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a b s t r a c t 

This work provides a study on three-dimensional exact electro-elastic static and free vibration solutions of mul- 

tilayered plates, focused on a comprehensive evaluation of well-known benchmarks for piezoelectric and/or 

composite laminates as well as soft core sandwich plates, adding much to thus far available in the literature. 

The exact solution method for simply supported multilayered plates is fully described in line with earlier leading 

works, compiled in a single study in a consistent form throughout. The layers involved can be either piezoelectric 

layers poled through-thickness (i.e. extension mode ) or purely elastic layers, including composite layers. For each 

layer, the form of the through-thickness exact solution depends strongly on its material properties, thus each case 

arising from an orthotropic, transversely isotropic or simply isotropic layer is considered specifically. Within the 

free vibration solution, in agreement with an in-plane mode ( n x , n y ), the so-called special modes for either 𝑛 𝑥 = 0 
or 𝑛 𝑦 = 0 , though often overlooked, are purposely addressed, along with thickness modes for each pair ( n x , n y ). 

The benchmarks cover purely elastic solutions, as in composite laminates and soft core sandwich plates, as well 

as electro-elastic solutions, namely piezoelectric composite laminates, involving not only but especially thick 

plates. For each multilayered plate, the static solution considers either an applied load or an applied electric 

potential, providing a detailed through-thickness evaluation of displacements and stresses, and when present, 

the electric potential and electric displacements. The respective free vibration solution reveals the first twenty 

natural frequencies and associated modes, including all together special modes and thickness modes . 
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. Introduction 

The advances of composite materials science alongside the ever-

rowing piezoelectric technology continues to drive forward structural

esign in a wide range of engineering applications. Over the years, in

ight of the increasing challenges posed to multilayered piezoelectric

omposite structures, three-dimensional (3D) exact solutions became

aramount to assess the accuracy of various laminated plate and shell

heories, along with related finite element models. 

Early on, as composite laminates and sandwich plates started to raise

nterest, pioneer works on 3D exact elasticity solutions brought forth an

mmense knowledge on static and free vibration, all together, namely by

agano [1] , Pagano and Hatfield [2] , Jones [3] as well as Srinivas and

ao [4] , most notably. Later on, further advances on 3D exact solutions

ame to light to address additional effects, including electroelasticity

nd thermoelasticity. In line with the progress in smart structures tech-
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ology, in which piezoelectric sensors and actuators continue to be most

ften favoured, 3D exact electroelasticity solutions provided far more

nsight into the behaviour of piezoelectric composite laminates. Specifi-

ally, the leading works on 3D exact static and free vibration solutions,

rst by Heyliger [5,6] and also Heyliger and Saravanos [7] , consider-

ng embedded extension mode piezoelectric layers, followed by Vel and

atra [8] as well as Baillargeon and Vel [9] , considering shear mode

iezoelectric layers instead. Actually, in the scope of 3D exact free vi-

ration solutions, the outstanding work by Batra and Aimmanee [10] is

articularly noteworthy. It highlights that previous 3D exact solutions

verlooked some in-plane modes of vibration ( n x , n y ), for either 𝑛 𝑥 = 0
r 𝑛 𝑦 = 0 , addressing both composite laminates and piezoelectric plates,

hough only exploring extension mode piezoelectric layers. Soon after,

eü and Benjeddou [11] also examined such modes for either 𝑛 𝑥 = 0 or

 𝑦 = 0 , named as special modes , in another remarkable work, in which

hear mode piezoelectric layers are considered expressly. Beyond that,
ares@tecnico.ulisboa.pt (C.M. Mota Soares), erasmo.carrera@polito.it (E. Car- 
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Fig. 1. Multilayered plate: geometry and coordinate system. 
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ecognizing the critical effects of high temperature environments, 3D ex-

ct thermoelasticity solutions also emerged, including the primary work

y Tungikar and Rao [12] , shortly followed by further developments by

u et al. [13,14] on 3D thermoelectroelasticity solutions. More recently,

he usefulness of 3D exact electroelasticity solutions, as developed all to-

ether in the original works by Heyliger and Saravanos [5–7] , gave rise

o additional benchmarks for both static and free vibration, as pursued

ikewise by Moleiro et al. [15,16] . Furthermore, in line with cutting-

dge structural design technology, the increasing attention to the effects

f hygrothermal environments led to a quite novel work on 3D exact hy-

rothermal elasticity solutions, also by Moleiro et al. [17] , addressing

omposite laminates, fibre metal laminates as well as sandwich plates. 

Over time, comprehensive reviews on theories and computational

odels for multilayered composite plates and shells became available,

elying much on established 3D exact solutions. Starting from the 1990s,

ith major reviews by Noor and Burton [18,19] , Mallikarjuna and Kant

20] , Reddy and Robbins [21] as well as Noor et al. [22] , and by the

urn of the century, leading to thorough reviews by Carrera [23–25] and

he renowned book by Reddy [26] . Other than that, in light of the

tate-of-the-art of smart structures, further reviews on the modelling of

iezoelectric composite laminates, in particular, also appeared around

he same time. Specifically, the excellent reviews by Tang et al. [27] ,

aravanos and Heyliger [28] , Gopinathan et al. [29] , Benjeddou [30] ,

rindade and Benjeddou [31] and also Chopra [32] , among others. In

ore recent times, as new developments arise through more refined the-

ries and improved models, many more crucial assessments continue to

ome to light. Most noteworthy, the impressive book by Carrera et al.

33] in addition to some of the latest reviews by Liew et al. [34] , Zhang

t al. [35] and Li [36] . 

As demonstrated by the aforementioned reviews, benchmarks based

n 3D exact solutions play a fundamental role in the assessment of

ny proposed model. In fact, some selected works in which established

enchmarks for multilayered piezoelectric and/or composite plates are

ttentively reported may also be worth mentioning. Namely, on purely

lastic modelling by Carrera and Demasi [37] as well as Moleiro et al.

38,39] , on electro-elastic modelling by Heyliger et al. [40] , Carrera

t al. [41] and Moleiro et al. [42,43] , and quite recently, on hygro-

hermo-elastic modelling by Moleiro et al. [44] . 

This work provides a rather useful study on 3D exact electro-elastic

tatic and free vibration solutions of multilayered plates, focused on a

omprehensive evaluation of well-known benchmarks for piezoelectric

nd/or composite laminates as well as soft core sandwich plates, adding

uch to thus far available in the literature. Although not intended as a

eview, the exact solution method for simply supported multilayered

lates is fully described in line with earlier leading works, compiled in a

ingle study in a consistent form throughout. It considers extension mode

iezoelectric layers and/or purely elastic layers, such as composite lay-

rs, including all particularities arising from an orthotropic, transversely

sotropic or simply isotropic layer. The benchmarks for each multilay-

red plate cover both static and free vibration solutions. Most notewor-

hy, the static solution provides a detailed through-thickness evaluation

f displacements and stresses, and when present, the electric potential

nd electric displacements, whereas the free vibration solution reveals

he first twenty natural frequencies and associated modes, including all

ogether special modes and thickness modes . 

. Electro-elastic problem governing equations 

Consider, in general, the multilayered plate made of N layers, with a

ectangular planar geometry a × b and a total thickness h , as represented

n Fig. 1 . In light of the 3D exact solution here described, the layers

nvolved can be either piezoelectric layers poled through-thickness (i.e.

xtension mode ) or purely elastic layers, including unidirectional fibre

einforced composite layers. In any case, the materials of the different

ayers can be orthotropic, transversely isotropic or simply isotropic, so

ong as the multilayered plate, as a whole, is kept orthotropic (at most).
 a  
ence, the orientation of orthotropic layers relative to the multilayered

late x -axis is limited to 0 ∘ and 90 ∘ alone. 

In agreement with linear electroelasticity and assuming the absence

f both electric body charges and body forces, the coupled governing

quations for each layer of the multilayered plate are, all together, the

ollowing: 

quations of motion and charge equation of electrostatics 

𝜕𝜎𝑖𝑗 

𝜕𝑥 𝑗 
= 𝜌�̈� 𝑖 , 

𝜕𝐷 𝑖 

𝜕𝑥 𝑖 
= 0 (1)

lectro-elastic constitutive equations 

𝜎ij = 𝐶 ijkl 𝜀 kl − 𝑒 ijk 𝐸 𝑘 

 𝑖 = 𝑒 ikl 𝜀 kl + 𝜖ik 𝐸 𝑘 (2) 

train-displacement and electric field-potential equations 

 𝑘𝑙 = 

1 
2 

( 
𝜕𝑢 𝑘 

𝜕𝑥 𝑙 
+ 

𝜕𝑢 𝑙 

𝜕𝑥 𝑘 

) 
, 𝐸 𝑘 = − 

𝜕𝜙

𝜕𝑥 𝑘 
(3)

To be precise, the electric and elastic field variables in Eqs. (1) –(3)

or each layer, along with its material coefficients are also described

including the respective SI units): 

𝑢 𝑖 displacement vector components [m]; 

𝜙 electric (scalar) potential [V]; 

𝜎𝑖𝑗 stress tensor components [Pa]; 

𝐷 𝑖 electric displacement vector components [C/m 

2 ]; 

𝜀 𝑖𝑗 strain tensor components [dimensionless]; 

𝐸 𝑖 electric field vector components [V/m]; 

𝐶 𝑖𝑗𝑘𝑙 elastic stiffness tensor coefficients [Pa]; 

𝑒 𝑖𝑗𝑘 piezoelectric tensor coefficients [C/m 

2 ]; 

𝜖𝑖𝑗 dielectric tensor coefficients [F/m]. 

Most often, the layer material coefficients are used in line with the

ontracted notation, such that the layer electro-elastic constitute equa-

ions are then expressed as shown: 

𝜎𝑖 = 𝐶 𝑖𝑗 𝜀 𝑗 − 𝑒 𝑖𝑘 𝐸 𝑘 

 𝑘 = 𝑒 𝑘𝑗 𝜀 𝑗 + 𝜖𝑘𝑙 𝐸 𝑙 (4) 

here 𝑖, 𝑗 = 1 , … , 6 and 𝑘, 𝑙 = 1 , 2 , 3 . As a result, notice that 𝜀 𝑗 = 𝜀 𝑘𝑙 for

 = 𝑙 and 𝑗 = 1 , 2 , 3 , otherwise 𝜀 𝑗 = 2 𝜀 𝑘𝑙 for k ≠ l and 𝑗 = 4 , 5 , 6 . 
Furthermore, in general, in view of an orthotropic layer with an ori-

ntation of either 0 ∘ or 90 ∘, it is implied in the layer constitutive equa-

ions a prior in-plane rotation between the layer material coordinate sys-

em and the multilayered plate coordinate system (as necessary for the

atter). See Reddy [26] for further details. Therefore, to denote clearly

he layer rotated material coefficients, an overbar is used henceforth,

s standard. Along with this, considering, in general, an extension mode
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p  
iezoelectric layer, the possible nonzero rotated material coefficients

re the following: �̄� 11 , �̄� 12 , �̄� 13 , �̄� 22 , �̄� 23 , �̄� 33 , �̄� 44 , �̄� 55 and �̄� 66 elastic

tiffness coefficients; 𝑒 31 , 𝑒 32 , 𝑒 33 , 𝑒 24 and 𝑒 15 piezoelectric coefficients;

̄11 , 𝜖22 and 𝜖33 dielectric coefficients (at most). 

In short, substituting Eqs. (3) and (4) properly into Eq. (1) leads

o four coupled governing equations for each layer of the multilayered

late, written only in terms of the displacements, u, v and w , and the

lectric potential 𝜙, as follows: 

�̄� 11 𝑢 , xx + �̄� 12 𝑣 , xy + �̄� 13 𝑤 , xz + 𝑒 31 𝜙, xz + �̄� 66 
(
𝑢 , yy + 𝑣 , xy 

)
+ �̄� 55 

(
𝑢 , zz + 𝑤 , xz 

)
+ 𝑒 15 𝜙, yz = 𝜌�̈� (5) 

�̄� 66 
(
𝑢 , xy + 𝑣 , xx 

)
+ �̄� 12 𝑢 , xy + �̄� 22 𝑣 , yy + �̄� 23 𝑤 , yz + 𝑒 32 𝜙, yz 

+ �̄� 44 
(
𝑣 , zz + 𝑤 , yz 

)
+ 𝑒 24 𝜙, yz = 𝜌�̈� (6) 

�̄� 55 
(
𝑢 , xz + 𝑤 , xx 

)
+ 𝑒 15 𝜙, xx + �̄� 44 

(
𝑣 , yz + 𝑤 , yy 

)
+ 𝑒 24 𝜙, yy 

+ �̄� 13 𝑢 , xz + �̄� 23 𝑣 , yz + �̄� 33 𝑤 , zz + 𝑒 33 𝜙, zz = 𝜌�̈� (7) 

𝑒 15 
(
𝑢 , xz + 𝑤 , xx 

)
− 𝜖11 𝜙, xx + 𝑒 24 

(
𝑣 , yz + 𝑤 , yy 

)
− 𝜖22 𝜙, yy 

+ ̄𝑒 31 𝑢 , xz + 𝑒 32 𝑣 , yz + 𝑒 33 𝑤 , zz − 𝜖33 𝜙, zz = 0 (8) 

here, for conciseness, the comma is used to denote a partial deriva-

ive with respect to the adjacent spacial coordinates. Naturally, for the

tatic solution all the time derivative terms are null, whereas for the free

ibration solution a periodic response is assumed. 

