 2 —_(F S
Ay =Cyp +Ceq” —pw Ap = ( lg+C6§)P‘I
Ay = Q66p2 + 92‘12 —pw’, Ap=-— Ci3+GCss)p
Asy = Cssp* + Cug® — p@?, 23+ Cu)q (12)

—5 2.5 2 — (5 >
Ay =¢5p '2"‘3244 s Ay =—(&5 +¢;5)p
Ay =—€10" — épq°, Ay = (23 +5)q

(
Ay = _(
(
(

o)

Furthermore, for the static solution, all the terms involving the fre-
quency o, as in (—p®?), are evidently disregarded, which may be con-
sidered simply as a particular case.

Therefore, for each layer, a non-trivial solution of the system in
Eq. (11) requires a zero determinant. The resulting characteristic equa-
tion is an eighth-order polynomial involving only even powers of s,
which can be rewritten as a fourth-order polynomial in terms of r, with
r = s2. The form of the through-thickness exact solution, for each layer,
depends strongly on these 4 roots for r, as in 8 roots for s, which are
associated with 8 (independent) unknown constants. Hence, for the en-
tire multilayered plate made of N layers, in total, 8N unknown constants
are to be determined by enforcing the aforementioned 8N boundary and
interlaminar conditions. Most importantly, the roots for each layer are
a function of its material properties and geometry, in addition to the
frequency o for the free vibration solution, which is then based on an
iterative scheme, as described hereafter.

In any case, once the form of the through-thickness exact solution
is properly defined for each layer displacements, u, v and w, and elec-
tric potential ¢, in terms of its 8 roots for s and 8 unknown constants,
in line with assumed form in Eq. (10), the corresponding exact solu-
tion form for each layer stresses and electric displacements are also set,
according to the layer electro-elastic constitutive equations, along with
the strain-displacement and electric field-potential equations, given by
Egs. (3) and (4), as shown:

(0yz: D) = (5yg(2), [:)X(z)) exp (iot) cos (px) sin (qy)
(0y2- D) = (‘_’yz(z)’_Dy(Z)) exp (ieof) sin (px) cos (qy)
(04 D) = (54(2). D.(2)) exp (iwr) sin (px) sin (qY)
Oy = Byy(2) exp (io1) cos (px) cos (qy)

13)

where i = 1,2,3 is used for the layer normal stresses, o, 0y, and o,,,
and such that:

Gxx(2) = Css (@ (2) + pi0(2)) + &5 p P(2)

8y5(2) = Cas (0'(2) + q10(2)) + &34 4 B(2)

8xy(2) = Cee(q i(2) + p 5(2))

64(2) = —pCy; ii(z) — q Cy; 0(2) + 63:' w'(z) + &3 ' (2)

14

Dy(2) = &15(@ (2) + pd(2)) — &, pP(2)
D (2) = &34 (0'(2) + qi0(2)) = &2 4 B(2) i (15)
D,(z) = —pé3; ii(z) — q C3p 0(z) + €33 W' (2) — €33 ¢ (2)

Actually, for the static solution in particular, the terms involving
the frequency w, as in exp (iwt), appearing in the general form of
Egs. (10) and (13) are naturally omitted.

From this point on, in view of the simply supported multilayered
plate made of N layers, the procedure for the static solution or the free



F. Moleiro, C.M. Mota Soares and E. Carrera et al.

vibration solution is somewhat distinct. To begin with, the static solu-
tion is rather straightforward. For each layer, the form of the through-
thickness exact solution is defined in terms of its 8 roots for s and 8
unknown constants, depending only on the layer material properties
and geometry. Subsequently, the aforementioned 8N boundary and in-
terlaminar conditions are enforced, all together, to determine the 8N
unknown constants for each layer. The most common boundary condi-
tions consider either an applied load 6, or an applied electric potential
¢ on the multilayered plate top and/or bottom surfaces, with zero trans-
verse shear stresses. To this end, the nonzero boundary conditions on the
plate top and/or bottom surfaces are conveniently expressed in the form
of double Fourier series, as follows:

B25(x, ) = 0 sin (p) sin (qy)

b 16
P(x,y) = ¢ sin (px) sin (qy) (16)

Other than that, the free vibration solution is based on an iterative
scheme, since the form of the through-thickness exact solution for each
layer, namely its 8 roots for s, though still depending much on the layer
material properties and geometry, are also a function of the frequency w
associated with the in-plane mode (n,, ny). Furthermore, the boundary
conditions within the free vibration solution are all enforced as zero,
including o, = 0 and ¢, = 0. Hence, a non-trivial solution of the total
system of 8N boundary and interlaminar conditions requires a zero de-
terminant. In such case, the relationships among the electric and elastic
field variables of all layers can be established, setting out the plate mode
shapes in line with the pair (n,, n,) and the frequency w.

In short, the iterative scheme relies on the evaluation of the determi-
nant of the total system of 8N equations, using an estimated frequency
in each iteration, in order to pursue a frequency of natural vibration
leading to a zero determinant. The procedure is started with an esti-
mated frequency somewhat lower than expected, which is then grad-
ually increased in each iteration. In fact, the determinant is computed
through the product of all eigenvalues of the total system matrix, to over-
come numerical issues as the matrix becomes singular, as suggested by
Heyliger and Saravanos [7]. More precisely, the iterative scheme keeps
track of the determinant of the total system matrix and its lowest (abso-
lute) eigenvalue to find a sign-change of the determinant together with
a sign-change of the nearest zero eigenvalue. As a result, the estimated
frequencies leading to the sign-changes can then be used as a bounding
interval to refine the true value of the frequency of interest by a standard
search method.

Most notably, for each pair (n,, n,), including special modes for ei-
ther n, = 0 or n,, = 0, it exists an infinite number of increasingly higher
frequencies leading to a zero determinant, each associated with differ-
ent thickness modes. Therefore, once one frequency is determined, the
procedure can be restarted from then onwards, in order to pursue the
next higher frequency leading to a zero determinant, corresponding to
the next thickness mode.

Ultimately, at the core of both static and free vibration solution lies
the form of the through-thickness exact solution for each layer, derived
from a non-trivial solution of the system in Eq. (11). In fact, two dis-
tinct cases arise immediately: (i) piezoelectric layers with a fully coupled
electro-elastic solution; and (ii) purely elastic layers, for which ¢;; =0,
with an uncoupled electric and elastic solution. Apart from that, one
exceptional case is also envisioned, namely: (iii) special modes for either
n, = 0 or n, = 0, emerging within the free vibration solution only. These
three cases are addressed separately henceforth.

3.1. Piezoelectric layers: Orthotropic or transversely isotropic cases

For piezoelectric layers with a fully coupled electro-elastic solution,
the characteristic equation of the system in Eq. (11) comes out, in its
general form, as follows:

r4+c1r3+62r2+c3r+c4=0, with  r = s 17)
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where the coefficients c; can be derived from the system in Eq. (11) by
straightforward algebraic manipulation, although also presented, in
some sense, by Heyliger and Saravanos [7].

For both static and free vibration solution, as it stands for piezoelec-
tric layers, the nature of the 4 roots for r (with r = s2) fall into one of
two cases, depending mostly on the layer material properties:

o 4 real distinct roots. Typically the case of piezoelectric layers of or-
thotropic material;

e 2 real distinct roots + 2 complex roots as a conjugate pair. Typically
the case of piezoelectric layers of transversely isotropic material.

In fact, the form of the through-thickness exact solution for each
piezoelectric layer is defined based on the contribution of each root for
s together with an associated unknown constant, usually of @(z), such
that ©(z), w(z) and ¢(z), are then set by making use of the remaining
system of equations, as follows:

Ay —Cyys? Anss Ays ‘:’ A
—Ayss Ay —Cyys? Ay —833s? KW =03 Apzs (18)
—Ays Agy—ezs®  Aytést|[ @ Aygs

Accordingly, for a piezoelectric layer with n real distinct roots for
r (with r = %), the roots for s appear as n distinct pairs (positive and
negative), which are either real (if r > 0) or imaginary (if r < 0). Hence,
following the approach of Heyliger and Savaranos [7], the form of the
through-thickness exact solution for such piezoelectric layer, can be ex-
pressed (partially, at least), as shown:

(z) =Y Uy(2), w(z) = Y M;W,(z)

5 w 19
0z =, LU )= ), N;Wi(z)

j=1

j=1

where

U;(2) = F;C;(2) + G;S;(2) (20)
W;(z) = G;C;(z) + a; F; S;(2)

C;(z) = cosh(m;z), S;(z) = s?nh(mjz), a; =1 %f r;>0 @1
C;(z) = cos(m; z), S;(z) = sin(m; z), a; =-1 if r; <0

and with m; = |r;|!/2. In detail, F; and G; stand for the layer 2n (inde-

pendent) unknown constants directly associated with i(z). As a result,
the constants L, M; and N; associated with #(z), w(z) and ¢(z) can be
readily set in agreement with the system in Eq. (18), as follows:

D; = dlajmjﬁ. + d2m? + d3ajmjz. +d,
L= (fnm;-“"flﬂjm? +fl3>/Dj
M; = (f21m?+f22ajm/2. +f23)mj/Dj
N; = (fsl'"? + fra;n; +f33>mj/Dj

(22)

where the coefficients d; and f; can be derived from the system in
Eq. (18) by straightforward algebraic manipulation, recognizing D; as
the determinant of the system matrix. Moreover, in view of the form
of the through-thickness exact solution in Eq. (19), the corresponding
derivatives with respect to z, necessary for the exact solution of the layer
stresses and electric displacements, as stated in Egs. (14) and (15), are
then, the following:

n n
#(z)= Y mWz), (2= amM; Uz
= o 3)
(z) = Z m;L;W;(z), P'(z) = 2 a;m;N;U;(z)
j=1 Jj=1
Depending on the piezoelectric layer material properties, the total of
real distinct roots for r is either n = 4 or n = 2, typically in line with an
orthotropic or a transversely isotropic material, respectively. Therefore,
if n=4, Eq. (19) with j =1,...,4 defines the layer through-thickness
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exact solution completely, but if n = 2, Eq. (19) with j = 1,2 describes
only a partial solution, which requires additional terms to be summed
with j = 3,4, associated with 2 further complex roots for r as a conjugate
pair.