In fact, the 3D exact static and free vibration solution, as described

ere, is limited to simply supported multilayered plates with the follow-

ng edge conditions: 

t 𝑥 = 0 , 𝑎 ∶ 𝑣 = 𝑤 = 𝜙 = 𝜎𝑥𝑥 = 0 

At 𝑦 = 0 , 𝑏 ∶ 𝑢 = 𝑤 = 𝜙 = 𝜎𝑦𝑦 = 0 (9) 

In addition, the boundary conditions on the multilayered plate top

nd bottom surfaces require the specification of one variable from each

f the pairs: ( u, 𝜎xz ), ( v, 𝜎yz ), ( w, 𝜎zz ) and ( 𝜙, D z ); thus, in total, 8 bound-

ry conditions for the top and bottom surfaces combined. Furthermore,

he interfaces between adjacent layers are also assumed to be perfectly

onded together. Therefore, interlaminar continuity conditions must be

nforced for each pair of adjacent layers with respect to all the following

ariables: u, v, w, 𝜙, 𝜎xz , 𝜎yz , 𝜎zz and D z ; thus, for the entire multilayered

late made of N layers, in total, 8( 𝑁 − 1) interlaminar continuity condi-

ions. In the end, considering all the aforementioned conditions brings

orth 8 N equations relating the electric and elastic field variables of all

ayers of the plate. 

. Exact static and free vibration solution method 

In view of the rectangular simply supported multilayered plate, the

eneral form of the 3D exact solution assumed for each layer displace-

ents, u, v and w , and electric potential 𝜙, such that it satisfies a priori

he edge conditions stated in Eq. (9) , is thus, as follows: 

𝑢 = �̄� ( 𝑧 ) exp ( 𝑖𝜔𝑡 ) cos ( 𝑝𝑥 ) sin ( 𝑞𝑦 ) , �̄� ( 𝑧 ) = �̄� exp ( 𝑠𝑧 ) 

𝑣 = �̄� ( 𝑧 ) exp ( 𝑖𝜔𝑡 ) sin ( 𝑝𝑥 ) cos ( 𝑞𝑦 ) , �̄� ( 𝑧 ) = 𝑉 exp ( 𝑠𝑧 ) 

 = �̄� ( 𝑧 ) exp ( 𝑖𝜔𝑡 ) sin ( 𝑝𝑥 ) sin ( 𝑞𝑦 ) , �̄� ( 𝑧 ) = �̄� exp ( 𝑠𝑧 ) 

𝜙 = �̄�( 𝑧 ) exp ( 𝑖𝜔𝑡 ) sin ( 𝑝𝑥 ) sin ( 𝑞𝑦 ) , �̄�( 𝑧 ) = Φ̄ exp ( 𝑠𝑧 ) (10) 

here 𝑝 = 𝑛 𝑥 𝜋∕ 𝑎 and 𝑞 = 𝑛 𝑦 𝜋∕ 𝑏 . More precisely, the constants �̄� , 𝑉 , �̄� 

nd Φ̄ as well as the parameter s are to be determined by the solution of

he coupled governing equations for each layer, given by Eqs. (5) –(8) , to-

ether with the aforementioned boundary and interlaminar conditions.

n line with the free vibration solution, 𝜔 denotes the frequency of nat-

ral vibration associated with the in-plane mode ( n x , n y ). In fact, for
ach pair ( n x , n y ), it exists infinite through-thickness modes, commonly

nown as thickness modes , which are also addressed herein. Moreover,

he so-called special modes for either 𝑛 𝑥 = 0 or 𝑛 𝑦 = 0 , though quite often

verlooked by exact or analytical solutions, are purposely included as

ell. 

Accordingly, substituting the assumed form of the layer 3D exact

olution, as stated in Eq. (10) , into its four coupled electro-elastic gov-

rning equations, given by Eqs. (5) –(8) , leads to the following system of

quations, for each layer: 

 

 

 

 

 

𝐴 11 − �̄� 55 𝑠 
2 𝐴 12 𝐴 13 𝑠 𝐴 14 𝑠 

𝐴 12 𝐴 22 − �̄� 44 𝑠 
2 𝐴 23 𝑠 𝐴 24 𝑠 

− 𝐴 13 𝑠 − 𝐴 23 𝑠 𝐴 33 − �̄� 33 𝑠 
2 𝐴 34 − ̄𝑒 33 𝑠 

2 

− 𝐴 14 𝑠 − 𝐴 24 𝑠 𝐴 34 − ̄𝑒 33 𝑠 
2 𝐴 44 + ̄𝜖33 𝑠 

2 

⎤ ⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
�̄� 

𝑉 

�̄� 

Φ̄

⎫ ⎪ ⎬ ⎪ ⎭ 
= 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 
0 
0 
0 

⎫ ⎪ ⎬ ⎪ ⎭ 
(11) 

here 

 11 = �̄� 11 𝑝 
2 + �̄� 66 𝑞 

2 − 𝜌𝜔 

2 𝐴 12 = 

(
�̄� 12 + �̄� 66 

)
𝑝 𝑞 

 22 = �̄� 66 𝑝 
2 + �̄� 22 𝑞 

2 − 𝜌𝜔 

2 , 𝐴 13 = − 

(
�̄� 13 + �̄� 55 

)
𝑝 

 33 = �̄� 55 𝑝 
2 + �̄� 44 𝑞 

2 − 𝜌𝜔 

2 , 𝐴 23 = − 

(
�̄� 23 + �̄� 44 

)
𝑞 

 34 = 𝑒 15 𝑝 
2 + 𝑒 24 𝑞 

2 , 𝐴 14 = − 

(
𝑒 31 + 𝑒 15 

)
𝑝 

 44 = − ̄𝜖11 𝑝 
2 − 𝜖22 𝑞 

2 , 𝐴 24 = − 

(
𝑒 32 + 𝑒 24 

)
𝑞 

(12) 

Furthermore, for the static solution, all the terms involving the fre-

uency 𝜔 , as in (− 𝜌𝜔 2 ) , are evidently disregarded, which may be con-

idered simply as a particular case. 

Therefore, for each layer, a non-trivial solution of the system in

q. (11) requires a zero determinant. The resulting characteristic equa-

ion is an eighth-order polynomial involving only even powers of s ,

hich can be rewritten as a fourth-order polynomial in terms of r , with

 = 𝑠 2 . The form of the through-thickness exact solution, for each layer,

epends strongly on these 4 roots for r , as in 8 roots for s , which are

ssociated with 8 (independent) unknown constants. Hence, for the en-

ire multilayered plate made of N layers, in total, 8 N unknown constants

re to be determined by enforcing the aforementioned 8 N boundary and

nterlaminar conditions. Most importantly, the roots for each layer are

 function of its material properties and geometry, in addition to the

requency 𝜔 for the free vibration solution, which is then based on an

terative scheme, as described hereafter. 

In any case, once the form of the through-thickness exact solution

s properly defined for each layer displacements, u, v and w , and elec-

ric potential 𝜙, in terms of its 8 roots for s and 8 unknown constants,

n line with assumed form in Eq. (10) , the corresponding exact solu-

ion form for each layer stresses and electric displacements are also set,

ccording to the layer electro-elastic constitutive equations, along with

he strain-displacement and electric field-potential equations, given by

qs. (3) and (4) , as shown: 

𝜎xz , 𝐷 𝑥 

)
= 

(
�̄�xz ( 𝑧 ) , �̄� 𝑥 ( 𝑧 ) 

)
exp ( 𝑖𝜔𝑡 ) cos ( px ) sin ( qy ) 

𝜎yz , 𝐷 𝑦 

)
= 

(
�̄�yz ( 𝑧 ) , �̄� 𝑦 ( 𝑧 ) 

)
exp ( 𝑖𝜔𝑡 ) sin ( px ) cos ( qy ) 

𝜎ii , 𝐷 𝑧 

)
= 

(
�̄�ii ( 𝑧 ) , �̄� 𝑧 ( 𝑧 ) 

)
exp ( 𝑖𝜔𝑡 ) sin ( px ) sin ( qy ) 

xy = �̄�xy ( 𝑧 ) exp ( 𝑖𝜔𝑡 ) cos ( px ) cos ( qy ) 

(13) 

here 𝑖 = 1 , 2 , 3 is used for the layer normal stresses, 𝜎xx , 𝜎yy and 𝜎zz ,

nd such that: 

̄xz ( 𝑧 ) = �̄� 55 
(
�̄� ′( 𝑧 ) + 𝑝 �̄� ( 𝑧 ) 

)
+ 𝑒 15 𝑝 �̄�( 𝑧 ) 

̄yz ( 𝑧 ) = �̄� 44 
(
�̄� ′( 𝑧 ) + 𝑞 �̄� ( 𝑧 ) 

)
+ 𝑒 24 𝑞 �̄�( 𝑧 ) 

̄xy ( 𝑧 ) = �̄� 66 ( 𝑞 ̄𝑢 ( 𝑧 ) + 𝑝 ̄𝑣 ( 𝑧 ) ) 
̄ ii ( 𝑧 ) = − 𝑝 �̄� 1 𝑖 ̄𝑢 ( 𝑧 ) − 𝑞 �̄� 2 𝑖 �̄� ( 𝑧 ) + �̄� 3 𝑖 �̄� 

′( 𝑧 ) + 𝑒 3 𝑖 �̄�
′( 𝑧 ) 

(14) 

̄
 𝑥 ( 𝑧 ) = 𝑒 15 

(
�̄� ′( 𝑧 ) + 𝑝 �̄� ( 𝑧 ) 

)
− 𝜖11 𝑝 �̄�( 𝑧 ) 

̄
 𝑦 ( 𝑧 ) = 𝑒 24 

(
�̄� ′( 𝑧 ) + 𝑞 �̄� ( 𝑧 ) 

)
− 𝜖22 𝑞 �̄�( 𝑧 ) 

̄
 𝑧 ( 𝑧 ) = − 𝑝 ̄𝑒 31 ̄𝑢 ( 𝑧 ) − 𝑞 �̄� 32 �̄� ( 𝑧 ) + 𝑒 33 �̄� 

′( 𝑧 ) − 𝜖33 �̄�
′( 𝑧 ) 

(15) 

Actually, for the static solution in particular, the terms involving

he frequency 𝜔 , as in exp ( i 𝜔 t ), appearing in the general form of

qs. (10) and (13) are naturally omitted. 

From this point on, in view of the simply supported multilayered

late made of N layers, the procedure for the static solution or the free
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ibration solution is somewhat distinct. To begin with, the static solu-

ion is rather straightforward. For each layer, the form of the through-

hickness exact solution is defined in terms of its 8 roots for s and 8

nknown constants, depending only on the layer material properties

nd geometry. Subsequently, the aforementioned 8 N boundary and in-

erlaminar conditions are enforced, all together, to determine the 8 N

nknown constants for each layer. The most common boundary condi-

ions consider either an applied load �̂�𝑧𝑧 or an applied electric potential
̂ on the multilayered plate top and/or bottom surfaces, with zero trans-

erse shear stresses. To this end, the nonzero boundary conditions on the

late top and/or bottom surfaces are conveniently expressed in the form

f double Fourier series, as follows: 

̂zz ( 𝑥, 𝑦 ) = 𝜎0 sin ( px ) sin ( qy ) 
̂( 𝑥, 𝑦 ) = 𝜙0 sin ( px ) sin ( qy ) 

(16)

Other than that, the free vibration solution is based on an iterative

cheme, since the form of the through-thickness exact solution for each

ayer, namely its 8 roots for s , though still depending much on the layer

aterial properties and geometry, are also a function of the frequency 𝜔

ssociated with the in-plane mode ( n x , n y ). Furthermore, the boundary

onditions within the free vibration solution are all enforced as zero,

ncluding 𝜎0 = 0 and 𝜙0 = 0 . Hence, a non-trivial solution of the total

ystem of 8 N boundary and interlaminar conditions requires a zero de-

erminant. In such case, the relationships among the electric and elastic

eld variables of all layers can be established, setting out the plate mode

hapes in line with the pair ( n x , n y ) and the frequency 𝜔 . 