In this latter case, for a piezoelectric layer with 2 complex roots for r
as a conjugate pair (with r = 52), the roots for s appear as 2 complex con-
jugate pairs in the form of s = +(a + ib). Hence, the form of the through-
thickness exact solution for such piezoelectric layer, can be developed
based on ii(z) expressed as shown:

4

i) = Y, [F,C,2)+ 6,5, (24)
j=3

where F; and G; with j = 3,4 denote the layer 4 additional (independent)

unknown constants directly associated with i(z), as before, along with:

qj(z) = exp(a;az) c.os(bz), & = { 1 %f J =3 25)
S(z) = exp(a;az) sin(bz), / -1 if j=4

As a result, the relations concerning o(z), w(z) and ¢(z) can also be
established in agreement with the system in Eq. (18), as follows:

mw=mﬁ+@ﬁ+@ﬂ+@

ﬁA(s)z (fiis* + f1a8? +f13)/ﬁ V:i({ 26)
M(s) = (fxs* +f225 +fx)/D. W =sMU
N(s) = (f315* + fo82 + f33)/D.  ®=sNU

where the coefficients d; and f;; are precisely the same as in the previous
Eq. (22), derived likewise from the system in Eq. (18). Since the roots
for s are in the form of s = +(a + ib), it is rather convenient to define, at
once, the following related constants:

Li = R(L(a+ ib)),
Mg = R(M(a + ib)),
Ng = R(N(a+ib)),

L; = S(L(a+ib))
M, = S(M(a+ ib)) (27)
N; = S(N(a+ ib))

Therefore, besides the expression of i(z) in Eq. (24), to begin with,
the form of the through-thickness exact solution for such piezoelectric
layer, following some algebraic manipulation, can be completed with
the accompanying expression of (z), (z) and ¢(z), as shown:

4

8(z) = 2[ J(LaCy2) - 116,5,(2))

= ©8)
+Gj( 18,62+ LS, )|
4
o(z) = Mp - bM;)&;,Ci(2) — (@M + bMp) S,
(z) 123[ (Mg = bM))&,C;(2) - (M +bMp) $,(2)) 00
((aM, +bMg) C;(2) + (aMy — BM)) &, (z))]
4
#(z) = /Z? [7,((@Ng = BND ,C,2) = @N; + 5N ) $,(2)) 0

+Gj((aN1 +bNp) Cj(2) + (aNg — bN)) &jsj(z))]

where it is used the functions C;(z), $,(z) and &; introduced in Eq. (25),
along with the previous constants in Eq. (27). In fact, the form of the
through-thickness exact solution, all together in Egs. (24) and (28)-(30),
is in line with Heyliger and Saravanos [7], although written here in
a more compact form. Moreover, the corresponding derivatives with
respect to z, necessary for the exact solution of the layer stresses and
electric displacements, as stated in Eqs. (14) and (15), end up as given:

7(z) = 24: [Fj (a&jéj(z) - ij(z)) an

(bC (2) +a,$, (z))]
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Cl

g[ ((aLR bL,)aC(z)—(aL1+bLR)S'j(z)> o
i

+G;((aL; +bLg) C;(2) + (aLg - bL) &;$; (z))]

4
2[ ( (@ = )My —2abM ;) C;(2)
=3

((a — )M, +2abMy) &,8,(z )) (33)

+G, (@ = )M, +2abMp) d,C(
+((a® - b*)My — 2abM ) S(z))]

4
P ()= Z [Fj(((az - b)Ng - 2abN,) éj(z)
=3
—((a2 — b))N; +2abNp) a.S.(z)) 34

+G,(((@ = BN, +2abNpg) d,C(
+((@® = B)Ng —2abN,) 8, (z))]

Most importantly, for a piezoelectric layer with the roots for r ap-
pearing as 2 real distinct roots and 2 complex roots as a conjugate pair,
the complete form of the through-thickness exact solution includes the
contribution of the solution form in Eq. (19) with j = 1,2 related to the
real roots, in addition to the solution form in Egs. (24) and (28)—(30)
with j = 3,4 related to the complex roots instead.

3.2. Purely elastic layers: Orthotropic, transversely isotropic or isotropic
cases

For purely elastic layers, for which ¢;; = 0, with an uncoupled elec-
tric and elastic solution, the characteristic equation of the system in
Eq. (11) comes out, in its general form, as follows:

(r3 +er? +eyr + c3)(Agy +833r) =0, with r= 5 (35)

where the coefficients c; can be derived from the system in Eq. (11) by
straightforward algebraic manipulation, although also presented, in
some sense, by Pagano [1].

Among the 4 roots for r, namely r; with j = 1, ..., 4, the electric so-
lution is naturally associated with 1 real uncoupled electric root, which is
simply r; = —A4, /&35 as in a positive real. Besides that, the nature of the
remaining 3 roots for r, as it turns out for purely elastic layers, depends
not only on the layer material properties but also on whether the static
or free vibration solution is pursued.

For the static solution, the nature of the remaining 3 roots for r fall
into one of two cases, depending on the layer material properties, in
addition to 1 real uncoupled electric root, whichever the case:

e 3real distinct roots. The case of purely elastic layers of orthotropic or
transversely isotropic material;

e 3 real repeated roots. The case of purely elastic layers of isotropic
material.

For the free vibration solution, one of three cases arises instead, de-
pending mostly on the layer material properties, in addition to 1 real
uncoupled electric root, whichever the case:

e 3 real distinct roots. Typically the case of purely elastic layers of or-
thotropic material;

e 1 real root + 2 complex roots as a conjugate pair. Typically the case
of purely elastic layers of transversely isotropic material.

e 1 real root + 2 real repeated roots. The case of purely elastic layers
of isotropic material.

In most cases, for each purely elastic layer, the form of the elastic
through-thickness exact solution is likewise defined based on the contri-
bution of each root for s together with an associated unknown constant,
usually of i(z), such that (if possible) #(z) and w(z), are then set through
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the following system of equations:

Agy—Cyy8? Apss Vv —[-Ap,
3 " \_p 36
Ay —Css?| \ W Aqss (36)

In view of a purely elastic layer with 1 real uncoupled electric root
r, along with n real distinct elastic roots, as in n =3 or n =1 (with
r = s2), the corresponding roots for s appear as pairs (positive and neg-
ative), which are either real (if r > 0) or imaginary (if r < 0). Hence,
the form of the through-thickness exact solution for such purely elas-
tic layer, following the approach of Pagano [1] for the elastic part with
j=2,....,n+ 1, aside from the electric part with j = 1, can be expressed
all together (partially, at least), as follows:

—Ays

n+1 n+l
i(z)= Y U(2), w(z) = Y, M;Wj(2)

vl v o
oz)= Y LU, )= Uyz)

=] =

where it is used the functions Uj(z) and Wj(z) just as introduced earlier
in Egs. (20) and (21). As it stands, this solution form involves the layer
(independent) unknown constants FJ and Gj with j =2,...,n+ 1 directly
associated with a(z), as well as F; and G; associated with ¢(z) alone.
Accordingly, the constants L and M; with j =2,...,n + 1 related to i(z)
and w(z) can be readily set in agreement with the system in Eq. (36), as

shown:

D; = dlmj + dzajmlz. +ds

L= <f]1ajm/2'+f]2>/Dj 38)
M; = (f21“1m12~ +f22)mj/Dj

where the coefficients d; and f;; can be derived likewise from the system
in Eq. (36), recognizing once again D; as the determinant of the system
matrix. In addition, in line with the form of the through-thickness exact
solution in Eq. (37), the derivatives with respect to z, necessary for the
exact solution of the layer stresses and electric displacements, given in

Egs. (14) and (15), though simplified for ¢; ; =0, arise as given:

n+1 n+l
@(z) =), m;W(2), @'(2) = Y am;M,U,(2)

Z @
i(z) = Z m,LW;(2), ¢2)= Z m;W;(z)

j=2 Jj=1

At this point, for such purely elastic layer, the total of real distinct
elastic roots for r, as in n =3 or n = 1, needs to be taken into account.
If n =3, Eq. (37) using j = 1,...,4 defines the layer through-thickness
exact solution completely, but if n = 1, Eq. (37) using j = 1,2 describes
only a partial solution, which requires additional terms to be summed
for the elastic solution form using j = 3, 4.

Under this last case, one possibility is a purely elastic layer, typi-
cally transversely isotropic within the free vibration solution, with 1
real uncoupled electric root rq, as well as for the elastic part, 1 real
root ry (i.e. n =1) and 2 further complex roots r3 and r4 as a conjugate
pair (with r = s2). Thus, the additional roots for s appear as 2 complex
conjugate pairs in the form of s = +(a + ib). Accordingly, the form of
the elastic through-thickness exact solution involving the expression of
i(z), 0(z) and w(z) with j = 3,4 is given, in general, as stated in the previ-
ous Egs. (24), (28) and (29), respectively, including the same functions
C;(2), $;(z) and &; introduced in Eq. (25), along with F; and G; as the
layer 4 additional (independent) unknown constants directly associated
with #(z). However, the distinction for this case of purely elastic layer
lies in the fact that the constants Ly, L;, My and M, appearing in the ex-
pression of #(z) and w(z), need to be redefined appropriately. Since the
elastic solution form is based on the expression of i(z), the correspond-
ing relations concerning &(z) and tw(z) can be established in agreement
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with the system in Eq. (36), as follows:

D(s) = dy5* + dys? + dy

Lsy= (fus®+ fn)/D. V=LUO (40)
M(s)= (fus®+ fr)/D, W =sMU

where the coefficients d; and f;; are exactly the same as given in Eq. (38),
derived likewise from the system in Eq. (36). In view of Eq. (40) with the
roots for s in the form of s = +(a + ib), the following related constants
are thus redefined for this case of purely elastic layer:

Lg = R(L(a+ib)),
My = R(M(a+ ib)),

L= S(ﬁ£a+ib)) @)
M, = S(M(a+ib))

Moreover, the elastic solution derivatives with respect to 2, necessary
for the exact solution of the layer stresses and electric displacements,
given in Egs. (14) and (15) with ¢;; = 0, end up in the same general form
as stated in the previous Egs. (31)—(33), though using the constants Lg,
L;, Mg and M; just set by Eqgs. (40) and (41).

One other possibility is a purely elastic layer, namely isotropic within
the free vibration solution, with 1 real uncoupled electric root r;, as
well as for the elastic part, 1 real root r, (i.e. n =1) and 2 further real
repeated roots ry = r, (with r = s2). Therefore, the additional roots for
s appear as 2 repeated pairs (positive and negative), which are either
real (if r > 0) or imaginary (if r < 0). As it is, the form of the elastic
through-thickness exact solution (associated with the roots r; = r,) can
be developed based on i(z), as shown:

W(2) = 0(2) = X1y Uy(2) + X1y 2U,(2) @
W(2) = ¥7_y M;W,(2)+ X, [RU;(2) + 2 M;W,(2)]

where it is used the same functions Uj(z) and Wj(z) as defined in
Egs. (20) and (21), including F; and Gj with j = 3,4, which stand for
the layer 4 additional (independent) unknown constants directly associ-
ated with u(z). Along with this, the constants MJ and Rj associated with
w(z) can be determined in view of the following elastic relation that also

holds:
(As3 = Ci3s?)W = Us(Aj3 + Ap3) (43)

In fact, elastic independent equations arise, separately, according to
the terms involving (29, 21) of the solution form in Eq. (42), setting out
the constants M] with j = 3,4 and R]- with j = 4, as follows:

D;= (_633)ajm12.+ (As3)
M; = (A;3+ Ay)m;/D;, with j=3,4 44)
R; = ((2M,;Cy3) ajm; + (A3 + Ay3))/D;, with j =4

In addition, in line with Eq. (42), the elastic solution derivatives with
respect to z, necessary for the exact solution of the layer stresses and
electric displacements, given in Eqs. (14) and (15) with ¢; ; =0, come
out as given:

@(2)=0/(2)= X0y mWy@)+ i, [Uj(2)+zmW;(2)]
W' (z) = 2;:3 a;m; M;U,(z) (45)
+ X5 [(m Ry + My)W;(2) + za;m; M;U(2)]

The only remaining possibility to consider is a purely elastic layer,
namely isotropic within the static solution, with 1 real uncoupled elec-
tric root ry, as well as for the elastic part, 3 real repeated roots r, = r3 =
r, (with r = s?). Actually, in spite of the uncoupled electric and elastic
solution, the roots for r turn out all equal, as in r ;= c2withj=1...,4,
such that ¢? = p? + ¢%. Hence, the roots for s appear as real pairs s = +c,
although 1 pair associated with the electric solution alone, and 3 re-
peated pairs associated with the elastic solution. As a result, the form
of the elastic solution is quite distinctive for such purely elastic layer.
Following the approach of Pagano [1] and also, more recently, Moleiro
et al. [17], the through-thickness exact solution for the elastic part can
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be expressed, in its general form, as follows:

X,(2) = (ay; + a3z + as5;z%) exp(cz)

46
+(ay + ayz + ag;z*) exp(—cz) (46)

where X,(z) with i = 1,2,3 stands for i(z), (z) and w(z), respectively.
More precisely, for such purely elastic layer, 8 (independent) unknown
constants are involved, just like any other layer, including 2 (indepen-
dent) unknown constants for the electric solution alone, thus 6 (inde-
pendent) unknown constants for the elastic solution, among the 18 con-
stants appearing in Eq. (46), asin q; with k=1,...,6 and i = 1,2,3.