In short, the iterative scheme relies on the evaluation of the determi-

ant of the total system of 8 N equations, using an estimated frequency

n each iteration, in order to pursue a frequency of natural vibration

eading to a zero determinant. The procedure is started with an esti-

ated frequency somewhat lower than expected, which is then grad-

ally increased in each iteration. In fact, the determinant is computed

hrough the product of all eigenvalues of the total system matrix, to over-

ome numerical issues as the matrix becomes singular, as suggested by

eyliger and Saravanos [7] . More precisely, the iterative scheme keeps

rack of the determinant of the total system matrix and its lowest (abso-

ute) eigenvalue to find a sign-change of the determinant together with

 sign-change of the nearest zero eigenvalue. As a result, the estimated

requencies leading to the sign-changes can then be used as a bounding

nterval to refine the true value of the frequency of interest by a standard

earch method. 

Most notably, for each pair ( n x , n y ), including special modes for ei-

her 𝑛 𝑥 = 0 or 𝑛 𝑦 = 0 , it exists an infinite number of increasingly higher

requencies leading to a zero determinant, each associated with differ-

nt thickness modes . Therefore, once one frequency is determined, the

rocedure can be restarted from then onwards, in order to pursue the

ext higher frequency leading to a zero determinant, corresponding to

he next thickness mode . 

Ultimately, at the core of both static and free vibration solution lies

he form of the through-thickness exact solution for each layer, derived

rom a non-trivial solution of the system in Eq. (11) . In fact, two dis-

inct cases arise immediately: ( i ) piezoelectric layers with a fully coupled

lectro-elastic solution; and ( ii ) purely elastic layers , for which 𝑒 𝑖𝑗 = 0 ,
ith an uncoupled electric and elastic solution. Apart from that, one

xceptional case is also envisioned, namely: ( iii ) special modes for either

 𝑥 = 0 or 𝑛 𝑦 = 0 , emerging within the free vibration solution only. These

hree cases are addressed separately henceforth. 

.1. Piezoelectric layers: Orthotropic or transversely isotropic cases 

For piezoelectric layers with a fully coupled electro-elastic solution,

he characteristic equation of the system in Eq. (11) comes out, in its

eneral form, as follows: 

 

4 + 𝑐 𝑟 3 + 𝑐 𝑟 2 + 𝑐 𝑟 + 𝑐 = 0 , with 𝑟 = 𝑠 2 (17)
1 2 3 4 
here the coefficients c i can be derived from the system in Eq. (11) by

traightforward algebraic manipulation, although also presented, in

ome sense, by Heyliger and Saravanos [7] . 

For both static and free vibration solution, as it stands for piezoelec-

ric layers, the nature of the 4 roots for r (with 𝑟 = 𝑠 2 ) fall into one of

wo cases, depending mostly on the layer material properties: 

• 4 real distinct roots . Typically the case of piezoelectric layers of or-

thotropic material; 
• 2 real distinct roots + 2 complex roots as a conjugate pair . Typically

the case of piezoelectric layers of transversely isotropic material. 

In fact, the form of the through-thickness exact solution for each

iezoelectric layer is defined based on the contribution of each root for

 together with an associated unknown constant, usually of �̄� ( 𝑧 ) , such

hat �̄� ( 𝑧 ) , �̄� ( 𝑧 ) and �̄�( 𝑧 ) , are then set by making use of the remaining

ystem of equations, as follows: 

 

 

 

 

𝐴 22 − �̄� 44 𝑠 
2 𝐴 23 𝑠 𝐴 24 𝑠 

− 𝐴 23 𝑠 𝐴 33 − �̄� 33 𝑠 
2 𝐴 34 − ̄𝑒 33 𝑠 

2 

− 𝐴 24 𝑠 𝐴 34 − ̄𝑒 33 𝑠 
2 𝐴 44 + ̄𝜖33 𝑠 

2 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝑉 

�̄� 

Φ̄

⎫ ⎪ ⎬ ⎪ ⎭ 
= �̄� 

⎧ ⎪ ⎨ ⎪ ⎩ 
− 𝐴 12 
𝐴 13 𝑠 

𝐴 14 𝑠 

⎫ ⎪ ⎬ ⎪ ⎭ 
(18)

Accordingly, for a piezoelectric layer with n real distinct roots for

 (with 𝑟 = 𝑠 2 ), the roots for s appear as n distinct pairs (positive and

egative), which are either real (if r > 0) or imaginary (if r < 0). Hence,

ollowing the approach of Heyliger and Savaranos [7] , the form of the

hrough-thickness exact solution for such piezoelectric layer, can be ex-

ressed (partially, at least), as shown: 

̄ ( 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝑈 𝑗 ( 𝑧 ) , �̄� ( 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝑀 𝑗 𝑊 𝑗 ( 𝑧 ) 

̄ ( 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝐿 𝑗 𝑈 𝑗 ( 𝑧 ) , �̄�( 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝑁 𝑗 𝑊 𝑗 ( 𝑧 ) 
(19) 

here 

 𝑗 ( 𝑧 ) = 𝐹 𝑗 𝐶 𝑗 ( 𝑧 ) + 𝐺 𝑗 𝑆 𝑗 ( 𝑧 ) 
 𝑗 ( 𝑧 ) = 𝐺 𝑗 𝐶 𝑗 ( 𝑧 ) + 𝛼𝑗 𝐹 𝑗 𝑆 𝑗 ( 𝑧 ) 

(20) 

 𝑗 ( 𝑧 ) = cosh ( 𝑚 𝑗 𝑧 ) , 𝑆 𝑗 ( 𝑧 ) = sinh ( 𝑚 𝑗 𝑧 ) , 𝛼𝑗 = 1 if 𝑟 𝑗 > 0 
 𝑗 ( 𝑧 ) = cos ( 𝑚 𝑗 𝑧 ) , 𝑆 𝑗 ( 𝑧 ) = sin ( 𝑚 𝑗 𝑧 ) , 𝛼𝑗 = −1 if 𝑟 𝑗 < 0 

(21) 

nd with 𝑚 𝑗 = |𝑟 𝑗 |1∕2 . In detail, F j and G j stand for the layer 2 n (inde-

endent) unknown constants directly associated with �̄� ( 𝑧 ) . As a result,

he constants L j , M j and N j associated with �̄� ( 𝑧 ) , �̄� ( 𝑧 ) and �̄�( 𝑧 ) can be

eadily set in agreement with the system in Eq. (18) , as follows: 

 𝑗 = 𝑑 1 𝛼𝑗 𝑚 

6 
𝑗 
+ 𝑑 2 𝑚 

4 
𝑗 
+ 𝑑 3 𝛼𝑗 𝑚 

2 
𝑗 
+ 𝑑 4 

 𝑗 = 

(
𝑓 11 𝑚 

4 
𝑗 
+ 𝑓 12 𝛼𝑗 𝑚 

2 
𝑗 
+ 𝑓 13 

)
∕ 𝐷 𝑗 

 𝑗 = 

(
𝑓 21 𝑚 

4 
𝑗 
+ 𝑓 22 𝛼𝑗 𝑚 

2 
𝑗 
+ 𝑓 23 

)
𝑚 𝑗 ∕ 𝐷 𝑗 

 𝑗 = 

(
𝑓 31 𝑚 

4 
𝑗 
+ 𝑓 32 𝛼𝑗 𝑚 

2 
𝑗 
+ 𝑓 33 

)
𝑚 𝑗 ∕ 𝐷 𝑗 

(22) 

here the coefficients d i and f ij can be derived from the system in

q. (18) by straightforward algebraic manipulation, recognizing D j as

he determinant of the system matrix. Moreover, in view of the form

f the through-thickness exact solution in Eq. (19) , the corresponding

erivatives with respect to z , necessary for the exact solution of the layer

tresses and electric displacements, as stated in Eqs. (14) and (15) , are

hen, the following: 

̄ ′( 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝑚 𝑗 𝑊 𝑗 ( 𝑧 ) , �̄� 

′( 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝛼𝑗 𝑚 𝑗 𝑀 𝑗 𝑈 𝑗 ( 𝑧 ) 

̄ ′( 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝑚 𝑗 𝐿 𝑗 𝑊 𝑗 ( 𝑧 ) , �̄�′( 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝛼𝑗 𝑚 𝑗 𝑁 𝑗 𝑈 𝑗 ( 𝑧 ) 
(23) 

Depending on the piezoelectric layer material properties, the total of

eal distinct roots for r is either 𝑛 = 4 or 𝑛 = 2 , typically in line with an

rthotropic or a transversely isotropic material, respectively. Therefore,

f 𝑛 = 4 , Eq. (19) with 𝑗 = 1 , … , 4 defines the layer through-thickness
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xact solution completely, but if 𝑛 = 2 , Eq. (19) with 𝑗 = 1 , 2 describes

nly a partial solution, which requires additional terms to be summed

ith 𝑗 = 3 , 4 , associated with 2 further complex roots for r as a conjugate

air. 

In this latter case, for a piezoelectric layer with 2 complex roots for r

s a conjugate pair (with 𝑟 = 𝑠 2 ), the roots for s appear as 2 complex con-

ugate pairs in the form of 𝑠 = ±( 𝑎 ± 𝑖𝑏 ) . Hence, the form of the through-

hickness exact solution for such piezoelectric layer, can be developed

ased on �̄� ( 𝑧 ) expressed as shown: 

̄ ( 𝑧 ) = 

4 ∑
𝑗=3 

[
𝐹 𝑗 �̂� 𝑗 ( 𝑧 ) + 𝐺 𝑗 �̂� 𝑗 ( 𝑧 ) 

]
(24)

here F j and G j with 𝑗 = 3 , 4 denote the layer 4 additional (independent)

nknown constants directly associated with �̄� ( 𝑧 ) , as before, along with:

̂
 𝑗 ( 𝑧 ) = exp ( 𝛼𝑗 𝑎𝑧 ) cos ( 𝑏𝑧 ) , 
̂
 𝑗 ( 𝑧 ) = exp ( 𝛼𝑗 𝑎𝑧 ) sin ( 𝑏𝑧 ) , 

�̂�𝑗 = 

{ 

1 if 𝑗 = 3 
−1 if 𝑗 = 4 (25) 

As a result, the relations concerning �̄� ( 𝑧 ) , �̄� ( 𝑧 ) and �̄�( 𝑧 ) can also be

stablished in agreement with the system in Eq. (18) , as follows: 

̂
 ( 𝑠 ) = 𝑑 1 𝑠 

6 + 𝑑 2 𝑠 
4 + 𝑑 3 𝑠 

2 + 𝑑 4 
̂
 ( 𝑠 ) = 

(
𝑓 11 𝑠 

4 + 𝑓 12 𝑠 
2 + 𝑓 13 

)
∕ ̂𝐷 , 𝑉 = �̂� ̄𝑈 

̂
 ( 𝑠 ) = 

(
𝑓 21 𝑠 

4 + 𝑓 22 𝑠 
2 + 𝑓 23 

)
∕ ̂𝐷 , �̄� = 𝑠 �̂� �̄� 

̂
 ( 𝑠 ) = 

(
𝑓 31 𝑠 

4 + 𝑓 32 𝑠 
2 + 𝑓 33 

)
∕ ̂𝐷 , Φ̄ = 𝑠 �̂� �̄� 

(26) 

here the coefficients d i and f ij are precisely the same as in the previous

q. (22) , derived likewise from the system in Eq. (18) . Since the roots

or s are in the form of 𝑠 = ±( 𝑎 ± 𝑖𝑏 ) , it is rather convenient to define, at

nce, the following related constants: 