The relations among the 18 constants a; can be determined through
the layer original system of equations for the elastic part, stated in
Eq. (11), taking into account the isotropic layer material coefficients,
and considering the various independent equations arising, separately,
according to the terms involving (2, z!, z2)exp ( + cz) of the elastic solu-
tion form in Eq. (46). In the end, taking as the 6 (independent) unknown
constants the following: a;;, as;, az; and ay; from a(z), as well as a;,
and a,, from &(z), the remaining constants become set as shown:

as; = ag; =0, with i =1,2,3 47
q q c c
azp = —azy, Gqp = —dy4), 433 = —a3], 43 = ——dy (48)
P p P P
(C1p =3Cyy) q
aj3 = —ay az + =ap 49)
p(C11 +Cpa) ¢
(C1p =3Cyy) q
Gy; = ——ay; 41— ~axn (50)
p(Ciy +Cpp) ¢

where the isotropic layer material coefficients involved C;; and C;, are
such that:

Cjn = Cjzz = Ci33 =Cy
Cp=C3=Cyu=Cpy (1)
Ciy=Cs5=Ce6 = (C1 = C12)/2

Ultimately, the form of the through-thickness exact solution for such
purely elastic layer, considering the uncoupled electric and elastic solu-
tion all together, with the roots for s as real pairs s = +c, can be written
as follows:

X;(2) = (ay; + a3 z) exp(cz) + (ay; + ay; z) exp(—cz) (52)

1 1
§)= Y U= Y [F,C,)+G;8,02)] (53)
i=1 =1

Jj=

where X,(z) with i = 1,2,3 stands again for i(z), #(z) and @(z), respec-
tively, along with the functions Cj(z) and Sj(z) with j = 1 for ¢(z) alone,
as introduced in Egs. (20) and (21). In short, the layer solution form
involves 8 (independent) unknown constants, namely F; and G; for the
electric solution alone, in addition to the aforementioned 6 (indepen-
dent) unknown constants for the elastic solution. Other than that, the
remaining constants for the elastic solution are set by Egs. (47)-(50).

Furthermore, the corresponding solution derivatives with respect to
z, necessary for the layer stresses and electric displacements, given in
Egs. (14) and (15) with ¢; =0, end up as shown:

X|(2)= (a3 + cay; + c ay; z) exp(cz) (54)
+(ay; = cay; = c ay; z) exp(=cz)
1 1
F =Y mW@ =Y m[6,Ci@)+aFS, (55)
j=1

Jj=1

where X,.’(z) with i = 1,2, 3 is used accordingly for #'(z), o'(z) and ' (z),
aside from the functions Cj(z) and Sj(z) with j = 1, as before, for ¢'(z)
only, though here including explicitly m; = |r j|1/ 2 as in m; = ¢ for such
purely elastic layer.
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In sum, for each layer, whether piezoelectric or purely elastic, the ap-
propriate form of the through-thickness exact solution can be defined, as
thoroughly described, whichever the case arising from the layer material
properties, according to an orthotropic, transversely isotropic or even
isotropic layer. Most noteworthy, thus far, each of the above-mentioned
solution form holds under any pair (n,, 1), so long as neither n, = 0 nor
n, = 0.

3.3. Special modes: n, =0 or n, = 0 cases

Within the free vibration solution, the so-called special modes for ei-
ther n, = 0 or n, = 0 fall into a particular case, which needs to be ad-
dressed separately, each on its own. In case n, = 0, meaning p = 0, the
characteristic equation of the system in Eq. (11) turns out, in its general
form, as follows:

(r3+clr2+czr+c3)(A“ —Cssr) =0, with r=s’ (56)

Evidently, when n, = 0, the form of the through-thickness exact solu-
tion, for each and every layer, is such that the displacement i(z) emerges
uncoupled. Hence, for each layer, among the 4 roots for r, namely r; with
j =1,...,4, the solution form of i(z) is clearly associated with just 1 real
uncoupled root, which is simply r; = A;,/Css. The remaining 3 roots for r
can be all real roots or include complex roots, as in a conjugate pair, de-
pending mostly on the layer material properties. Accordingly, the form
of the through-thickness exact solution for each layer can be developed
along the same lines as described previously. Nonetheless, the aftermath
shows that, when n, = 0, the solution form of &(z), i(z) and ¢(z) are all
null, and only the layer displacement i(z) is nonzero. This holds for
either purely elastic layers or the present extension mode piezoelectric
layers, as indeed highlighted by Batra and Aimmanee [10]. Most no-
tably, this solution form of special modes for n, =0 is only admissible
under simply supported edge conditions at x = 0, a, as given by Eq. (9).

Therefore, in such case, the form of the through-thickness exact so-
lution rests on i(z) for every layer, each with 1 real uncoupled root rq
(with r = s2), thus 1 pair of roots for s (positive and negative). As it is,
the solution form of a(z) for each layer, as well as its derivative with
respect to z, can be expressed as shown:

i) = Xj, U = T, [FC(2) +G,5,(2)]
#(2) = Xjo mWi() = Zjoy m[G,C(2) + o, F;S,(2)]

where it is used the functions Uj(z) and Wj(z) as defined in Egs. (20) and
(21), including explicitly m; = |r;|!/?> with j =1 for each layer, along
with its 2 unknown constants F; and G; associated with i(z) alone. As
a result, when n, = 0, the solution form for each layer stresses and elec-
tric displacements, as stated originally in Egs. (14) and (15), is simply
reduced to the following:

(57

5..(2) = Cs5it'(2)
6,,(2) = q Cg ii(2) (58)
D (z)=¢,5i(z)

Other than that, in case n, = 0, meaning ¢ = 0, the characteristic
equation of the system in Eq. (11) turns out, in its general form, as fol-
lows:

(P +eir? +eyr+c3)(Ap —Cyr) =0, with r=s (59)

Analogously, when n, = 0, the form of the through-thickness exact
solution, for each and every layer, is such that the displacement (z)
emerges uncoupled. Naturally, for each layer, the solution form of o(z) is
associated with just 1 real uncoupled root, namely r; = A,,/C,,. Likewise,
the aftermath shows that, when n, = 0, the solution form of i(z), w(z)
and ¢(z) are all null, and only the layer displacement #(z) is nonzero.
Therefore, this solution form of special modes for n, = 0 is only admis-
sible under simply supported edge conditions at y = 0,5, as given by
Eq. (9). In such case, the form of the through-thickness exact solution
rests on (z) for every layer, each with 1 real uncoupled root r; (with
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Table 1
Elastic properties of the materials used for purely elastic solutions.

Property FRC [1] Trans. Iso. Core [1] Iso. Core [17]
E, [GPa] 25E, 0.04E, 0.04E,
E, [GPa] Eyf 0.04E, 0.04E,
E; [GPa] Eof 0.5E, 0.04E,
G, [GPa] 0.5E, 0.016E, E,o/70
G5 [GPa) 0.5E, 0.06E, E,o/70
G,3 [GPa] 0.2E, 0.06E, Eo/70
viz [-] 0.25 0.25 0.40
vz [-] 0.25 0.02 0.40
vas [-] 0.25 0.02 0.40
p [kg/m?] o’ 0.1p9 0.1p9

3 For nondimensionalizations. Used as E, = 7 GPa and p, = 1600 kg/m3.

r = s2), thus 1 pair of roots for s (positive and negative). Equivalently,
the solution form of #(z) and #'(z) for each layer, can be expressed just
as stated in Eq. (57), respectively.

Besides that, when n, = 0, the solution form for each layer stresses
and electric displacements, as stated in Egs. (14) and (15), is reduced
accordingly to the following:

5,,(2) = C_’4§ 7' (z)
Gyy(2) = p Co 0(2) (60)
Dy(2) = &y, 0/ (2)

In the end, from a practical standpoint, when considering special
modes for either n, =0 or n, =0 within the free vibration solution,
the nonzero exact solution form for each layer involves, in fact, only
2 nonzero unknown constants F; and G;. Hence, for the entire multi-
layered plate made of N layers, only 2N nonzero unknown constants are
actually involved. Accordingly, taking into account for each layer, in re-
ality, only 1 nonzero displacement and 1 nonzero transverse shear stress,
leads all together to the corresponding 2N boundary and interlaminar
conditions. In short, in case of special modes for either n, = 0 or n, =0,
the free vibration solution can be based on a reduced total system of 2N
equations, whose zero determinant requirement is pursued through an
iterative scheme, as described earlier, thus setting out the plate special
mode shapes in line with the pair (n,, n,) and the respective frequency
.

4. Static and free vibration solutions for benchmarking

As intended in this work, 3D exact electro-elastic static and free vi-
bration solutions of simply supported multilayered plates are demon-
strated by a comprehensive evaluation of well-known benchmarks, di-
vided into two categories: purely elastic solutions and electro-elastic
solutions. Specifically, within each category, three distinct square mul-
tilayered plates (with a = b) are studied, as here described.

1. Purely elastic solutions, using the materials in Table 1:

e Composite laminate (0°/90°/0°).
Considering unidirectional fibre reinforced composite (FRC) lay-
ers of equal thickness h/3 and a/h = 4, 10, 100; based on the orig-
inal benchmark by Pagano [1], in which exact static solutions
are shown, in part.
Sandwich plate with transversely isotropic soft core.
Considering FRC skins of 0° with thickness h/10 (each) alongside
a soft core and a/h = 4,10, 100; based on the original benchmark
by Pagano [1], in which exact static solutions are shown, in part.
Sandwich plate with isotropic soft core.
An analogous sandwich using a distinct core material; based on
the original benchmark by Moleiro et al. [17], though modified
here to assume the same thickness layout as the previous sand-
wich.
2. Electro-elastic solutions, using the materials in Table 2:

o Piezoelectric composite laminate (PZT-4/0°/90° /PZT-4).
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Table 2
Elastic and piezoelectric properties of the materials used for electro-elastic so-
lutions.

Property FRC [7] PZT-4 [7] PVDF [7]
E, [GPa] 132.38 81.3 237.0
E, [GPa] 10.756 81.3 232

E; [GPa] 10.756 64.5 10.5
Gy, [GPa] 5.6537 30.6 6.43
Gy5 [GPa] 5.6537 25.6 4.40
G,3 [GPa] 3.6060 25.6 2.15
via [-] 0.24 0.329 0.154
vz [-] 0.24 0.432 0.178
vas [-] 0.49 0.432 0.177
ey [C/m2] 0 -5.20 -0.13
ey, [C/m?] 0 -5.20 -0.14
ey3 [C/m2] 0 15.08 -0.28
e,y [C/m?] 0 12.72 -0.01
eys [C/m?] 0 12.72 -0.01
e [F/m] 3.5¢0" 1475¢, 12.50¢,
ey [F/m] 3.0¢o" 1475¢, 11.98¢,
€33 [F/m] 3.0¢4" 1300¢, 11.98¢,
p [kg/m3] 1.0 1.0 1.0

° The vacuum dielectric constant. Used as ¢, = 8.854187817 x 10~'? F/m.

Considering piezoelectric layers with thickness h/10 (each)
alongside FRC layers of equal thickness, with a fixed total thick-
ness h = 1 mand a/h = 4, 10; based on the original benchmark by
Heyliger [5], in which exact static solutions are shown, in part.

e Piezoelectric composite laminate (PZT-4/0°/90°/0°/PZT-4).
Considering piezoelectric layers with thickness h/10 (each)
alongside FRC layers of equal thickness, with a fixed total thick-
ness h = 0.0l mand a/h = 4, 10; based on the original benchmark
by Heyliger and Saravanos [7], in which exact free vibration so-
lutions are shown, in part.

e Piegoelectric composite laminate (PVDF/90°/0°/90°/PVDF).
An analogous laminate using a distinct piezoelectric material,
namely PVDF of 0°, with the same thickness layout as the previ-
ous laminate; based on the original benchmark by Heyliger et al.
[40], in which exact static solutions are shown, in part.

Moreover, within purely elastic solutions, following primarily the
leading work by Pagano [1], 3D exact static and free vibration solutions
are provided in a nondimensionalized form, which is most useful for fu-
ture assessments. Accordingly, exact static solutions of all displacements
and stresses make use of the following nondimensionalized form:

_o 100Egh? - 100Eyh3
[@,0) = —%—[u,v], Ww=—"Y4—w
opa A opa
~ ~ - [op
[pr O-yz] = ooa [Uxmgyz]» Oz = ULOZ (61)

(G0 Byys Bay] = 2o [Gr Oy y0 Oy
xx> Cyy> Oxy opa2 17X ZYy? Xy

From a practical standpoint, the exact static solutions in this form
hold for each side-to-thickness ratio a/h considered, in line with the
elastic property reference E, in Table 1 and the applied load intensity
o, stated in Eq. (16). Along with this, exact free vibration solutions of
all natural frequencies are also provided in nondimensionalized form,
as shown:

@ = w\/po/ Eq(a’/h) ©2)

Likewise, the natural frequencies in this form hold as well for each
side-to-thickness ratio a/h considered, in agreement with both E, and
po» as in the density reference in Table 1.

Furthermore, 3D exact static solutions, within purely elastic or
electro-elastic solutions, consider (as suitable) either a bi-sinusoidal ap-
plied load of intensity o, or a bi-sinusoidal applied electric potential
of intensity ¢, on the plate top surface, according to Eq. (16) with
p = q = r/a, along with all zero loads on the plate bottom surface. More
specifically, within electro-elastic static solutions, a unit value is as-
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Table 3

Composites Part C: Open Access 2 (2020) 100038

Exact static solutions of the composite laminate (0°/90°/0°) under an applied load (nondimensionalized); in part,

shown by Pagano [1].

a/h z/h 0.5 050 @55 60,5 6,.5.0 5.5 6.5 6,(5.5)  5,(0.0
4 1/2 —0.9694 —2.2812 2.1216 0.0000 0.0000 1.0000 0.8008 0.0953 —0.0511
1/6 0.3167 —0.6637 2.0416 0.2518 0.0892 0.7184 —0.2301 0.0298 —0.0055
1/6 0.3167 —0.6637 2.0416 0.2518 0.0892 0.7184 0.0066 0.5341 —0.0055
0 0.0521 0.0269 2.0059 0.2559 0.2172 0.4927 0.0059 -0.0119 0.0012
-1/6 —0.2418 0.7156 1.9803 0.2570 0.0758 0.2691 0.0062 —0.5563 0.0074
-1/6 —0.2418 0.7156 1.9803 0.2570 0.0758 0.2691 0.1900 —0.0164 0.0074
-1/2 0.9358 2.2794 1.9381 0.0000 0.0000 0.0000 —0.7548 -0.0792 0.0505
10 1/2 —0.7351 —1.0995 0.7533 0.0000 0.0000 1.0000 0.5906 0.0429 —0.0288
1/6 —0.0943 —0.3574 0.7537 0.3532 0.0478 0.7371 0.0794 0.0139 —0.0071
1/6 -0.0943  -0.3574  0.7537 0.3532 0.0478 0.7371 0.0076 0.2845 —0.0071
0 0.0036 0.0044 0.7530 0.3573 0.1228 0.4994 0.0011 —-0.0019 0.0001
-1/6 0.1007 0.3661 0.7521 0.3543 0.0457 0.2620 —0.0054 —0.2882 0.0073
-1/6 0.1007 0.3661 0.7521 0.3543 0.0457 0.2620 —0.0814 —-0.0117 0.0073
-1/2 0.7380 1.1066 0.7485 0.0000 0.0000 0.0000 —0.5898 —-0.0407 0.0290
100 1/2 —0.6780 —0.6823 0.4347 0.0000 0.0000 1.0000 0.5393 0.0269 —0.0214
1/6 —0.2243 -0.2274 0.4347 0.3905 0.0336 0.7407 0.1784 0.0089 —0.0071
1/6 —-0.2243 -0.2274 0.4347 0.3905 0.0336 0.7407 0.0089 0.1808 —0.0071
0 0.0000 0.0000 0.4347 0.3947 0.0828 0.5000 0.0000 0.0000 0.0000
-1/6 0.2244 0.2274 0.4347 0.3905 0.0336 0.2593 —0.0089 —0.1808 0.0071
-1/6  0.2244 0.2274 0.4347 0.3905 0.0336 0.2593 —0.1784 —0.0089 0.0071
-1/2 0.6781 0.6823 0.4347 0.0000 0.0000 0.0000 —-0.5393 —0.0268 0.0214
Table 4
Exact static solutions of the sandwich plate with transversely isotropic soft core under an applied load (nondimen-
sionalized); in part, shown by Pagano [1].
a/h z/h (0, 5) (5,0 (5.5 6.0, 5,50  6.(5.3) 6.3 55,5 5,00
4 1/2 —1.8785 -7.2672 7.8137 0.0000 0.0000 1.0000 1.5558 0.2595 —0.1437
2/5 0.3690 —4.9825 7.8129 0.2354 0.1007 0.9307 —0.2331 0.1687 —0.0725
2/5 0.3690 —4.9825 7.8129 0.2354 0.1007 0.9307 0.0027 0.0081 —0.0023
0 0.1406 0.3109 7.5962 0.2387 0.1072 0.5002 0.0005 0.0004 0.0002
-2/5 —-0.3016 5.3996 7.5030 0.2364 0.1013 0.0689 —-0.0013 —0.0070 0.0026
-2/5 —-0.3016  5.3996 7.5030 0.2364 0.1013 0.0689 0.1963 —0.1666 0.0801
-1/2 1.8446 7.5805 7.4653 0.0000 0.0000 0.0000 —-1.5121 —0.2533 0.1480
10 1/2 —1.4299 —3.0689 2.2033 0.0000 0.0000 1.0000 1.1531 0.1104 —0.0707
2/5 —0.7699 —2.3892 2.2056 0.2974 0.0493 0.9407 0.6279 0.0837 —0.0496
2/5 —-0.7699 —2.3892 2.2056 0.2974 0.0493 0.9407 0.0021 0.0037 —0.0016
0 0.0050 0.0352 2.2004 0.2998 0.0527 0.5002 0.0001 0.0001 0.0000
-2/5 0.7742 2.4540 2.1977 0.2977 0.0495 0.0594 —-0.0018 —0.0035 0.0016
-2/5 0.7742 2.4540 2.1977 0.2977 0.0495 0.0594 —0.6287 —-0.0832 0.0507
-1/2 1.4315 3.1309 2.1944 0.0000 0.0000 0.0000 —1.1518 —0.1099 0.0717
100 1/2 —1.3799 —1.3994 0.8924 0.0000 0.0000 1.0000 1.0975 0.0550 —0.0437
2/5 -1.0998  —1.1191 0.8924 0.3221 0.0279 0.9430 0.8748 0.0439 —0.0349
2/5 —1.0998 —1.1191 0.8924 0.3221 0.0279 0.9430 0.0019 0.0019 —0.0011
0 0.0000 0.0003 0.8924 0.3240 0.0297 0.5000 0.0000 0.0000 0.0000
-2/5 1.0999 1.1198 0.8924 0.3221 0.0279 0.0570 —-0.0018 —-0.0019 0.0011
-2/5 1.0999 1.1198 0.8924 0.3221 0.0279 0.0570 —0.8748 —-0.0439 0.0349
-1/2 1.3799 1.4001 0.8924 0.0000 0.0000 0.0000 —1.0975 —0.0550 0.0437

sumed for either intensities, as in oy =1 Pa or ¢, =1 V, in order to
be consistent with the leading works by Heyliger [5] as well as Heyliger
et al. [40].

4.1. Purely elastic solutions: Composite laminates and soft core sandwich
plates

Firstly, 3D exact static solutions are shown in Tables 3,4,5 regard-
ing, respectively, the composite laminate (0°/90°/0°) and each of the
two sandwich plates with soft core, all equally under a bi-sinusoidal
applied load. In each table, the exact static solutions provide a detailed
through-thickness evaluation of all displacements and stresses, in nondi-
mensionalized form as established by Eq. (61), considering three distinct
side-to-thickness ratios a/h = 4, 10, 100, thus including thick, moderately
thick and even thin plates.

In fact, the original benchmarks by Pagano [1] concerning both
the composite laminate (0°/90°/0°) and the sandwich plate with trans-
versely isotropic soft core are here much more thoroughly described in

Tables 3 and 4, with the evaluation of all displacements and stresses
at the top and bottom surfaces of each layer of the plate, and also in
the mid-surface, in sequence, for each side-to-thickness ratio considered.
Actually, this comprehensive evaluation is done likewise in Table 5 con-
cerning the sandwich plate with isotropic soft core.

Other than that, a more insightful description of the static be-
haviour of each multilayered plate can be provided by the exact through-
thickness distributions of displacements and stresses, all together. Since
both original benchmarks by Pagano [1] are more widely known, this
further description seems most relevant at this point for the sandwich
plate with isotropic soft core, as shown in Fig. 2, thus characterizing its
static behaviour. More precisely, Fig. 2 demonstrates the exact through-
thickness distributions of displacements and stresses, considering along-
side each side-to-thickness ratio a/h = 4, 10, 100.

As apparent in Fig. 2 the through-thickness distributions exhibit
much more complicated effects when thick sandwich plates are consid-
ered, and even heighten by a soft core. Naturally, an accurate modelling
of sandwich plates must be able to capture all of such through-thickness
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Table 5
Exact static solutions of the sandwich plate with isotropic soft core under an applied load (nondimensionalized).

wh  gho @09 050 @ 5.0 550 5D Gl 55D 5,00

4 1/2 —4.0865  —10.689  24.338 0.0000 0.0000 1.0000 3.3213 0.3846 —-0.2321
2/5 3.2657 -32566  24.339 0.1568 0.1107 0.9039 —2.5280 0.0912 0.0001
2/5 3.2657 -3.2566  24.339 0.1568 0.1107 0.9039 0.0347 0.0406 0.0000
0 2.5515 3.7181 22.801 0.1849 0.1417 0.5241 0.0158 0.0147 0.0028
-2/5  -27869  6.3026 21.952 0.1943 0.1455 0.1018 0.0046 —-0.0035 0.0016
-2/5  -2.7869  6.3026 21.952 0.1943 0.1455 0.1018 2.1467 —-0.1749 0.0552
-1/2  3.8044 12.927 21.900 0.0000 0.0000 0.0000 -3.0972 —0.4371 0.2628
10 1/2 -1.7017  —6.0228  5.6548 0.0000 0.0000 1.0000 1.3904 0.2056 —-0.1213
2/5 0.0432 —4.2680  5.6588 0.2472 0.0831 0.9352 0.0025 0.1364 —0.0664
2/5 0.0432 —4.2680  5.6588 0.2472 0.0831 0.9352 0.0087 0.0126 —-0.0019
0 0.0815 0.3212 5.6407 0.2557 0.0938 0.5055 0.0031 0.0028 0.0002
-2/5 —-0.0161  4.7822 5.6057 0.2546 0.0900 0.0669 —0.0024 —0.0067 0.0021
-2/5  -0.0161  4.7822 5.6057 0.2546 0.0900 0.0669 —0.0248 —0.1503 0.0749
-1/2 17113 6.5185 5.6004  0.0000 0.0000 0.0000 —1.3987 —-0.2188 0.1293
100 1/2 —-1.3804  —-1.4600  0.9365 0.0000 0.0000 1.0000 1.0984 0.0569 —0.0446
2/5 -1.0865 -1.1659  0.9365 0.3209 0.0286 0.9429 0.8647 0.0453 —0.0354
2/5 -1.0865 —1.1659  0.9365 0.3209 0.0286 0.9429 0.0024 0.0025 —0.0010
0 0.0001 0.0026 0.9366 0.3231 0.0308 0.5001 0.0000 0.0000 0.0000
-2/5  1.0867 1.1711 0.9365 0.3210 0.0287 0.0571 —-0.0023 —0.0024 0.0010
-2/5 1.0867 1.1711 0.9365 0.3210 0.0287 0.0571 —0.8649 —0.0454 0.0355
-1/2  1.3806 1.4652 0.9365 0.0000 0.0000 0.0000 —1.0986 —-0.0570 0.0447
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Fig. 2. Exact static solutions of the sandwich plate with isotropic soft core under an applied load, using a/h = 4, 10, 100: through-thickness distributions of displace-
ments and stresses (nondimensionalized).
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Table 6

Composites Part C: Open Access 2 (2020) 100038

Exact free vibration solutions of the composite laminate (0°/90°/0°): first twenty natural frequencies (nondimensionalized) and associated

modes (n,, n,)-N, (in-plane mode and thickness mode number).