 𝑅 = ℜ ( ̂𝐿 ( 𝑎 + 𝑖𝑏 )) , 𝐿 𝐼 = ℑ ( ̂𝐿 ( 𝑎 + 𝑖𝑏 )) 
 𝑅 = ℜ ( �̂� ( 𝑎 + 𝑖𝑏 )) , 𝑀 𝐼 = ℑ ( �̂� ( 𝑎 + 𝑖𝑏 )) 
 𝑅 = ℜ ( �̂� ( 𝑎 + 𝑖𝑏 )) , 𝑁 𝐼 = ℑ ( �̂� ( 𝑎 + 𝑖𝑏 )) 

(27) 

Therefore, besides the expression of �̄� ( 𝑧 ) in Eq. (24) , to begin with,

he form of the through-thickness exact solution for such piezoelectric

ayer, following some algebraic manipulation, can be completed with

he accompanying expression of �̄� ( 𝑧 ) , �̄� ( 𝑧 ) and �̄�( 𝑧 ) , as shown: 

̄ ( 𝑧 ) = 

4 ∑
𝑗=3 

[
𝐹 𝑗 

(
𝐿 𝑅 �̂� 𝑗 ( 𝑧 ) − 𝐿 𝐼 ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) 

)
+ 𝐺 𝑗 

(
𝐿 𝐼 ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) + 𝐿 𝑅 �̂� 𝑗 ( 𝑧 ) 

)] (28) 

̄
 ( 𝑧 ) = 

4 ∑
𝑗=3 

[
𝐹 𝑗 

(
( 𝑎𝑀 𝑅 − 𝑏𝑀 𝐼 ) ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) − ( 𝑎𝑀 𝐼 + 𝑏𝑀 𝑅 ) �̂� 𝑗 ( 𝑧 ) 

)
+ 𝐺 𝑗 

(
( 𝑎𝑀 𝐼 + 𝑏𝑀 𝑅 ) �̂� 𝑗 ( 𝑧 ) + ( 𝑎𝑀 𝑅 − 𝑏𝑀 𝐼 ) ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) 

)] (29) 

̄( 𝑧 ) = 

4 ∑
𝑗=3 

[
𝐹 𝑗 

(
( 𝑎𝑁 𝑅 − 𝑏𝑁 𝐼 ) ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) − ( 𝑎𝑁 𝐼 + 𝑏𝑁 𝑅 ) �̂� 𝑗 ( 𝑧 ) 

)
+ 𝐺 𝑗 

(
( 𝑎𝑁 𝐼 + 𝑏𝑁 𝑅 ) �̂� 𝑗 ( 𝑧 ) + ( 𝑎𝑁 𝑅 − 𝑏𝑁 𝐼 ) ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) 

)] (30) 

here it is used the functions �̂� 𝑗 ( 𝑧 ) , �̂� 𝑗 ( 𝑧 ) and �̂�𝑗 introduced in Eq. (25) ,

long with the previous constants in Eq. (27) . In fact, the form of the

hrough-thickness exact solution, all together in Eqs. (24) and (28) –(30) ,

s in line with Heyliger and Saravanos [7] , although written here in

 more compact form. Moreover, the corresponding derivatives with

espect to z , necessary for the exact solution of the layer stresses and

lectric displacements, as stated in Eqs. (14) and (15) , end up as given:

̄ ′( 𝑧 ) = 

4 ∑
𝑗=3 

[
𝐹 𝑗 

(
𝑎 ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) − 𝑏 ̂𝑆 𝑗 ( 𝑧 ) 

)
+ 𝐺 𝑗 

(
𝑏 ̂𝐶 𝑗 ( 𝑧 ) + 𝑎 ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) 

)] (31) 
u  
̄ ′( 𝑧 ) = 

4 ∑
𝑗=3 

[
𝐹 𝑗 

(
( 𝑎𝐿 𝑅 − 𝑏𝐿 𝐼 ) ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) − ( 𝑎𝐿 𝐼 + 𝑏𝐿 𝑅 ) �̂� 𝑗 ( 𝑧 ) 

)
+ 𝐺 𝑗 

(
( 𝑎𝐿 𝐼 + 𝑏𝐿 𝑅 ) �̂� 𝑗 ( 𝑧 ) + ( 𝑎𝐿 𝑅 − 𝑏𝐿 𝐼 ) ̂𝛼𝑗 �̂� 𝑗 ( 𝑧 ) 

)] (32) 

̄
 

′( 𝑧 ) = 

4 ∑
𝑗=3 

[
𝐹 𝑗 

((
( 𝑎 2 − 𝑏 2 ) 𝑀 𝑅 − 2 𝑎𝑏𝑀 𝐼 

)
�̂� 𝑗 ( 𝑧 ) 

− 

(
( 𝑎 2 − 𝑏 2 ) 𝑀 𝐼 + 2 𝑎𝑏𝑀 𝑅 

)
�̂�𝑗 �̂� 𝑗 ( 𝑧 ) 

)
+ 𝐺 𝑗 

((
( 𝑎 2 − 𝑏 2 ) 𝑀 𝐼 + 2 𝑎𝑏𝑀 𝑅 

)
�̂�𝑗 �̂� 𝑗 ( 𝑧 ) 

+ 

(
( 𝑎 2 − 𝑏 2 ) 𝑀 𝑅 − 2 𝑎𝑏𝑀 𝐼 

)
�̂� 𝑗 ( 𝑧 ) 

)]
(33) 

̄′( 𝑧 ) = 

4 ∑
𝑗=3 

[
𝐹 𝑗 

((
( 𝑎 2 − 𝑏 2 ) 𝑁 𝑅 − 2 𝑎𝑏𝑁 𝐼 

)
�̂� 𝑗 ( 𝑧 ) 

− 

(
( 𝑎 2 − 𝑏 2 ) 𝑁 𝐼 + 2 𝑎𝑏𝑁 𝑅 

)
�̂�𝑗 �̂� 𝑗 ( 𝑧 ) 

)
+ 𝐺 𝑗 

((
( 𝑎 2 − 𝑏 2 ) 𝑁 𝐼 + 2 𝑎𝑏𝑁 𝑅 

)
�̂�𝑗 �̂� 𝑗 ( 𝑧 ) 

+ 

(
( 𝑎 2 − 𝑏 2 ) 𝑁 𝑅 − 2 𝑎𝑏𝑁 𝐼 

)
�̂� 𝑗 ( 𝑧 ) 

)]
(34) 

Most importantly, for a piezoelectric layer with the roots for r ap-

earing as 2 real distinct roots and 2 complex roots as a conjugate pair,

he complete form of the through-thickness exact solution includes the

ontribution of the solution form in Eq. (19) with 𝑗 = 1 , 2 related to the

eal roots, in addition to the solution form in Eqs. (24) and (28) –(30)

ith 𝑗 = 3 , 4 related to the complex roots instead. 

.2. Purely elastic layers: Orthotropic, transversely isotropic or isotropic 

ases 

For purely elastic layers, for which 𝑒 𝑖𝑗 = 0 , with an uncoupled elec-

ric and elastic solution, the characteristic equation of the system in

q. (11) comes out, in its general form, as follows: 

𝑟 3 + 𝑐 1 𝑟 
2 + 𝑐 2 𝑟 + 𝑐 3 

)(
𝐴 44 + 𝜖33 𝑟 

)
= 0 , with 𝑟 = 𝑠 2 (35)

here the coefficients c i can be derived from the system in Eq. (11) by

traightforward algebraic manipulation, although also presented, in

ome sense, by Pagano [1] . 

Among the 4 roots for r , namely r j with 𝑗 = 1 , … , 4 , the electric so-

ution is naturally associated with 1 real uncoupled electric root , which is

imply 𝑟 1 = − 𝐴 44 ∕ ̄𝜖33 as in a positive real. Besides that, the nature of the

emaining 3 roots for r , as it turns out for purely elastic layers, depends

ot only on the layer material properties but also on whether the static

r free vibration solution is pursued. 

For the static solution, the nature of the remaining 3 roots for r fall

nto one of two cases, depending on the layer material properties, in

ddition to 1 real uncoupled electric root , whichever the case: 

• 3 real distinct roots . The case of purely elastic layers of orthotropic or

transversely isotropic material; 
• 3 real repeated roots . The case of purely elastic layers of isotropic

material. 

For the free vibration solution, one of three cases arises instead, de-

ending mostly on the layer material properties, in addition to 1 real

ncoupled electric root , whichever the case: 

• 3 real distinct roots . Typically the case of purely elastic layers of or-

thotropic material; 
• 1 real root + 2 complex roots as a conjugate pair . Typically the case

of purely elastic layers of transversely isotropic material. 
• 1 real root + 2 real repeated roots . The case of purely elastic layers

of isotropic material. 

In most cases, for each purely elastic layer, the form of the elastic

hrough-thickness exact solution is likewise defined based on the contri-

ution of each root for s together with an associated unknown constant,

sually of �̄� ( 𝑧 ) , such that (if possible) �̄� ( 𝑧 ) and �̄� ( 𝑧 ) , are then set through
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he following system of equations: 

 

𝐴 22 − �̄� 44 𝑠 
2 𝐴 23 𝑠 

− 𝐴 23 𝑠 𝐴 33 − �̄� 33 𝑠 
2 

] { 

𝑉 

�̄� 

} 

= �̄� 

{ 

− 𝐴 12 
𝐴 13 𝑠 

} 

(36)

In view of a purely elastic layer with 1 real uncoupled electric root

 1 , along with n real distinct elastic roots, as in 𝑛 = 3 or 𝑛 = 1 (with

 = 𝑠 2 ), the corresponding roots for s appear as pairs (positive and neg-

tive), which are either real (if r > 0) or imaginary (if r < 0). Hence,

he form of the through-thickness exact solution for such purely elas-

ic layer, following the approach of Pagano [1] for the elastic part with

 = 2 , … , 𝑛 + 1 , aside from the electric part with 𝑗 = 1 , can be expressed

ll together (partially, at least), as follows: 

̄ ( 𝑧 ) = 

𝑛 +1 ∑
𝑗=2 

𝑈 𝑗 ( 𝑧 ) , �̄� ( 𝑧 ) = 

𝑛 +1 ∑
𝑗=2 

𝑀 𝑗 𝑊 𝑗 ( 𝑧 ) 

̄ ( 𝑧 ) = 

𝑛 +1 ∑
𝑗=2 

𝐿 𝑗 𝑈 𝑗 ( 𝑧 ) , �̄�( 𝑧 ) = 

1 ∑
𝑗=1 

𝑈 𝑗 ( 𝑧 ) 
(37)

here it is used the functions U j ( z ) and W j ( z ) just as introduced earlier

n Eqs. (20) and (21) . As it stands, this solution form involves the layer

independent) unknown constants F j and G j with 𝑗 = 2 , … , 𝑛 + 1 directly

ssociated with �̄� ( 𝑧 ) , as well as F 1 and G 1 associated with �̄�( 𝑧 ) alone.

ccordingly, the constants L j and M j with 𝑗 = 2 , … , 𝑛 + 1 related to �̄� ( 𝑧 )
nd �̄� ( 𝑧 ) can be readily set in agreement with the system in Eq. (36) , as

hown: 

 𝑗 = 𝑑 1 𝑚 

4 
𝑗 
+ 𝑑 2 𝛼𝑗 𝑚 

2 
𝑗 
+ 𝑑 3 

 𝑗 = 

(
𝑓 11 𝛼𝑗 𝑚 

2 
𝑗 
+ 𝑓 12 

)
∕ 𝐷 𝑗 

 𝑗 = 

(
𝑓 21 𝛼𝑗 𝑚 

2 
𝑗 
+ 𝑓 22 

)
𝑚 𝑗 ∕ 𝐷 𝑗 

(38)

here the coefficients d i and f ij can be derived likewise from the system

n Eq. (36) , recognizing once again D j as the determinant of the system

atrix. In addition, in line with the form of the through-thickness exact

olution in Eq. (37) , the derivatives with respect to z , necessary for the

xact solution of the layer stresses and electric displacements, given in

qs. (14) and (15) , though simplified for 𝑒 𝑖𝑗 = 0 , arise as given: 

̄ ′( 𝑧 ) = 

𝑛 +1 ∑
𝑗=2 

𝑚 𝑗 𝑊 𝑗 ( 𝑧 ) , �̄� 

′( 𝑧 ) = 

𝑛 +1 ∑
𝑗=2 

𝛼𝑗 𝑚 𝑗 𝑀 𝑗 𝑈 𝑗 ( 𝑧 ) 

̄ ′( 𝑧 ) = 

𝑛 +1 ∑
𝑗=2 

𝑚 𝑗 𝐿 𝑗 𝑊 𝑗 ( 𝑧 ) , �̄�′( 𝑧 ) = 

1 ∑
𝑗=1 

𝑚 𝑗 𝑊 𝑗 ( 𝑧 ) 
(39)