@ @, @ @y @5 g @, g @y @9

a/h @y @y @3 @y @5 @6 @17 @5 @19 @y

4 6.9161 8.8858 8.8858 11.5417 14.0593 16.8943 17.7539 17.7715 17.7715 21.6489
(1,1)-1 (0,1)-1 (1,0)-1 (1,2)-1 (2,1)-1 (2,2)-1 (1,3)-1 (0,2)-1 (2,0)-1 (2,3)-1
21.8020 23.7802 24.3201 26.6573 26.6573 27.0272 27.3102 27.3922 29.3163 29.4744
(3,1)-1 (3,2)-1 (1,4)-1 (0,3)-1 (3,0)-1 (0,1)-2 (2,4)-1 (3,3)-1 (1,0)-2 (1,1)-2

10 11.4573 18.2120 22.2144 22.2144 28.1818 30.5643 31.8919 40.5370 44.4288 44.4288
(1,1)-1 (1,2)-1 (0,1)-1 (1,0)-1 (2,1)-1 (1,3)-1 (2,2)-1 (2,3)-1 (0,2)-1 (2,0)-1
45.6518 46.3135 48.8648 53.0403 55.0841 61.9544 64.9684 65.2176 66.6432 66.6432
(1,4)-1 (3,1)-1 (3,2)-1 (2,4)-1 (3,3)-1 (1,5)-1 (3,4)-1 (4,1)-1 (0,3)-1 (3,0)-1

Table 7

Exact free vibration solutions of the sandwich plate with transversely isotropic soft core: first twenty natural frequencies (nondimensional-
ized) and associated modes (n,, ny)-NZ (in-plane mode and thickness mode number).

@y L) @3 @y @s @e @7 @y @y @9

a/h (D]I (‘_)IZ (I)H (;)14 (‘_)IS (I)lﬁ 6)]7 (‘_)IX (I)l‘) (I)le

4 6.7059 7.9661 7.9665 10.8667 12.8849 13.8219 15.5166 16.3804 15.8704 15.8739
(1,1)-1 (1,0)-1 (0,1)-1 (1,2)-1 (2,1)-1 (1,1)-2 (2,2)-1 (1,3)-1 (2,0)-1 (0,2)-1
19.4201 19.7453 19.9399 20.1002 20.1919 21.7811 22.1463 23.6399 23.6523 23.7642
(2,1)-2 (2,3)-1 (3,1)-1 (1,0)-2 (0,1)-2 (3.2)-1 (1,4)-1 (3,0)-1 (0,3)-1 (1,2)-2

10 12.6425 18.6896 19.9361 19.9362 28.1824 29.8259 31.7268 34.6661 39.5603 39.8484
(1,1)-1 (1,2)-1 (1,0)-1 (0,1)-1 (2,1)-1 (1,3)-1 (2,2)-1 (1,1)-2 (2,3)-1 (2,0)-1
39.8497 43.4986 43.9708 46.6039 48.8918 50.7665 52.4464 58.2430 59.7124 59.7170
(0,2)-1 (1,4)-1 (3,1)-1 (3,2)-1 (2,1)-2 (2,4)-1 (3,3)-1 (1,5)-1 (3,0)-1 (0,3)-1

Table 8

Exact free vibration solutions of the sandwich plate with isotropic soft core: first twenty natural frequencies (nondimensionalized) and
associated modes (n,, ny)—NZ (in-plane mode and thickness mode number).

@, @, @3 @, @s @ @; g @y @y

(l/h C‘[)]1 @12 @13 C‘[)]4 @15 Cbl() C‘[)]7 d')18 @19 (I)ZO

4 3.9816 6.2393 7.6986 7.8822 7.8827 8.8764 8.9849 11.2201 11.8853 123319
(1,1)-1 (12)-1 (2,1)-1 (1,0)-1 (0,1)-1 (2.2)-1 (1,3)-1 (23)-1 (1,4)-1 (1,0)-2
12.3394 13.0277 13.7064 13.9733 14.9071 15.1467 15.4493 15.4537 16.4588 17.4374
(0,1)-2 (3,1)-1 (2,4)-1 (3.2)-1 (1,5)-1 (3,3)-1 (2,0)-1 (0,2)-1 (2,5)-1 (3.4)-1

10 9.5920 12.8150 15.5812 19.6029 19.6576 19.8010 19.8011 23.9314 24.2850 26.5655
(1,1)-1 (12)-1 (2,1)-1 (2.2)-1 (13)-1 (1,0)-1 (0,1)-1 (23)-1 (3,1)-1 (3.2)-1
26.9739 30.2100 30.4055 34.2412 34,3893 35.6415 36.0171 36.9740 39.0782 39.4944
(1,4)-1 (24)-1 (3,3)-1 (4,1)-1 (1,5)-1 (3,4)-1 (4.2)-1 (2.5)-1 (4,3)-1 (2,0)-1

effects, namely the zig-zag form of displacements and the interlaminar
continuity of transverse stresses. In short, this can be translated into C?
interlaminar continuity requirements of displacements and transverse
stresses, as highlighted early on by Carrera [23-25].

In addition, 3D exact free vibration solutions are shown in
Tables 6,7,8 regarding, once again respectively, the composite lami-
nate (0°/90°/0°) and each of the two sandwich plates with soft core.
In each table, the free vibration solutions reveal the first twenty natu-
ral frequencies, in nondimensionalized form as stated by Eq. (62), along
with the associated modes of natural vibration, considering two distinct
side-to-thickness ratios a/h = 4, 10, thus including both thick and mod-
erately thick plates. More specifically, for each natural frequency, the
corresponding in-plane mode (n,, n,) is reported, which also includes
special modes for either n, = 0 or n y =0, together with the thickness mode
number of each pair (n,, ny).

As shown in Tables 6,7,8, the special modes are, in fact, a signifi-
cant part of the first twenty natural modes of vibration of each (simply
supported) multilayered plate, and even more so when thick plates are
considered. As it turns out, for thick plates most notably, among the
first twenty modes of vibration of each multilayered plate, about six up
to eight modes correspond to special modes, although, as the plate be-
comes less thick, this proportion of special modes among the first twenty
modes of vibration tends to decrease somewhat. Actually, the lower
natural frequencies corresponding to special modes, namely either the

pair (0,1) or (1,0), can occur immediately as the second lowest nat-
ural frequency when thick plates are considered, as demonstrated in
Tables 6 and 7. Therefore, even though often overlooked, the signifi-
cance of special modes for thick (simply supported) multilayered plates
is quite undeniable, as emphasized first by Batra and Aimmanee [10].
Moreover, Tables 6,7,8 also reveal, for thick plates most especially, that
for each pair (n,, n,) at least up to the second thickness mode can appear
among the first twenty modes of vibration of each multilayered plate,
thus it cannot be disregarded. In fact, for each thick plate considered,
about two up to five modes of vibration among the first twenty modes
correspond to a second thickness mode. This is particularly pronounced
in the free vibration behaviour of the sandwich plate with transversely
isotropic soft core, as shown in Table 7 and further characterized in
Fig. 3.

In more detail, Fig. 3 focuses on a few modes of natural vibration
to bring light into the first few through-thickness mode shapes of each
in-plane mode (n,, ny). It includes for the in-plane mode (1,1), the first
three thickness modes of the transverse displacement w, and likewise for
the in-plane mode (2,1), the first two thickness modes. As demonstrated
in Fig. 3, for each in-plane mode, such as (1,1) or (2,1), the natural
modes of vibration from the second thickness mode onwards, rather ex-
pose the transverse normal compressibility of the sandwich plate, as
mostly due to its soft core. Aside from that, Fig. 3 also includes, for the
special mode (1,0), the first two thickness modes of the in-plane displace-



F. Moleiro, C.M. Mota Soares and E. Carrera et al.

0.5

In-Plane Mode (1,1)

<=
=
Q
0 0.2 04 0.6 0.8 1
z/a
In-Plane Mode (2, 1)
1
<
~
)
0 -0.5
0 0.2 0.4 0.6 0.8 1
z/a
In-Plane Mode (1,0)
<
=
Q

0 0.2 0.4 0.6 0.8 1
z/a

Composites Part C: Open Access 2 (2020) 100038

Thickness Modes

-0.25

-0.25

0.25

-0.25

T T . . :
No. 1: & — 6.7059 e
---------- No. 2: @ =13.8219 ,/
—-—-—No. 3: & = 23.7699 !
/
i 1
i
i
i
| |
i
\
\
\ |
)
\.
\;
1 . 1 1 Il
-1 -0.5 0 0.5 1
w(a/2,a/2)
Thickness Modes
T T T T
No. 1: & —12.8849
--------- No. 2 @ = 19.4201
. . . .
-1 -0.5 0 0.5 1
w(a/4,a/2)
Thickness Modes
T T T
No. 7.9661
---------- No. 2 20.1002
1 1 1 1 1
-1 -0.5 0 0.5 1

v(a/2,0)

Fig. 3. Exact free vibration solutions of the sandwich plate with transversely isotropic soft core, using a/h = 4: a few natural frequencies (nondimensionalized) and
associated modes, characterizing the first few through-thickness modes of each in-plane mode.

ment v. Thus, apparently, for each special mode, such as (1,0) or (0,1),
the natural modes of vibration from the second thickness mode onwards,
further expose the effect of transverse shear of the sandwich plate, as
arising mainly from its soft core.

Most noteworthy, comparing the free vibration behaviour of both
sandwich plates, reported in Tables 7 and 8, which differ only on the
core material, as detailed in Table 1, clearly indicates that the degree
of the core compressibility plays a key role on the occurrence of higher
thickness modes among the lower natural frequencies. In short, the sig-
nificance of thickness modes, from the second onwards, among the first
twenty, or more, modes of vibration of any multilayered plate is ap-
parently greatly influenced by the degree of sensitivity to the effects of
transverse shear and normal compressibility of the plate. This gives rea-

son to the relevance of thickness modes when thick plates are considered,
and most especially sandwich plates exhibiting high core compressibil-

ity.

4.2. Electro-elastic solutions: Piezoelectric composite laminates

The following 3D exact electro-elastic static solutions of each of the
three piezoelectric composite laminates, under either a bi-sinusoidal ap-
plied load or a bi-sinusoidal applied electric potential (of a unit value),
are now shown in a series of six tables, namely Tables 9,10,11,12,13,14,
every two tables for each laminate in line with either sensor or actuator
configuration, respectively.



Table 9
Exact static solutions of the piezoelectric composite laminate (PZT-4/0°/90°/PZT-4) under an applied load (in SI units); in part, shown by Heyliger [5].
u- 1012 v-1012 w- 101 ¢-10 0y 10 ¢, 10 6, - 10 [ oy - D, - 10'2 D, -10'2 D, -10!%
a/h z/h ©.5) 5-0) (5.%) (5.5 0, %) (5.0) (5.5 (5.3) (5.5 0,0 ©.3) (5.0 (5.5
4 1/2 -55.506 —-47.552 31.525 0.0000 0.0000 0.0000 10.000 6.9464 6.5642 —-2.4768 0.0000 0.0000 160.58
2/5 -31.746 —23.733 31.761 0.0598 5.7901 5.4892 9.5153 40258 3.6408 —1.3334 196.60 181.65 —0.3384
2/5 —31.746 —23.733 31.761 0.0598 5.7901 5.4892 9.5153 0.7907 2.8857 —0.2464 —0.1249 —0.1457 —0.3384
0 —12.064 20.394 30.029 0.0611 7.7429 6.8712 49831 0.3085 -1.9267 0.0370 -0.1274 —0.1487 0.5053
0 —12.064 20.394 30.029 0.0611 7.7429 6.8712 4.9831 1.3977 0.0991 0.0370 —0.1487 -0.1274 0.5053
-2/5 25.619 39.313 28.766 0.0756 5.4609 5.9752 0.4867 —2.7387 -0.3617 0.2883 —0.1840 —0.1578 1.4590
-2/5 25.619 39.313 28.766 0.0756 5.4609 5.9752 0.4867 —3.5769 —4.2348 1.5605 156.24 181.80 1.4590
-1/2 47.089 60.683 28.428 0.0000 0.0000 0.0000 0.0000 —-6.2126 —6.8658 2.5901 0.0000 0.0000 —142.46
10 1/2 -929.59 —552.49 578.94 0.0000 0.0000 0.0000 10.000 40.023 32.776 —14.248 0.0000 0.0000 139.12
2/5 —750.11 —372.56 580.91 0.4434 15.129 12.851 9.5404 31.287 24.031 -10.793 481.75 368.57 -0.4125
2/5 —750.11 —-372.56 580.91 0.4434 15.129 12.851 9.5404 3.3243 16.521 —1.9940 —0.3700 -0.4317 —-0.4125
0 -212.98 227.27 582.15 0.4448 18.923 18.542 5.0065 0.7867 —9.1428 0.0254 -0.3712 —0.4330 0.5936
0 -212.98 227.27 582.15 0.4448 18.923 18.542 5.0065 8.8940 —0.3492 0.0254 —0.4330 -0.3712 0.5936
-2/5 383.45 764.08 577.96 0.4614 12.939 15.235 0.4625 -16.628 —2.8835 2.0382 —0.4492 —0.3850 1.6201
-2/5 383.45 764.08 577.96 0.4614 12.939 15.235 0.4625 —24.103 -31.418 11.031 361.99 476.09 1.6201
-1/2 562.43 942.61 575.89 0.0000 0.0000 0.0000 0.0000 —32.802 —40.109 14.468 0.0000 0.0000 —135.96
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Table 10
Exact static solutions of the piezoelectric composite laminate (PZT-4/0°/90°/PZT-4) under an applied potential (in SI units); in part, shown by Heyliger [5].

‘ID 39 DU2.LIDY) “H PUD SIDOS DIOW "D “OLI]0N

u-1012 v-1012 w-10'2 ¢ 0y - 10% ¢, - 10° 6, 10° Gy - 102 "y 102 0,y - 107 D, -10% D, -10% D, - 10!
a/h z/h ©.%) (5.0 55 55 ©, %) (5.0 5.5 (5.3) (5.%) (0,0 ©,%) (5.0 (5.5
4 1/2 —28.002 -32.765 —16.058 1.0000 0.0000 0.0000 0.0000 88.918 111.80 —146.04 -152.21 -152.21 —-241.84
2/5 9.5340 4.7353 -13.956 0.9929 38.247 56.266 ~7.5347 -102.91 ~79.852 34.294 —150.94 -150.85 -4.1875
2/5 9.5340 4.7353 -13.956 0.9929 38.247 56.266 ~7.5347 -9.4310 -51.677 6.3361 -0.2071 -0.2417 —4.1875
0 2.7374 0.0297 —14.707 0.4477 8.2398 -23.857 —14.605 -3.0553 -1.3928 1.2287 -0.0934 —0.1090 -3.1825
0 2.7374 0.0297 —14.707 0.4477 8.2398 -23.857 —14.605 -29.126 —1.3087 1.2287 -0.1090 —0.0934 -3.1825
-2/5 -0.7427 —1.7835 —14.415 —0.0001 —-19.463 -23.371 -1.8720 8.0547 1.5720 -1.1217 0.0000 0.0000 —2.8702
-2/5 -0.7427 -1.7835 —14.415 —0.0001 —-19.463 -23.371 -1.8720 9.5233 14.524 -6.0713 —0.0809 -0.1003 —2.8702
-1/2 —1.8287 -2.8618 —14.246 0.0000 0.0000 0.0000 0.0000 22.821 27.784 -11.273 0.0000 0.0000 -2.7935
10 1/2 -12.022 -13.407 -13.912 1.0000 0.0000 0.0000 0.0000 14.141 16.803 —24.445 —60.885 —60.885 —41.680
2/5 3.1351 1.7484 -13.533 0.9987 2.6520 3.4886 -0.1956 -16.999 -14.334 4.6946 —-60.791 —60.787 —3.4653
2/5 3.1351 1.7484 -13.533 0.9987 2.6520 3.4886 -0.1956 -1.2165 ~7.5678 0.8674 -0.0833 -0.0972 —3.4653
0 1.2395 0.0398 —13.697 0.4910 0.9355 -1.9643 -0.3946 -0.4437 -0.2816 0.2272 —0.0410 —0.0478 —3.2966
0 1.2395 0.0398 -13.697 0.4910 0.9355 —1.9643 -0.3946 —5.1966 —0.1341 0.2272 -0.0478 —0.0410 —3.2966
-2/5 -0.4221 —1.4665 —13.664 0.0002 -1.0165 —1.6466 -0.0466 1.8816 0.5299 -0.3354 0.0000 0.0000 —3.2409
-2/5 -0.4221 —1.4665 —13.664 0.0002 -1.0165 —1.6466 -0.0466 -0.0175 1.9895 -1.8156 -0.0148 -0.0179 —3.2409
-1/2 —0.8469 —1.8900 -13.596 0.0000 0.0000 0.0000 0.0000 2.0456 4.0503 -2.6310 0.0000 0.0000 -3.2357
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Table 11
Exact static solutions of the piezoelectric composite laminate (PZT-4/0°/90°/0°/PZT-4) under an applied load (in SI units).
u-1012 v-10'2 w- 10" ¢ 103 O Oy 6y O oy, o D, -10'2 D, -1012 D, - 102
a/h z/h ©.3) 5-0) (5.5 (5.5 0. %) (5.0) 55 (5.3) (5.5 0,0 ©.3) (5.0 (5.9
4 1/2 —0.4895 -0.5135 0.3131 0.0000 0.0000 0.0000 1.0000 6.5304 6.6454 —2.4105 0.0000 0.0000 15.650
2/5 —0.2530 -0.2771 0.3153 0.0576 0.5421 0.5512 0.9529 3.6267 3.7425 —1.2740 181.76 186.26 -0.0327
2/5 —0.2530 -0.2771 0.3153 0.0576 0.5421 0.5512 0.9529 3.0418 0.7603 —0.2354 —0.1401 —0.1201 -0.0327
2/15 0.0407 -0.0987 0.3027 0.0570 0.8386 0.6965 0.6633 -0.1667 0.4052 -0.0258 -0.1387 -0.1189 0.0211
2/15 0.0407 —0.0987 0.3027 0.0570 0.8386 0.6965 0.6633 0.3153 1.2613 —0.0258 -0.1189 —0.1387 0.0211
0 0.0392 0.0419 0.2972 0.0587 0.8650 0.7463 0.4970 0.2052 -0.2671 0.0360 —0.1225 —0.1429 0.0484
-2/15 0.0259 0.1848 0.2928 0.0619 0.8745 0.6324 0.3321 0.1054 —1.8168 0.0936 —0.1291 —0.1506 0.0769
-2/15 0.0259 0.1848 0.2928 0.0619 0.8745 0.6324 0.3321 —0.1890 0.0029 0.0936 —0.1506 —0.1291 0.0769
-2/5 0.2748 0.3420 0.2856 0.0727 0.5369 0.5621 0.0469 -2.9237 —0.3230 0.2739 —0.1769 —0.1516 0.1401
-2/5 0.2748 0.3420 0.2856 0.0727 0.5369 0.5621 0.0469 —3.5488 -3.8716 1.4825 156.17 168.70 0.1401
-1/2 0.4881 0.5548 0.2824 0.0000 0.0000 0.0000 0.0000 -6.1678 —6.4882 2.5065 0.0000 0.0000 —-13.728
10 1/2 —6.5396 —6.9134 5.3701 0.0000 0.0000 0.0000 1.0000 32.727 33.445 -12.933 0.0000 0.0000 12.650
2/5 —4.8721 —5.2463 5.3878 0.4003 1.2562 1.2788 0.9583 24.618 25.337 -9.7270 380.44 391.65 -0.0312
2/5 —4.8721 —5.2463 5.3878 0.4003 1.2562 1.2788 0.9583 21.129 2.6544 —1.7972 —0.3898 —0.3341 —0.0312
2/15 —1.2853 —1.7812 5.3962 0.4003 2.4635 1.5306 0.6735 5.7576 1.0442 —0.5447 —0.3897 —0.3340 0.0294
2/15 —1.2853 —1.7812 5.3962 0.4003 2.4635 1.5306 0.6735 0.9162 7.7892 —0.5447 —0.3340 —0.3897 0.0294
0 0.0557 0.0907 5.3933 0.4025 2.4981 1.6997 0.5005 0.2224 —0.2039 0.0260 —0.3359 -0.3919 0.0598
-2/15 1.3915 1.9629 5.3864 0.4063 2.4800 1.5113 0.3275 —0.4696 —8.1974 0.5958 —0.3390 —0.3955 0.0904
-2/15 1.3915 1.9629 5.3864 0.4063 2.4800 1.5113 0.3275 —5.8566 -0.6170 0.5958 —0.3955 —0.3390 0.0904
-2/5 4.9565 5.4140 5.3584 0.4185 1.2638 1.2914 0.0420 -21.136 -2.2210 1.8420 —0.4074 —0.3492 0.1528
-2/5 4.9565 5.4140 5.3584 0.4185 1.2638 1.2914 0.0420 —24.649 -25.528 9.9695 373.18 386.89 0.1528
-1/2 6.6147 7.0716 5.3396 0.0000 0.0000 0.0000 0.0000 -32.712 —33.590 13.157 0.0000 0.0000 —12.337
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Table 12

Exact static solutions of the piezoelectric composite laminate (PZT-4/0°/90°/0°/PZT-4) under an applied potential (in SI units).