At this point, for such purely elastic layer, the total of real distinct

lastic roots for r , as in 𝑛 = 3 or 𝑛 = 1 , needs to be taken into account.

f 𝑛 = 3 , Eq. (37) using 𝑗 = 1 , … , 4 defines the layer through-thickness

xact solution completely, but if 𝑛 = 1 , Eq. (37) using 𝑗 = 1 , 2 describes

nly a partial solution, which requires additional terms to be summed

or the elastic solution form using 𝑗 = 3 , 4 . 
Under this last case, one possibility is a purely elastic layer, typi-

ally transversely isotropic within the free vibration solution, with 1

eal uncoupled electric root r 1 , as well as for the elastic part, 1 real

oot r 2 (i.e. 𝑛 = 1 ) and 2 further complex roots r 3 and r 4 as a conjugate

air (with 𝑟 = 𝑠 2 ). Thus, the additional roots for s appear as 2 complex

onjugate pairs in the form of 𝑠 = ±( 𝑎 ± 𝑖𝑏 ) . Accordingly, the form of

he elastic through-thickness exact solution involving the expression of

̄ ( 𝑧 ) , �̄� ( 𝑧 ) and �̄� ( 𝑧 ) with 𝑗 = 3 , 4 is given, in general, as stated in the previ-

us Eqs. (24) , (28) and (29) , respectively, including the same functions
̂
 𝑗 ( 𝑧 ) , �̂� 𝑗 ( 𝑧 ) and �̂�𝑗 introduced in Eq. (25) , along with F j and G j as the

ayer 4 additional (independent) unknown constants directly associated

ith �̄� ( 𝑧 ) . However, the distinction for this case of purely elastic layer

ies in the fact that the constants L R , L I , M R and M I , appearing in the ex-

ression of �̄� ( 𝑧 ) and �̄� ( 𝑧 ) , need to be redefined appropriately. Since the

lastic solution form is based on the expression of �̄� ( 𝑧 ) , the correspond-

ng relations concerning �̄� ( 𝑧 ) and �̄� ( 𝑧 ) can be established in agreement
ith the system in Eq. (36) , as follows: 

̂
 ( 𝑠 ) = 𝑑 1 𝑠 

4 + 𝑑 2 𝑠 
2 + 𝑑 3 

̂
 ( 𝑠 ) = 

(
𝑓 11 𝑠 

2 + 𝑓 12 
)
∕ ̂𝐷 , 𝑉 = �̂� ̄𝑈 

̂
 ( 𝑠 ) = 

(
𝑓 21 𝑠 

2 + 𝑓 22 
)
∕ ̂𝐷 , �̄� = 𝑠 �̂� �̄� 

(40) 

here the coefficients d i and f ij are exactly the same as given in Eq. (38) ,

erived likewise from the system in Eq. (36) . In view of Eq. (40) with the

oots for s in the form of 𝑠 = ±( 𝑎 ± 𝑖𝑏 ) , the following related constants

re thus redefined for this case of purely elastic layer: 

 𝑅 = ℜ ( ̂𝐿 ( 𝑎 + 𝑖𝑏 )) , 𝐿 𝐼 = ℑ ( ̂𝐿 ( 𝑎 + 𝑖𝑏 )) 
 𝑅 = ℜ ( �̂� ( 𝑎 + 𝑖𝑏 )) , 𝑀 𝐼 = ℑ ( �̂� ( 𝑎 + 𝑖𝑏 )) (41) 

Moreover, the elastic solution derivatives with respect to z , necessary

or the exact solution of the layer stresses and electric displacements,

iven in Eqs. (14) and (15) with 𝑒 𝑖𝑗 = 0 , end up in the same general form

s stated in the previous Eqs. (31) –(33) , though using the constants L R ,

 I , M R and M I just set by Eqs. (40) and (41) . 

One other possibility is a purely elastic layer, namely isotropic within

he free vibration solution, with 1 real uncoupled electric root r 1 , as

ell as for the elastic part, 1 real root r 2 (i.e. 𝑛 = 1 ) and 2 further real

epeated roots 𝑟 3 = 𝑟 4 (with 𝑟 = 𝑠 2 ). Therefore, the additional roots for

 appear as 2 repeated pairs (positive and negative), which are either

eal (if r > 0) or imaginary (if r < 0). As it is, the form of the elastic

hrough-thickness exact solution (associated with the roots 𝑟 3 = 𝑟 4 ) can

e developed based on �̄� ( 𝑧 ) , as shown: 

̄ ( 𝑧 ) = �̄� ( 𝑧 ) = 

∑3 
𝑗=3 𝑈 𝑗 ( 𝑧 ) + 

∑4 
𝑗=4 𝑧 𝑈 𝑗 ( 𝑧 ) 

̄
 ( 𝑧 ) = 

∑3 
𝑗=3 𝑀 𝑗 𝑊 𝑗 ( 𝑧 ) + 

∑4 
𝑗=4 
[
𝑅 𝑗 𝑈 𝑗 ( 𝑧 ) + 𝑧 𝑀 𝑗 𝑊 𝑗 ( 𝑧 ) 

] (42) 

here it is used the same functions U j ( z ) and W j ( z ) as defined in

qs. (20) and (21) , including F j and G j with 𝑗 = 3 , 4 , which stand for

he layer 4 additional (independent) unknown constants directly associ-

ted with �̄� ( 𝑧 ) . Along with this, the constants M j and R j associated with

̄
 ( 𝑧 ) can be determined in view of the following elastic relation that also

olds: 

𝐴 33 − �̄� 33 𝑠 
2 )�̄� = �̄� 𝑠 

(
𝐴 13 + 𝐴 23 

)
(43)

In fact, elastic independent equations arise, separately, according to

he terms involving ( z 0 , z 1 ) of the solution form in Eq. (42) , setting out

he constants M j with 𝑗 = 3 , 4 and R j with 𝑗 = 4 , as follows: 

 𝑗 = 

(
− ̄𝐶 33 

)
𝛼𝑗 𝑚 

2 
𝑗 
+ 

(
𝐴 33 
)

 𝑗 = 

(
𝐴 13 + 𝐴 23 

)
𝑚 𝑗 ∕ 𝐷 𝑗 , with 𝑗 = 3 , 4 

 𝑗 = 

((
2 𝑀 𝑗 �̄� 33 

)
𝛼𝑗 𝑚 𝑗 + 

(
𝐴 13 + 𝐴 23 

))
∕ 𝐷 𝑗 , with 𝑗 = 4 

(44) 

In addition, in line with Eq. (42) , the elastic solution derivatives with

espect to z , necessary for the exact solution of the layer stresses and

lectric displacements, given in Eqs. (14) and (15) with 𝑒 𝑖𝑗 = 0 , come

ut as given: 

̄ ′( 𝑧 ) = �̄� ′( 𝑧 ) = 

∑3 
𝑗=3 𝑚 𝑗 𝑊 𝑗 ( 𝑧 ) + 

∑4 
𝑗=4 
[
𝑈 𝑗 ( 𝑧 ) + 𝑧 𝑚 𝑗 𝑊 𝑗 ( 𝑧 ) 

]
̄
 

′( 𝑧 ) = 

∑3 
𝑗=3 𝛼𝑗 𝑚 𝑗 𝑀 𝑗 𝑈 𝑗 ( 𝑧 ) 

+ 

∑4 
𝑗=4 
[(
𝑚 𝑗 𝑅 𝑗 + 𝑀 𝑗 

)
𝑊 𝑗 ( 𝑧 ) + 𝑧 𝛼𝑗 𝑚 𝑗 𝑀 𝑗 𝑈 𝑗 ( 𝑧 ) 

] (45) 

The only remaining possibility to consider is a purely elastic layer,

amely isotropic within the static solution, with 1 real uncoupled elec-

ric root r 1 , as well as for the elastic part, 3 real repeated roots 𝑟 2 = 𝑟 3 =
 4 (with 𝑟 = 𝑠 2 ). Actually, in spite of the uncoupled electric and elastic

olution, the roots for r turn out all equal, as in 𝑟 𝑗 = 𝑐 2 with 𝑗 = 1 … , 4 ,
uch that 𝑐 2 = 𝑝 2 + 𝑞 2 . Hence, the roots for s appear as real pairs 𝑠 = ± 𝑐,

lthough 1 pair associated with the electric solution alone, and 3 re-

eated pairs associated with the elastic solution. As a result, the form

f the elastic solution is quite distinctive for such purely elastic layer.

ollowing the approach of Pagano [1] and also, more recently, Moleiro

t al. [17] , the through-thickness exact solution for the elastic part can
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e expressed, in its general form, as follows: 

̄
 𝑖 ( 𝑧 ) = 

(
𝑎 1 𝑖 + 𝑎 3 𝑖 𝑧 + 𝑎 5 𝑖 𝑧 

2 ) exp ( 𝑐𝑧 ) 
+ 

(
𝑎 2 𝑖 + 𝑎 4 𝑖 𝑧 + 𝑎 6 𝑖 𝑧 

2 ) exp (− 𝑐𝑧 ) (46) 

here �̄� 𝑖 ( 𝑧 ) with 𝑖 = 1 , 2 , 3 stands for �̄� ( 𝑧 ) , �̄� ( 𝑧 ) and �̄� ( 𝑧 ) , respectively.

ore precisely, for such purely elastic layer, 8 (independent) unknown

onstants are involved, just like any other layer, including 2 (indepen-

ent) unknown constants for the electric solution alone, thus 6 (inde-

endent) unknown constants for the elastic solution, among the 18 con-

tants appearing in Eq. (46) , as in a ki with 𝑘 = 1 , … , 6 and 𝑖 = 1 , 2 , 3 . 
The relations among the 18 constants a ki can be determined through

he layer original system of equations for the elastic part, stated in

q. (11) , taking into account the isotropic layer material coefficients,

nd considering the various independent equations arising, separately,

ccording to the terms involving ( z 0 , z 1 , z 2 )exp ( ± cz ) of the elastic solu-

ion form in Eq. (46) . In the end, taking as the 6 (independent) unknown

onstants the following: a 11 , a 21 , a 31 and a 41 from �̄� ( 𝑧 ) , as well as a 12 

nd a 22 from �̄� ( 𝑧 ) , the remaining constants become set as shown: 

 5 𝑖 = 𝑎 6 𝑖 = 0 , with 𝑖 = 1 , 2 , 3 (47)

 32 = 

𝑞 

𝑝 
𝑎 31 , 𝑎 42 = 

𝑞 

𝑝 
𝑎 41 , 𝑎 33 = 

𝑐 

𝑝 
𝑎 31 , 𝑎 43 = − 

𝑐 

𝑝 
𝑎 41 (48)

 13 = 

𝑝 

𝑐 
𝑎 11 + 

(
𝐶 12 − 3 𝐶 11 

)
𝑝 
(
𝐶 11 + 𝐶 12 

)𝑎 31 + 

𝑞 

𝑐 
𝑎 12 (49)

 23 = − 

𝑝 

𝑐 
𝑎 21 + 

(
𝐶 12 − 3 𝐶 11 

)
𝑝 
(
𝐶 11 + 𝐶 12 

)𝑎 41 − 

𝑞 

𝑐 
𝑎 22 (50)

here the isotropic layer material coefficients involved C 11 and C 12 are

uch that: 

̄
 11 = �̄� 22 = �̄� 33 ≡ 𝐶 11 
̄
 12 = �̄� 13 = �̄� 23 ≡ 𝐶 12 
̄
 44 = �̄� 55 = �̄� 66 ≡

(
𝐶 11 − 𝐶 12 

)
∕2 

(51) 

Ultimately, the form of the through-thickness exact solution for such

urely elastic layer, considering the uncoupled electric and elastic solu-

ion all together, with the roots for s as real pairs 𝑠 = ± 𝑐, can be written

s follows: 

̄
 𝑖 ( 𝑧 ) = 

(
𝑎 1 𝑖 + 𝑎 3 𝑖 𝑧 

)
exp ( 𝑐𝑧 ) + 

(
𝑎 2 𝑖 + 𝑎 4 𝑖 𝑧 

)
exp (− 𝑐𝑧 ) (52)

̄( 𝑧 ) = 

1 ∑
𝑗=1 

𝑈 𝑗 ( 𝑧 ) = 

1 ∑
𝑗=1 

[
𝐹 𝑗 𝐶 𝑗 ( 𝑧 ) + 𝐺 𝑗 𝑆 𝑗 ( 𝑧 ) 

]
(53)

here �̄� 𝑖 ( 𝑧 ) with 𝑖 = 1 , 2 , 3 stands again for �̄� ( 𝑧 ) , �̄� ( 𝑧 ) and �̄� ( 𝑧 ) , respec-

ively, along with the functions C j ( z ) and S j ( z ) with 𝑗 = 1 for �̄�( 𝑧 ) alone,

s introduced in Eqs. (20) and (21) . In short, the layer solution form

nvolves 8 (independent) unknown constants, namely F 1 and G 1 for the

lectric solution alone, in addition to the aforementioned 6 (indepen-

ent) unknown constants for the elastic solution. Other than that, the

emaining constants for the elastic solution are set by Eqs. (47) –(50) . 

Furthermore, the corresponding solution derivatives with respect to

 , necessary for the layer stresses and electric displacements, given in

qs. (14) and (15) with 𝑒 𝑖𝑗 = 0 , end up as shown: 

̄
 

′
𝑖 
( 𝑧 ) = 

(
𝑎 3 𝑖 + 𝑐 𝑎 1 𝑖 + 𝑐 𝑎 3 𝑖 𝑧 

)
exp ( 𝑐𝑧 ) 

+ 

(
𝑎 4 𝑖 − 𝑐 𝑎 2 𝑖 − 𝑐 𝑎 4 𝑖 𝑧 

)
exp (− 𝑐𝑧 ) (54) 

̄′( 𝑧 ) = 

1 ∑
𝑗=1 

𝑚 𝑗 𝑊 𝑗 ( 𝑧 ) = 

1 ∑
𝑗=1 

𝑚 𝑗 

[
𝐺 𝑗 𝐶 𝑗 ( 𝑧 ) + 𝛼𝑗 𝐹 𝑗 𝑆 𝑗 ( 𝑧 ) 

]
(55)

here �̄� 

′
𝑖 
( 𝑧 ) with 𝑖 = 1 , 2 , 3 is used accordingly for �̄� ′( 𝑧 ) , �̄� ′( 𝑧 ) and �̄� 

′( 𝑧 ) ,
side from the functions C j ( z ) and S j ( z ) with 𝑗 = 1 , as before, for �̄�′( 𝑧 )
nly, though here including explicitly 𝑚 𝑗 = |𝑟 𝑗 |1∕2 as in 𝑚 1 = 𝑐 for such

urely elastic layer. 
In sum, for each layer, whether piezoelectric or purely elastic, the ap-

ropriate form of the through-thickness exact solution can be defined, as

horoughly described, whichever the case arising from the layer material

roperties, according to an orthotropic, transversely isotropic or even

sotropic layer. Most noteworthy, thus far, each of the above-mentioned

olution form holds under any pair ( n x , n y ), so long as neither 𝑛 𝑥 = 0 nor

 𝑦 = 0 . 

.3. Special modes: 𝑛 𝑥 = 0 or 𝑛 𝑦 = 0 cases 

Within the free vibration solution, the so-called special modes for ei-

her 𝑛 𝑥 = 0 or 𝑛 𝑦 = 0 fall into a particular case, which needs to be ad-

ressed separately, each on its own. In case 𝑛 𝑥 = 0 , meaning 𝑝 = 0 , the

haracteristic equation of the system in Eq. (11) turns out, in its general

orm, as follows: 

𝑟 3 + 𝑐 1 𝑟 
2 + 𝑐 2 𝑟 + 𝑐 3 

)(
𝐴 11 − �̄� 55 𝑟 

)
= 0 , with 𝑟 = 𝑠 2 (56)

Evidently, when 𝑛 𝑥 = 0 , the form of the through-thickness exact solu-

ion, for each and every layer, is such that the displacement ̄𝑢 ( 𝑧 ) emerges

ncoupled. Hence, for each layer, among the 4 roots for r , namely r j with

 = 1 , … , 4 , the solution form of �̄� ( 𝑧 ) is clearly associated with just 1 real

ncoupled root , which is simply 𝑟 1 = 𝐴 11 ∕ ̄𝐶 55 . The remaining 3 roots for r

an be all real roots or include complex roots, as in a conjugate pair, de-

ending mostly on the layer material properties. Accordingly, the form

f the through-thickness exact solution for each layer can be developed

long the same lines as described previously. Nonetheless, the aftermath

hows that, when 𝑛 𝑥 = 0 , the solution form of �̄� ( 𝑧 ) , �̄� ( 𝑧 ) and �̄�( 𝑧 ) are all

ull, and only the layer displacement �̄� ( 𝑧 ) is nonzero. This holds for

ither purely elastic layers or the present extension mode piezoelectric

ayers, as indeed highlighted by Batra and Aimmanee [10] . Most no-

ably, this solution form of special modes for 𝑛 𝑥 = 0 is only admissible

nder simply supported edge conditions at 𝑥 = 0 , 𝑎, as given by Eq. (9) .

Therefore, in such case, the form of the through-thickness exact so-

ution rests on �̄� ( 𝑧 ) for every layer, each with 1 real uncoupled root r 1 
with 𝑟 = 𝑠 2 ), thus 1 pair of roots for s (positive and negative). As it is,

he solution form of �̄� ( 𝑧 ) for each layer, as well as its derivative with

espect to z , can be expressed as shown: 

̄ ( 𝑧 ) = 

∑1 
𝑗=1 𝑈 𝑗 ( 𝑧 ) = 

∑1 
𝑗=1 
[
𝐹 𝑗 𝐶 𝑗 ( 𝑧 ) + 𝐺 𝑗 𝑆 𝑗 ( 𝑧 ) 

]
̄ ′( 𝑧 ) = 

∑1 
𝑗=1 𝑚 𝑗 𝑊 𝑗 ( 𝑧 ) = 

∑1 
𝑗=1 𝑚 𝑗 

[
𝐺 𝑗 𝐶 𝑗 ( 𝑧 ) + 𝛼𝑗 𝐹 𝑗 𝑆 𝑗 ( 𝑧 ) 

] (57) 

here it is used the functions U j ( z ) and W j ( z ) as defined in Eqs. (20) and

21) , including explicitly 𝑚 𝑗 = |𝑟 𝑗 |1∕2 with 𝑗 = 1 for each layer, along

ith its 2 unknown constants F 1 and G 1 associated with �̄� ( 𝑧 ) alone. As

 result, when 𝑛 𝑥 = 0 , the solution form for each layer stresses and elec-

ric displacements, as stated originally in Eqs. (14) and (15) , is simply

educed to the following: 

̄𝑥𝑧 ( 𝑧 ) = �̄� 55 ̄𝑢 
′( 𝑧 ) 

̄𝑥𝑦 ( 𝑧 ) = 𝑞 �̄� 66 ̄𝑢 ( 𝑧 ) 
̄
 𝑥 ( 𝑧 ) = 𝑒 15 ̄𝑢 

′( 𝑧 ) 
(58) 

Other than that, in case 𝑛 𝑦 = 0 , meaning 𝑞 = 0 , the characteristic

quation of the system in Eq. (11) turns out, in its general form, as fol-

ows: 

𝑟 3 + 𝑐 1 𝑟 
2 + 𝑐 2 𝑟 + 𝑐 3 

)(
𝐴 22 − �̄� 44 𝑟 

)
= 0 , with 𝑟 = 𝑠 2 (59)

Analogously, when 𝑛 𝑦 = 0 , the form of the through-thickness exact

olution, for each and every layer, is such that the displacement �̄� ( 𝑧 )
merges uncoupled. Naturally, for each layer, the solution form of �̄� ( 𝑧 ) is
ssociated with just 1 real uncoupled root , namely 𝑟 1 = 𝐴 22 ∕ ̄𝐶 44 . Likewise,

he aftermath shows that, when 𝑛 𝑦 = 0 , the solution form of �̄� ( 𝑧 ) , �̄� ( 𝑧 )
nd �̄�( 𝑧 ) are all null, and only the layer displacement �̄� ( 𝑧 ) is nonzero.

herefore, this solution form of special modes for 𝑛 𝑦 = 0 is only admis-

ible under simply supported edge conditions at 𝑦 = 0 , 𝑏, as given by

q. (9) . In such case, the form of the through-thickness exact solution

ests on �̄� ( 𝑧 ) for every layer, each with 1 real uncoupled root r (with
1 
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Table 1 

Elastic properties of the materials used for purely elastic solutions. 

Property FRC [1] Trans. Iso. Core [1] Iso. Core [17] 

E 1 [GPa] 25 E 0 0.04 E 0 0.04 E 0 
E 2 [GPa] E 0 

† 0.04 E 0 0.04 E 0 
E 3 [GPa] E 0 

† 0.5 E 0 0.04 E 0 
G 12 [GPa] 0.5 E 0 0.016 E 0 E 0 /70 

G 13 [GPa] 0.5 E 0 0.06 E 0 E 0 /70 

G 23 [GPa] 0.2 E 0 0.06 E 0 E 0 /70 

𝜈12 [-] 0.25 0.25 0.40 

𝜈13 [-] 0.25 0.02 0.40 

𝜈23 [-] 0.25 0.02 0.40 

𝜌 [kg/m 

3 ] 𝜌0 
† 0.1 𝜌0 0.1 𝜌0 

3 For nondimensionalizations. Used as 𝐸 0 = 7 GPa and 𝜌0 = 1600 kg/m 
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Table 2 

Elastic and piezoelectric properties of the materials used for electro-elastic so- 

lutions. 

Property FRC [7] PZT-4 [7] PVDF [7] 

E 1 [GPa] 132.38 81.3 237.0 

E 2 [GPa] 10.756 81.3 23.2 

E 3 [GPa] 10.756 64.5 10.5 

G 12 [GPa] 5.6537 30.6 6.43 

G 13 [GPa] 5.6537 25.6 4.40 

G 23 [GPa] 3.6060 25.6 2.15 

𝜈12 [-] 0.24 0.329 0.154 

𝜈13 [-] 0.24 0.432 0.178 

𝜈23 [-] 0.49 0.432 0.177 

e 31 [C/m 

2 ] 0 -5.20 -0.13 

e 32 [C/m 

2 ] 0 -5.20 -0.14 

e 33 [C/m 

2 ] 0 15.08 -0.28 

e 24 [C/m 

2 ] 0 12.72 -0.01 

e 15 [C/m 

2 ] 0 12.72 -0.01 

𝜖11 [F/m] 3.5 𝜖0 
† 1475 𝜖0 12.50 𝜖0 

𝜖22 [F/m] 3.0 𝜖0 
† 1475 𝜖0 11.98 𝜖0 

𝜖33 [F/m] 3.0 𝜖0 
† 1300 𝜖0 11.98 𝜖0 

𝜌 [kg/m 

3 ] 1.0 1.0 1.0 

∘ The vacuum dielectric constant. Used as 𝜖0 = 8 . 854187817 × 10 −12 F/m. 

 

 

 

 

 

 

 

 

 

 

 

l  

a  

t  

a

[[
[

 

h  

e  

𝜎  

a  

a

𝜔  

 

s  

𝜌

 

e  

p  

o  

𝑝  

s  
 = 𝑠 2 ), thus 1 pair of roots for s (positive and negative). Equivalently,

he solution form of �̄� ( 𝑧 ) and �̄� ′( 𝑧 ) for each layer, can be expressed just

s stated in Eq. (57) , respectively. 

Besides that, when 𝑛 𝑦 = 0 , the solution form for each layer stresses

nd electric displacements, as stated in Eqs. (14) and (15) , is reduced

ccordingly to the following: 

̄𝑦𝑧 ( 𝑧 ) = �̄� 44 �̄� 
′( 𝑧 ) 

̄𝑥𝑦 ( 𝑧 ) = 𝑝 �̄� 66 �̄� ( 𝑧 ) 
̄
 𝑦 ( 𝑧 ) = 𝑒 24 �̄� 

′( 𝑧 ) 
(60)

In the end, from a practical standpoint, when considering special

odes for either 𝑛 𝑥 = 0 or 𝑛 𝑦 = 0 within the free vibration solution,

he nonzero exact solution form for each layer involves, in fact, only

 nonzero unknown constants F 1 and G 1 . Hence, for the entire multi-

ayered plate made of N layers, only 2 N nonzero unknown constants are

ctually involved. Accordingly, taking into account for each layer, in re-

lity, only 1 nonzero displacement and 1 nonzero transverse shear stress,

eads all together to the corresponding 2 N boundary and interlaminar

onditions. In short, in case of special modes for either 𝑛 𝑥 = 0 or 𝑛 𝑦 = 0 ,
he free vibration solution can be based on a reduced total system of 2 N

quations, whose zero determinant requirement is pursued through an

terative scheme, as described earlier, thus setting out the plate special

ode shapes in line with the pair ( n x , n y ) and the respective frequency

 . 