u-1012 v-10'2 w101 ¢ . oy G Oy vy Oy D, - 108 D, -108 D, -108
a/h z/h ©.%) (5.0 (5.%) (5.5 ©, %) (5.0 5.5 (5.%) (5.%) 0,0) . %) (5.0 (5.5
4 1/2 —32.461 —28.943 —1.5650 1.0000 0.0000 0.0000 0.0000 112.68 95.779 —147.57 —152.21 -152.21 -24.183
2/5 5.0703 8.6139 -1.3523 0.9930 5.7957 4.4650 -0.7857 ~79.342 -96.367 32.887 -150.85 -150.92 —-0.4188
2/5 5.0703 8.6139 -1.3523 0.9930 5.7957 4.4650 -0.7857 —55.001 -8.7343 6.0763 -0.2417 -0.2072 —-0.4188
2/15 1.6080 3.3055 —1.4096 0.6134 —2.0500 2.3233 -1.7107 —18.085 -3.9834 2.1818 -0.1493 -0.1280 -0.3433
2/15 1.6080 3.3055 —1.4096 0.6134 —2.0500 2.3233 -1.7107 -2.8884 -35.472 2.1818 -0.1280 —0.1493 -0.3433
0 0.9736 1.6621 —1.4100 0.4477 —2.4738 -0.5933 —1.5459 -1.9333 -18.116 1.1704 —0.0934 —0.1090 -0.3183
-2/15 0.4633 0.5086 —1.4052 0.2927 -2.7123 —1.9004 -1.1305 —1.0587 -5.8132 0.4316 -0.0611 -0.0712 —0.3008
-2/15 0.4633 0.5086 —1.4052 0.2927 -2.7123 —1.9004 -1.1305 -5.3493 -1.0879 0.4316 -0.0712 -0.0611 —0.3008
-2/5 -1.2088 —0.9850 -1.3883 —0.0001 -1.9391 ~1.8550 -0.1673 12.768 0.9991 -0.9741 0.0000 0.0000 —0.2870
-2/5 —1.2088 -0.9850 -1.3883 —0.0001 -1.9391 —1.8550 -0.1673 10.559 9.4835 -5.2723 -0.0855 -0.0813 -0.2870
-1/2 -2.2532 -2.0310 -1.3728 0.0000 0.0000 0.0000 0.0000 23.370 22.303 -10.296 0.0000 0.0000 -0.2799
10 1/2 -13.207 -12.615 —1.2650 1.0000 0.0000 0.0000 0.0000 16.993 15.856 -24.823 —60.885 —60.885 -4.1679
2/5 1.9882 2.5802 -1.2265 0.9987 0.3625 0.3268 -0.0208 -14.335 —15.473 4.3918 —60.787 —60.789 —0.3465
2/5 1.9882 2.5802 —1.2265 0.9987 0.3625 0.3268 -0.0208 -8.5253 —1.0483 0.8114 -0.0972 -0.0833 —0.3465
2/15 0.9345 1.3537 -1.2383 0.6575 —0.2067 0.2090 —0.0464 -4.0317 -0.5588 0.4064 —0.0640 —0.0549 -0.3340
2/15 0.9345 1.3537 -1.2383 0.6575 —-0.2067 0.2090 —0.0464 -0.4506 —5.7490 0.4064 —0.0549 —0.0640 —0.3340
0 0.4973 0.8113 —1.2410 0.4910 —0.2348 0.0038 -0.0412 -0.2554 —3.4453 0.2324 —0.0410 -0.0478 -0.3297
-2/15 0.0668 0.3046 —1.2421 0.3264 -0.2477 -0.1013 -0.0286 -0.0617 -1.2885 0.0660 -0.0272 -0.0318 -0.3266
-2/15 0.0668 0.3046 -1.2421 0.3264 —0.2477 -0.1013 -0.0286 -0.3144 -0.1231 0.0660 -0.0318 -0.0272 —0.3266
-2/5 -0.8773 -0.6625 —1.2399 0.0002 —0.0984 -0.0855 -0.0033 3.7183 0.2947 -0.2735 0.0000 0.0000 -0.3241
-2/5 -0.8773 -0.6625 —1.2399 0.0002 —0.0984 -0.0855 -0.0033 0.3484 -0.0643 —1.4802 -0.0154 -0.0148 —0.3241
-1/2 -1.2623 -1.0478 -1.2337 0.0000 0.0000 0.0000 0.0000 2.2205 1.8083 -2.2208 0.0000 0.0000 -0.3236
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Exact static solutions of the piezoelectric composite laminate (PVDF/90°/0°/90°/PVDF) under an applied load (in SI units); in part, shown by Heyliger et al. [40].

2/h

u-1012
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12
2/5
2/5
2/15
2/15
0
-2/15
—2/15
-2/5
-2/5
-1/2
12
2/5
2/5
2/15
2/15

—2/15
—2/15
-2/5
-2/5
-1/2

—0.5301
—0.3181
—0.3181
—0.1248
—0.1248
0.0368
0.1994
0.1994
0.3614
0.3614
0.5444
—8.2443
—6.3519
—-6.3519
—2.2088
—2.2088
0.0700
2.3481
2.3481
6.4713
6.4713
8.3508

—-0.7759
—0.5201
—-0.5201
—-0.0268
—0.0268
0.0409
0.0968
0.0968
0.5466
0.5466
0.7784
—-9.0228
—6.9887
—6.9887
—1.9843
—1.9843
0.0695
2.1182
2.1182
7.1030
7.1030
9.1271
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Table 14
Exact static solutions of the piezoelectric composite laminate (PVDF/90°/0°/90°/PVDF) under an applied potential (in SI units); in part, shown by Heyliger et al. [40].

u-101 v-1013 w-10'2 ¢ 0y - 102 oy, 102 6, - 10% Gy 10 oy, - 10 0y 10 D, -10° D, -10° D, -10°

a/h z/h ©.%) (5.0 (5.%) (5.5 0, %) (5.0 5.5 (5.%) (5.%) 0.0) . %) (5.0 (5.5
4 1/2 —0.4643 0.5861 1.2758 1.0000 0.0000 0.0000 0.0000 —25.243 —42.687 0.0615 —8.6944 —8.3346 —5.2861
2/5 —1.5054 —1.7490 0.2075 0.9592 —8.6801 —26.955 1.6395 3.2423 —27.743 —1.6435 —8.3396 —7.9934 -3.9772
2/5 —1.5054 —1.7490 0.2075 0.9592 —8.6801 —26.955 1.6395 1.7155 18.635 —1.4451 —2.0011 —2.3347 -3.9772
2/15 —0.6095 —0.7781 0.2195 0.5995 —3.9058 1.1331 5.2068 0.9346 8.4394 -0.6162 —1.2507 —1.4592 —3.2452
2/15 —-0.6095 —-0.7781 0.2195 0.5995 —3.9058 1.1331 5.2068 6.7126 1.0434 -0.6162 —1.4592 —1.2507 —3.2452
0 —0.3645 —-0.6192 0.2201 0.4431 2.1796 2.6658 5.0696 4.1162 0.8518 —0.4368 —-1.0785 —0.9244 —2.9989
-2/15 —0.2346 —-0.5106 0.2197 0.2973 6.0668 3.8691 4.2795 2.7082 0.6938 —-0.3309 —0.7235 —0.6201 —2.8241
-2/15 —0.2346 —-0.5106 0.2197 0.2973 6.0668 3.8691 4.2795 0.5158 5.5352 —-0.3309 —0.6201 —-0.7235 —2.8241
-2/5 —-0.2836 —0.4959 0.2206 0.0235 7.6575 14.925 0.8611 0.3845 5.2690 —0.3461 —-0.0490 —-0.0571 —2.6734
-2/5 —0.2836 —0.4959 0.2206 0.0235 7.6575 14.925 0.8611 —11.611 —20.106 —0.3937 —0.2042 —0.1963 —2.6734
-1/2 —0.4545 —-0.9503 —-0.3939 0.0000 0.0000 0.0000 0.0000 —8.2111 —19.118 —0.7094 0.0000 0.0000 —2.6577
10 1/2 —1.1452 —1.0928 0.9744 1.0000 0.0000 0.0000 0.0000 —13.605 —26.632 —0.4521 —3.4771 —3.3338 —3.4903
2/5 —1.6255 —2.1655 0.1934 0.9702 -3.3161 =1.7775 0.1810 —8.5482 —24.123 —0.7658 -3.3739 —3.2340 —3.2795
2/5 —1.6255 —2.1655 0.1934 0.9702 -3.3161 =7.7775 0.1810 0.7373 9.1874 —0.6733 —0.8096 —0.9445 -3.2795
2/15 —1.2542 —1.8136 0.2043 0.6475 —2.2475 —-0.2943 0.7413 0.6104 7.7069 —0.5449 —0.5403 —0.6304 -3.1572
2/15 —1.2542 —1.8136 0.2043 0.6475 —2.2475 —0.2943 0.7413 5.4151 0.7548 —0.5449 —0.6304 —0.5403 -3.1572
0 —1.1431 —1.7260 0.2091 0.4901 0.1350 0.2344 0.7859 4.9454 0.7182 —0.5096 —0.4772 —0.4090 —3.1141
-2/15 —1.0842 —1.6555 0.2135 0.3347 2.3542 0.7366 0.7130 4.6908 0.6858 —0.4866 —-0.3258 —-0.2793 —-3.0829
-2/15 —1.0842 —1.6555 0.2135 0.3347 2.3542 0.7366 0.7130 0.5384 7.0315 —0.4866 —-0.2793 —-0.3258 —3.0829
-2/5 —-1.1073 —1.6543 0.2221 0.0269 3.2011 6.9407 0.1585 0.5186 7.0081 —0.4905 —-0.0225 —-0.0262 —3.0555
-2/5 -1.1073 —1.6543 0.2221 0.0269 3.2011 6.9407 0.1585 —11.045 —22.789 —-0.5579 —-0.0937 —0.0901 —3.0555
-1/2 —1.1938 —1.8760 —0.4825 0.0000 0.0000 0.0000 0.0000 -10.359 —22.597 —-0.6201 0.0000 0.0000 -3.0527
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Fig. 4. Exact static solutions of the piezoelectric composite laminate (PVDF/90°/0°/90°/PVDF) under an applied load or electric potential, using a/h = 4: through-

thickness distributions of displacements and electric potential (in SI units).

In all Tables 9,10,11,12,13,14 alike, the exact static solutions pro-
vide a detailed through-thickness evaluation of all displacements and
stresses, together with the electric potential and all electric displace-
ments, considering two distinct side-to-thickness ratios a/h = 4, 10, thus
including both thick and moderately thick plates. This comprehen-
sive evaluation for each of the three piezoelectric composite laminates,
in both sensor and actuator configurations, ends up adding much to
the original benchmarks by Heyliger [5] as well as Heyliger et al.
[40] concerning two of these piezoelectric composite laminates. In fact,
in these original works, no graphical description is presented for any
of the two piezoelectric composite laminates. Hence, in the interest
of a more clear understanding of the static behaviour of piezoelec-
tric composite laminates, Figs. 4 and 5 demonstrate, for the laminate
(PVDF/90°/0°/90°/PVDF) as an example, the exact through-thickness
distributions of main electric and elastic field variables, considering an
applied load or electric potential, side-by-side. Actually, Figs. 4 and 5 in-
clude only one side-to-thickness ratio a/h = 4, as characteristic of thick
plates, which typically exhibit more intricate through-thickness distri-
butions.

All together, Figs. 4 and 5 provide a broad perception of
the static behaviour of a piezoelectric composite laminate, namely
(PVDEF/90°/0°/90° /PVDEF), enlightening the distinction between sensor

and actuator configurations, as it affects the corresponding through-
thickness distributions of main electric and elastic field variables. From
a modelling viewpoint, all through-thickness effects exhibited in both
configurations must be captured accurately, thus the aforementioned C?
interlaminar continuity requirements of displacements and transverse
stresses must be extended to the electric potential and transverse elec-
tric displacement. Besides, within each layer, a high-order variable de-
scription, in general, seems most suitable, especially when thick plates
are considered.