. Static and free vibration solutions for benchmarking 

As intended in this work, 3D exact electro-elastic static and free vi-

ration solutions of simply supported multilayered plates are demon-

trated by a comprehensive evaluation of well-known benchmarks, di-

ided into two categories: purely elastic solutions and electro-elastic

olutions. Specifically, within each category, three distinct square mul-

ilayered plates (with 𝑎 = 𝑏 ) are studied, as here described. 

1. Purely elastic solutions , using the materials in Table 1 : 
• Composite laminate (0 ∘/90 ∘/0 ∘). 

Considering unidirectional fibre reinforced composite (FRC) lay-

ers of equal thickness h /3 and 𝑎 ∕ ℎ = 4 , 10 , 100 ; based on the orig-

inal benchmark by Pagano [1] , in which exact static solutions

are shown, in part. 
• Sandwich plate with transversely isotropic soft core . 

Considering FRC skins of 0 ∘ with thickness h /10 (each) alongside

a soft core and 𝑎 ∕ ℎ = 4 , 10 , 100 ; based on the original benchmark

by Pagano [1] , in which exact static solutions are shown, in part.
• Sandwich plate with isotropic soft core . 

An analogous sandwich using a distinct core material; based on

the original benchmark by Moleiro et al. [17] , though modified

here to assume the same thickness layout as the previous sand-

wich. 

2. Electro-elastic solutions , using the materials in Table 2 : 
• Piezoelectric composite laminate (PZT-4/0 ∘/90 ∘/PZT-4). 
Considering piezoelectric layers with thickness h /10 (each)

alongside FRC layers of equal thickness, with a fixed total thick-

ness ℎ = 1 m and 𝑎 ∕ ℎ = 4 , 10 ; based on the original benchmark by

Heyliger [5] , in which exact static solutions are shown, in part. 
• Piezoelectric composite laminate (PZT-4/0 ∘/90 ∘/0 ∘/PZT-4). 

Considering piezoelectric layers with thickness h /10 (each)

alongside FRC layers of equal thickness, with a fixed total thick-

ness ℎ = 0 . 01 m and 𝑎 ∕ ℎ = 4 , 10 ; based on the original benchmark

by Heyliger and Saravanos [7] , in which exact free vibration so-

lutions are shown, in part. 
• Piezoelectric composite laminate (PVDF/90 ∘/0 ∘/90 ∘/PVDF). 

An analogous laminate using a distinct piezoelectric material,

namely PVDF of 0 ∘, with the same thickness layout as the previ-

ous laminate; based on the original benchmark by Heyliger et al.

[40] , in which exact static solutions are shown, in part. 

Moreover, within purely elastic solutions, following primarily the

eading work by Pagano [1] , 3D exact static and free vibration solutions

re provided in a nondimensionalized form, which is most useful for fu-

ure assessments. Accordingly, exact static solutions of all displacements

nd stresses make use of the following nondimensionalized form: 

 ̃𝑢 , ̃𝑣 ] = 

100 𝐸 0 ℎ 2 

𝜎0 𝑎 3 
[ 𝑢, 𝑣 ] , �̃� = 

100 𝐸 0 ℎ 3 

𝜎0 𝑎 4 
𝑤 

�̃�xz , ̃𝜎yz 

]
= 

ℎ 

𝜎0 𝑎 

[
𝜎xz , 𝜎yz 

]
, �̄�zz = 

𝜎zz 

𝜎0 

�̃�xx , ̃𝜎yy , ̃𝜎xy 

]
= 

ℎ 2 

𝜎0 𝑎 2 

[
𝜎xx , 𝜎yy , 𝜎xy 

] (61) 

From a practical standpoint, the exact static solutions in this form

old for each side-to-thickness ratio a / h considered, in line with the

lastic property reference E 0 in Table 1 and the applied load intensity

0 stated in Eq. (16) . Along with this, exact free vibration solutions of

ll natural frequencies are also provided in nondimensionalized form,

s shown: 

̃ = 𝜔 
√
𝜌0 ∕ 𝐸 0 

(
𝑎 2 ∕ ℎ 

)
(62)

Likewise, the natural frequencies in this form hold as well for each

ide-to-thickness ratio a / h considered, in agreement with both E 0 and

0 , as in the density reference in Table 1 . 

Furthermore, 3D exact static solutions, within purely elastic or

lectro-elastic solutions, consider (as suitable) either a bi-sinusoidal ap-

lied load of intensity 𝜎0 or a bi-sinusoidal applied electric potential

f intensity 𝜙0 on the plate top surface, according to Eq. (16) with

 = 𝑞 = 𝜋∕ 𝑎, along with all zero loads on the plate bottom surface. More

pecifically, within electro-elastic static solutions, a unit value is as-
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Table 3 

Exact static solutions of the composite laminate (0 ∘/90 ∘/0 ∘) under an applied load (nondimensionalized); in part, 

shown by Pagano [1] . 

a / h z / h �̃� (0 , 𝑎 
2 
) �̃� ( 𝑎 

2 
, 0) �̃� ( 𝑎 

2 
, 
𝑎 

2 
) �̃�𝑥𝑧 (0 , 

𝑎 

2 
) �̃�𝑦𝑧 ( 

𝑎 

2 
, 0) �̃�𝑧𝑧 ( 

𝑎 

2 
, 
𝑎 

2 
) �̃�𝑥𝑥 ( 

𝑎 

2 
, 
𝑎 

2 
) �̃�𝑦𝑦 ( 

𝑎 

2 
, 
𝑎 

2 
) �̃�𝑥𝑦 (0 , 0) 

4 1/2 −0 . 9694 −2 . 2812 2.1216 0.0000 0.0000 1.0000 0.8008 0.0953 −0 . 0511 
1/6 0.3167 −0 . 6637 2.0416 0.2518 0.0892 0.7184 −0 . 2301 0.0298 −0 . 0055 
1/6 0.3167 −0 . 6637 2.0416 0.2518 0.0892 0.7184 0.0066 0.5341 −0 . 0055 
0 0.0521 0.0269 2.0059 0.2559 0.2172 0.4927 0.0059 −0 . 0119 0.0012 

−1∕6 −0 . 2418 0.7156 1.9803 0.2570 0.0758 0.2691 0.0062 −0 . 5563 0.0074 

−1∕6 −0 . 2418 0.7156 1.9803 0.2570 0.0758 0.2691 0.1900 −0 . 0164 0.0074 

−1∕2 0.9358 2.2794 1.9381 0.0000 0.0000 0.0000 −0 . 7548 −0 . 0792 0.0505 

10 1/2 −0 . 7351 −1 . 0995 0.7533 0.0000 0.0000 1.0000 0.5906 0.0429 −0 . 0288 
1/6 −0 . 0943 −0 . 3574 0.7537 0.3532 0.0478 0.7371 0.0794 0.0139 −0 . 0071 
1/6 −0 . 0943 −0 . 3574 0.7537 0.3532 0.0478 0.7371 0.0076 0.2845 −0 . 0071 
0 0.0036 0.0044 0.7530 0.3573 0.1228 0.4994 0.0011 −0 . 0019 0.0001 

−1∕6 0.1007 0.3661 0.7521 0.3543 0.0457 0.2620 −0 . 0054 −0 . 2882 0.0073 

−1∕6 0.1007 0.3661 0.7521 0.3543 0.0457 0.2620 −0 . 0814 −0 . 0117 0.0073 

−1∕2 0.7380 1.1066 0.7485 0.0000 0.0000 0.0000 −0 . 5898 −0 . 0407 0.0290 

100 1/2 −0 . 6780 −0 . 6823 0.4347 0.0000 0.0000 1.0000 0.5393 0.0269 −0 . 0214 
1/6 −0 . 2243 −0 . 2274 0.4347 0.3905 0.0336 0.7407 0.1784 0.0089 −0 . 0071 
1/6 −0 . 2243 −0 . 2274 0.4347 0.3905 0.0336 0.7407 0.0089 0.1808 −0 . 0071 
0 0.0000 0.0000 0.4347 0.3947 0.0828 0.5000 0.0000 0.0000 0.0000 

−1∕6 0.2244 0.2274 0.4347 0.3905 0.0336 0.2593 −0 . 0089 −0 . 1808 0.0071 

−1∕6 0.2244 0.2274 0.4347 0.3905 0.0336 0.2593 −0 . 1784 −0 . 0089 0.0071 

−1∕2 0.6781 0.6823 0.4347 0.0000 0.0000 0.0000 −0 . 5393 −0 . 0268 0.0214 

Table 4 

Exact static solutions of the sandwich plate with transversely isotropic soft core under an applied load (nondimen- 

sionalized); in part, shown by Pagano [1] . 

a / h z / h �̃� (0 , 𝑎 
2 
) �̃� ( 𝑎 

2 
, 0) �̃� ( 𝑎 

2 
, 
𝑎 

2 
) �̃�𝑥𝑧 (0 , 

𝑎 

2 
) �̃�𝑦𝑧 ( 

𝑎 

2 
, 0) �̃�𝑧𝑧 ( 

𝑎 

2 
, 
𝑎 

2 
) �̃�𝑥𝑥 ( 

𝑎 

2 
, 
𝑎 

2 
) �̃�𝑦𝑦 ( 

𝑎 

2 
, 
𝑎 

2 
) �̃�𝑥𝑦 (0 , 0) 

4 1/2 −1 . 8785 −7 . 2672 7.8137 0.0000 0.0000 1.0000 1.5558 0.2595 −0 . 1437 
2/5 0.3690 −4 . 9825 7.8129 0.2354 0.1007 0.9307 −0 . 2331 0.1687 −0 . 0725 
2/5 0.3690 −4 . 9825 7.8129 0.2354 0.1007 0.9307 0.0027 0.0081 −0 . 0023 
0 0.1406 0.3109 7.5962 0.2387 0.1072 0.5002 0.0005 0.0004 0.0002 

−2∕5 −0 . 3016 5.3996 7.5030 0.2364 0.1013 0.0689 −0 . 0013 −0 . 0070 0.0026 

−2∕5 −0 . 3016 5.3996 7.5030 0.2364 0.1013 0.0689 0.1963 −0 . 1666 0.0801 

−1∕2 1.8446 7.5805 7.4653 0.0000 0.0000 0.0000 −1 . 5121 −0 . 2533 0.1480 

10 1/2 −1 . 4299 −3 . 0689 2.2033 0.0000 0.0000 1.0000 1.1531 0.1104 −0 . 0707 
2/5 −0 . 7699 −2 . 3892 2.2056 0.2974 0.0493 0.9407 0.6279 0.0837 −0 . 0496 
2/5 −0 . 7699 −2 . 3892 2.2056 0.2974 0.0493 0.9407 0.0021 0.0037 −0 . 0016 
0 0.0050 0.0352 2.2004 0.2998 0.0527 0.5002 0.0001 0.0001 0.0000 

−2∕5 0.7742 2.4540 2.1977 0.2977 0.0495 0.0594 −0 . 0018 −0 . 0035 0.0016 

−2∕5 0.7742 2.4540 2.1977 0.2977 0.0495 0.0594 −0 . 6287 −0 . 0832 0.0507 

−1∕2 1.4315 3.1309 2.1944 0.0000 0.0000 0.0000 −1 . 1518 −0 . 1099 0.0717 

100 1/2 −1 . 3799 −1 . 3994 0.8924 0.0000 0.0000 1.0000 1.0975 0.0550 −0 . 0437 
2/5 −1 . 0998 −1 . 1191 0.8924 0.3221 0.0279 0.9430 0.8748 0.0439 −0 . 0349 
2/5 −1 . 0998 −1 . 1191 0.8924 0.3221 0.0279 0.9430 0.0019 0.0019 −0 . 0011 
0 0.0000 0.0003 0.8924 0.3240 0.0297 0.5000 0.0000 0.0000 0.0000 

−2∕5 1.0999 1.1198 0.8924 0.3221 0.0279 0.0570 −0 . 0018 −0 . 0019 0.0011 

−2∕5 1.0999 1.1198 0.8924 0.3221 0.0279 0.0570 −0 . 8748 −0 . 0439 0.0349 

−1∕2 1.3799 1.4001 0.8924 0.0000 0.0000 0.0000 −1 . 0975 −0 . 0550 0.0437 

s  

b  

e

4
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a  
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e  

o  
umed for either intensities, as in 𝜎0 = 1 Pa or 𝜙0 = 1 V, in order to

e consistent with the leading works by Heyliger [5] as well as Heyliger

t al. [40] . 