Furthermore, 3D exact free vibration solutions of each of the three
piezoelectric composite laminates are shown in Tables 15,16,17. In
essence, the free vibration solutions reveal the first twenty natural fre-
quencies, along with the associated modes of natural vibration, consider-
ing two distinct side-to-thickness ratios a/h = 4, 10, thus including again
thick and moderately thick plates. More precisely, for each natural fre-
quency, the corresponding in-plane mode (n,, n,) is reported, including
special modes for either n, = 0 or n, = 0, together with the thickness mode
number of each pair (n,, n,).

An additional remark is appropriate at this point, since in agreement
with the leading work by Heyliger and Saravanos [7] on exact free vi-
bration solutions of piezoelectric composite laminates, an equal density
of a unit value is assumed for every layer, as in p = 1 kg/m?3, as stated
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thickness distributions of stresses and electric displacements (in SI units).

Table 15

Exact free vibration solutions of the piezoelectric composite laminate (PZT-4/0°/90°/PZT-4): first twenty natural frequencies (in units of
10° rad/s) and associated modes (n,, ny)—NZ (in-plane mode and thickness mode number).

@ @3 @3 @yq @s 3 @y Wg @y @10

a/h o 1y 13 @14 15 @16 17 15 19 0

4 56.685 80.444 80.444 103.670 103.670 137.144 156.511 156.511 157.620 157.620
(1,1)-1 (0,1)-1 (1,0)-1 (1,2)-1 (2,1)-1 (2,2)-1 (1,3)-1 (3,1)-1 (0,2)-1 (2,0)-1
181.552 181.552 184.178 211.307 211.307 218.196 229.268 229.268 229.328 229.328
(2,3)-1 (3,2)-1 (1,1)-2 (1,4)-1 (4,1)-1 (3,3)-1 (0,1)-2 (1,0)-2 (0,3)-1 (3,0)-1

10 13.000 28.754 28.754 32.372 32.372 40.988 48.998 48.998 58.407 58.407
(1,1)-1 (1,2)-1 (2,1)-1 (0,1)-1 (1,0)-1 (2,2)-1 (1,3)-1 (3,1)-1 (2,3)-1 (3,2)-1
64.521 64.521 70.732 70.732 72.691 78.237 78.237 79.883 90.004 90.004
(0,2)-1 (2,0)-1 (1,4)-1 (4,1)-1 (3,3)-1 (2,4)-1 (4,2)-1 (1,1)-2 (3,4)-1 (4,3)-1

in Table 2. This is done similarly for all three piezoelectric composite
laminates, including one original benchmark shown by Heyliger and
Saravanos [7]. Even so, as most useful for future assessments, the scope
of the exact free vibration solutions provided here is not actually lim-
ited to this density value alone, so long as an equal density is kept for
every layer of the laminate. To be precise, if another density value is of
interest, as in p’, the corresponding natural frequencies w’ can be readily

determined by a multiplying factor i.e. o' = w+/p/p’, for each same case
of square plate geometry (a and h), rather in line with Eq. (62).
Examining closely Tables 15,16,17, it is evident that special modes
are, once again, a significant part of the first twenty natural modes of
vibration of each (simply supported) piezoelectric composite laminate,
particularly when thick plates are considered. In such case, among the
first twenty modes of vibration of each piezoelectric composite lami-
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Table 16
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Exact free vibration solutions of the piezoelectric composite laminate (PZT-4/0°/90°/0°/PZT-4): first twenty natural frequencies (in units of
105 rad/s) and associated modes (n,, n,)-N, (in-plane mode and thickness mode number); in part, shown by Heyliger and Saravanos [7].

@1 Wy w3 @y Ws 3 7 wg W9 @19

a/h @11 @12 13 W14 W15 W16 Y w18 W19 @

4 57.074 80.330 80.555 101.421 105.244 136.604 152.192 156.766 158.412 159.576
(1,1)-1 (1,0)-1 (0,1)-1 (1,2)-1 (2,1)-1 (2,2)-1 (1,3)-1 (2,0)-1 (0,2)-1 (3,1)-1
178.693 183.055 191.301 204.883 217.262 217.402 226.148 226.874 228.490 231.486
(2,3)-1 (3,2)-1 (1,1)-2 (1,4)-1 (4,1)-1 (3,3)-1 (2,4)-1 (3,0)-1 (0,1)-2 (1,0)-2

10 13.526 27.822 30.949 32.365 32.380 41.578 47.104 51.608 57.615 59.845
(1,1)-1 (1,2)-1 (2,1)-1 (1,0)-1 (0,1)-1 (2,2)-1 (1,3)-1 (3,1)-1 (2,3)-1 (3,2)-1
64.462 64.579 68.181 72.843 73.217 76.453 78.109 79.959 89.049 89.801
(2,0)-1 (0,2)-1 (1,4)-1 (3,3)-1 (4,1)-1 (2,4)-1 (1,1)-2 (4,2)-1 (3,4)-1 (1,5)-1

Table 17

Exact free vibration solutions of the piezoelectric composite laminate (PVDF/90°/0°/90°/PVDF): first twenty natural frequencies (in units
of 10° rad/s) and associated modes (n,, ny)—Nz (in-plane mode and thickness mode number).

@y @3 @3 @y @s We w7 @g @9 @10

a/h @11 @12 @13 @14 @15 @16 @17 W18 @19 @20

4 52.241 59.859 59.859 93.081 98.627 119.712 119.713 125.243 141.135 148.353
(1,1)-1 (0,1)-1 (1,0)-1 (1,2)-1 (2,1)-1 (0,2)-1 (2,0)-1 (2,2)-1 (1,3)-1 (3,1)-1
164.142 167.209 179.552 179.555 191.439 197.933 198.717 208.960 213.130 215.013
(2,3)-1 (3,2)-1 (0,3)-1 (3,0)-1 (1,4)-1 (3,3)-1 (4,1)-1 (2,4)-1 (4,2)-1 (1,0)-2

10 12.113 23.944 23.944 26.010 29.515 37.899 44.470 47.888 47.888 50.294
(1,1)-1 (0,1)-1 (1,0)-1 (1,2)-1 (2,1)-1 (2,2)-1 (1,3)-1 (0,2)-1 (2,0)-1 (3,1)-1
52.604 55.832 64.093 66.815 70.165 71.397 71.831 71.831 75.507 81.438
(2,3)-1 (3,2)-1 (1,4)-1 (3,3)-1 (2,4)-1 (4,1)-1 (0,3)-1 (3,0)-1 (4,2)-1 (3,4)-1

nate, about seven or eight modes correspond to special modes. In detail,
for thick plates most notably, the second and third lowest natural fre-
quencies typically correspond to special modes, namely either the pair
(0,1) or (1,0), as demonstrated in all Tables 15-17. Thus, special modes
of (simply supported) piezoelectric composite laminates clearly cannot
be overlooked, though naturally, the relevance of special modes tends
to subside somewhat as the plate becomes less thick. Along with this,
Tables 15-17 also indicate that for thick plates, in particular, at least up
to the second thickness mode can appear among the first twenty modes
of vibration of each piezoelectric composite laminate. Specifically, for
each thick laminate considered, about one up to three modes of vibra-
tion among the first twenty modes correspond to a second thickness
mode. Actually, comparing the free vibration behaviour of two analo-
gous piezoelectric composite laminates as shown in Tables 16 and 17,
suggests that laminates involving PZT-4 (as opposed to PVDF) are appar-
ently more susceptible to the occurrence of a second (or higher) thickness
mode among the lower natural frequencies. This laminate free vibration
behaviour is therefore further characterized in Fig. 6, in line with the
aforementioned Table 16.

As intended, Fig. 6 provides some more insight into a few modes of
natural vibration, namely, the first few through-thickness mode shapes
of each in-plane mode (n,, n,). More precisely, it displays for the in-
plane mode (1,1), the first four thickness modes of the transverse dis-
placement w, and similarly for the in-plane mode (2,1), the first two
thickness modes. As already seen before, Fig. 6 also reveals that, for each
in-plane mode as (1,1) or (2,1), the natural modes of vibration from
the second thickness mode onwards, rather expose the transverse normal
compressibility of the laminate. Further to this, the thickness modes of the
transverse displacement w, apparently can be divided into either sym-
metric or antisymmetric modes with respect to the plate mid-surface,
while exhibiting such transverse normal compressibility, as clearly man-
ifested by the first four thickness modes of the in-plane mode (1,1). Other
than that, Fig. 6 also displays for the special mode (0,1), the first two
thickness modes of the in-plane displacement u. Thus, it demonstrates
that, for each special mode as (0,1) or (1,0), the natural modes of vi-
bration from the second thickness mode onwards, expose also the effect
of transverse shear of the laminate. Ultimately, the importance of thick-

ness modes, from the second onwards, among the first twenty, or more,
modes of vibration of any piezoelectric composite laminate seems to be
most influenced by the degree of sensitivity to the effects of transverse
shear and normal compressibility of the plate, which are naturally much
more pronounced when thick plates are considered.

5. Conclusions

As cutting-edge structural design technology unfolds, pushing for-
ward the capabilities of multilayered piezoelectric and/or composite
plates, 3D exact solutions continue to be a cornerstone in the accu-
racy assessment of the most advanced theories and finite element mod-
els, relying much on benchmarking. This work on 3D exact electro-
elastic static and free vibration solutions of multilayered plates provides
a comprehensive evaluation of well-known benchmarks for piezoelec-
tric and/or composite laminates as well as soft core sandwich plates,
adding much to thus far available in the literature. The exact solution
method for simply supported multilayered plates is fully described in
line with earlier leading works, compiled in a single study in a consis-
tent form throughout. It considers extension mode piezoelectric layers
and/or purely elastic layers, such as composite layers, including all par-
ticularities arising from an orthotropic, transversely isotropic or simply
isotropic layer. Furthermore, within the free vibration solution, not only
thickness modes are addressed for each in-plane mode (n,, ny), but also
the so-called special modes for either n, = 0 or n, = 0 are here purposely
highlighted, though often overlooked.

The benchmarks for each multilayered plate cover both static and
free vibration solutions, divided into purely elastic solutions, as in com-
posite laminates and soft core sandwich plates, or else, electro-elastic so-
lutions, namely piezoelectric composite laminates, considering not only
but especially thick plates. For each multilayered plate, the static so-
lution considers either a bi-sinusoidal applied load or a bi-sinusoidal
applied electric potential, providing a detailed through-thickness eval-
uation of displacements and stresses, and when present, the electric po-
tential and electric displacements. In fact, through-thickness distribu-
tions are also demonstrated to further characterize the static behaviour
of a soft core sandwich plate as well as a piezoelectric composite lam-
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Fig. 6. Exact free vibration solutions of the piezoelectric composite laminate (PZT-4/0°/90°/0°/PZT-4), using a/h = 4: a few natural frequencies (in units of 10°
rad/s) and associated modes, characterizing the first few through-thickness modes of each in-plane mode.

inate, enlightening the distinction between sensor and actuator config-
urations. The respective free vibration solution reveals the first twenty
natural frequencies and associated modes, including all together spe-
cial modes and thickness modes. Most especially, for (simply supported)
thick plates, among the first twenty modes of vibration, typically around
35% is associated with special modes and around 15% corresponds to a
second thickness mode. Actually, the second and third lowest natural fre-
quencies are often associated with special modes, namely (0,1) and (1,0),
thus clearly cannot be disregarded. In addition, a few through-thickness
modes are also displayed to further characterize the free vibration be-
haviour of a soft core sandwich plate as well as a piezoelectric composite
laminate. In the end, the significance of thickness modes, from the second
onwards, seems to be most influenced by the degree of sensitivity to the
effects of transverse shear and normal compressibility of the plate. This

gives reason to the relevance of thickness modes when thick plates are
considered, and most especially sandwich plates exhibiting high core
compressibility.
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