.1. Purely elastic solutions: Composite laminates and soft core sandwich 

lates 

Firstly, 3D exact static solutions are shown in Tables 3 , 4 , 5 regard-

ng, respectively, the composite laminate (0 ∘/90 ∘/0 ∘) and each of the

wo sandwich plates with soft core, all equally under a bi-sinusoidal

pplied load. In each table, the exact static solutions provide a detailed

hrough-thickness evaluation of all displacements and stresses, in nondi-

ensionalized form as established by Eq. (61) , considering three distinct

ide-to-thickness ratios 𝑎 ∕ ℎ = 4 , 10 , 100 , thus including thick, moderately

hick and even thin plates. 

In fact, the original benchmarks by Pagano [1] concerning both

he composite laminate (0 ∘/90 ∘/0 ∘) and the sandwich plate with trans-

ersely isotropic soft core are here much more thoroughly described in
ables 3 and 4 , with the evaluation of all displacements and stresses

t the top and bottom surfaces of each layer of the plate, and also in

he mid-surface, in sequence, for each side-to-thickness ratio considered.

ctually, this comprehensive evaluation is done likewise in Table 5 con-

erning the sandwich plate with isotropic soft core. 

Other than that, a more insightful description of the static be-

aviour of each multilayered plate can be provided by the exact through-

hickness distributions of displacements and stresses, all together. Since

oth original benchmarks by Pagano [1] are more widely known, this

urther description seems most relevant at this point for the sandwich

late with isotropic soft core, as shown in Fig. 2 , thus characterizing its

tatic behaviour. More precisely, Fig. 2 demonstrates the exact through-

hickness distributions of displacements and stresses, considering along-

ide each side-to-thickness ratio 𝑎 ∕ ℎ = 4 , 10 , 100 . 
As apparent in Fig. 2 the through-thickness distributions exhibit

uch more complicated effects when thick sandwich plates are consid-

red, and even heighten by a soft core. Naturally, an accurate modelling

f sandwich plates must be able to capture all of such through-thickness
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Table 5 

Exact static solutions of the sandwich plate with isotropic soft core under an applied load (nondimensionalized). 

a / h z / h �̃� (0 , 𝑎 
2 
) �̃� ( 𝑎 

2 
, 0) �̃� ( 𝑎 

2 
, 
𝑎 

2 
) �̃�𝑥𝑧 (0 , 

𝑎 

2 
) �̃�𝑦𝑧 ( 

𝑎 

2 
, 0) �̃�𝑧𝑧 ( 

𝑎 

2 
, 
𝑎 

2 
) �̃�𝑥𝑥 ( 

𝑎 

2 
, 
𝑎 

2 
) �̃�𝑦𝑦 ( 

𝑎 

2 
, 
𝑎 

2 
) �̃�𝑥𝑦 (0 , 0) 

4 1/2 −4 . 0865 −10 . 689 24.338 0.0000 0.0000 1.0000 3.3213 0.3846 −0 . 2321 
2/5 3.2657 −3 . 2566 24.339 0.1568 0.1107 0.9039 −2 . 5280 0.0912 0.0001 

2/5 3.2657 −3 . 2566 24.339 0.1568 0.1107 0.9039 0.0347 0.0406 0.0000 

0 2.5515 3.7181 22.801 0.1849 0.1417 0.5241 0.0158 0.0147 0.0028 

−2∕5 −2 . 7869 6.3026 21.952 0.1943 0.1455 0.1018 0.0046 −0 . 0035 0.0016 

−2∕5 −2 . 7869 6.3026 21.952 0.1943 0.1455 0.1018 2.1467 −0 . 1749 0.0552 

−1∕2 3.8044 12.927 21.900 0.0000 0.0000 0.0000 −3 . 0972 −0 . 4371 0.2628 

10 1/2 −1 . 7017 −6 . 0228 5.6548 0.0000 0.0000 1.0000 1.3904 0.2056 −0 . 1213 
2/5 0.0432 −4 . 2680 5.6588 0.2472 0.0831 0.9352 0.0025 0.1364 −0 . 0664 
2/5 0.0432 −4 . 2680 5.6588 0.2472 0.0831 0.9352 0.0087 0.0126 −0 . 0019 
0 0.0815 0.3212 5.6407 0.2557 0.0938 0.5055 0.0031 0.0028 0.0002 

−2∕5 −0 . 0161 4.7822 5.6057 0.2546 0.0900 0.0669 −0 . 0024 −0 . 0067 0.0021 

−2∕5 −0 . 0161 4.7822 5.6057 0.2546 0.0900 0.0669 −0 . 0248 −0 . 1503 0.0749 

−1∕2 1.7113 6.5185 5.6004 0.0000 0.0000 0.0000 −1 . 3987 −0 . 2188 0.1293 

100 1/2 −1 . 3804 −1 . 4600 0.9365 0.0000 0.0000 1.0000 1.0984 0.0569 −0 . 0446 
2/5 −1 . 0865 −1 . 1659 0.9365 0.3209 0.0286 0.9429 0.8647 0.0453 −0 . 0354 
2/5 −1 . 0865 −1 . 1659 0.9365 0.3209 0.0286 0.9429 0.0024 0.0025 −0 . 0010 
0 0.0001 0.0026 0.9366 0.3231 0.0308 0.5001 0.0000 0.0000 0.0000 

−2∕5 1.0867 1.1711 0.9365 0.3210 0.0287 0.0571 −0 . 0023 −0 . 0024 0.0010 

−2∕5 1.0867 1.1711 0.9365 0.3210 0.0287 0.0571 −0 . 8649 −0 . 0454 0.0355 

−1∕2 1.3806 1.4652 0.9365 0.0000 0.0000 0.0000 −1 . 0986 −0 . 0570 0.0447 

Fig. 2. Exact static solutions of the sandwich plate with isotropic soft core under an applied load, using 𝑎 ∕ ℎ = 4 , 10 , 100 : through-thickness distributions of displace- 

ments and stresses (nondimensionalized). 
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Table 6 

Exact free vibration solutions of the composite laminate (0 ∘/90 ∘/0 ∘): first twenty natural frequencies (nondimensionalized) and associated 

modes ( n x , n y )–N z (in-plane mode and thickness mode number). 

a / h 

�̃� 1 
�̃� 11 

�̃� 2 
�̃� 12 

�̃� 3 
�̃� 13 

�̃� 4 
�̃� 14 

�̃� 5 
�̃� 15 

�̃� 6 
�̃� 16 

�̃� 7 
�̃� 17 

�̃� 8 
�̃� 18 

�̃� 9 
�̃� 19 

�̃� 10 
�̃� 20 

4 6.9161 8.8858 8.8858 11.5417 14.0593 16.8943 17.7539 17.7715 17.7715 21.6489 

(1,1)–1 (0,1) –1 (1,0) –1 (1,2)–1 (2,1)–1 (2,2)–1 (1,3)–1 (0,2) –1 (2,0) –1 (2,3)–1 

21.8020 23.7802 24.3201 26.6573 26.6573 27.0272 27.3102 27.3922 29.3163 29.4744 

(3,1)–1 (3,2)–1 (1,4)–1 (0,3) –1 (3,0) –1 (0,1) –2 (2,4)–1 (3,3)–1 (1,0) –2 (1,1)–2 

10 11.4573 18.2120 22.2144 22.2144 28.1818 30.5643 31.8919 40.5370 44.4288 44.4288 

(1,1)–1 (1,2)–1 (0,1) –1 (1,0) –1 (2,1)–1 (1,3)–1 (2,2)–1 (2,3)–1 (0,2) –1 (2,0) –1 

45.6518 46.3135 48.8648 53.0403 55.0841 61.9544 64.9684 65.2176 66.6432 66.6432 

(1,4)–1 (3,1)–1 (3,2)–1 (2,4)–1 (3,3)–1 (1,5)–1 (3,4)–1 (4,1)–1 (0,3) –1 (3,0) –1 

Table 7 

Exact free vibration solutions of the sandwich plate with transversely isotropic soft core: first twenty natural frequencies (nondimensional- 

ized) and associated modes ( n x , n y )–N z (in-plane mode and thickness mode number). 

a / h 

�̃� 1 
�̃� 11 

�̃� 2 
�̃� 12 

�̃� 3 
�̃� 13 

�̃� 4 
�̃� 14 

�̃� 5 
�̃� 15 

�̃� 6 
�̃� 16 

�̃� 7 
�̃� 17 

�̃� 8 
�̃� 18 

�̃� 9 
�̃� 19 

�̃� 10 
�̃� 20 

4 6.7059 7.9661 7.9665 10.8667 12.8849 13.8219 15.5166 16.3804 15.8704 15.8739 

(1,1)–1 (1,0) –1 (0,1) –1 (1,2)–1 (2,1)–1 (1,1)–2 (2,2)–1 (1,3)–1 (2,0) –1 (0,2) –1 

19.4201 19.7453 19.9399 20.1002 20.1919 21.7811 22.1463 23.6399 23.6523 23.7642 

(2,1)–2 (2,3)–1 (3,1)–1 (1,0) –2 (0,1) –2 (3,2)–1 (1,4)–1 (3,0) –1 (0,3) –1 (1,2)–2 

10 12.6425 18.6896 19.9361 19.9362 28.1824 29.8259 31.7268 34.6661 39.5603 39.8484 

(1,1)–1 (1,2)–1 (1,0) –1 (0,1) –1 (2,1)–1 (1,3)–1 (2,2)–1 (1,1)–2 (2,3)–1 (2,0) –1 

39.8497 43.4986 43.9708 46.6039 48.8918 50.7665 52.4464 58.2430 59.7124 59.7170 

(0,2) –1 (1,4)–1 (3,1)–1 (3,2)–1 (2,1)–2 (2,4)–1 (3,3)–1 (1,5)–1 (3,0) –1 (0,3) –1 

Table 8 

Exact free vibration solutions of the sandwich plate with isotropic soft core: first twenty natural frequencies (nondimensionalized) and 

associated modes ( n x , n y )–N z (in-plane mode and thickness mode number). 

a / h 

�̃� 1 
�̃� 11 

�̃� 2 
�̃� 12 

�̃� 3 
�̃� 13 

�̃� 4 
�̃� 14 

�̃� 5 
�̃� 15 

�̃� 6 
�̃� 16 

�̃� 7 
�̃� 17 

�̃� 8 
�̃� 18 

�̃� 9 
�̃� 19 

�̃� 10 
�̃� 20 

4 3.9816 6.2393 7.6986 7.8822 7.8827 8.8764 8.9849 11.2201 11.8853 12.3319 

(1,1)–1 (1,2)–1 (2,1)–1 (1,0) –1 (0,1) –1 (2,2)–1 (1,3)–1 (2,3)–1 (1,4)–1 (1,0) –2 

12.3394 13.0277 13.7064 13.9733 14.9071 15.1467 15.4493 15.4537 16.4588 17.4374 

(0,1) –2 (3,1)–1 (2,4)–1 (3,2)–1 (1,5)–1 (3,3)–1 (2,0) –1 (0,2) –1 (2,5)–1 (3,4)–1 

10 9.5920 12.8150 15.5812 19.6029 19.6576 19.8010 19.8011 23.9314 24.2850 26.5655 

(1,1)–1 (1,2)–1 (2,1)–1 (2,2)–1 (1,3)–1 (1,0) –1 (0,1) –1 (2,3)–1 (3,1)–1 (3,2)–1 

26.9739 30.2100 30.4055 34.2412 34.3893 35.6415 36.0171 36.9740 39.0782 39.4944 

(1,4)–1 (2,4)–1 (3,3)–1 (4,1)–1 (1,5)–1 (3,4)–1 (4,2)–1 (2,5)–1 (4,3)–1 (2,0) –1 
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ffects, namely the zig-zag form of displacements and the interlaminar

ontinuity of transverse stresses. In short, this can be translated into 𝐶 0 
𝑧 

nterlaminar continuity requirements of displacements and transverse

tresses, as highlighted early on by Carrera [23–25] . 

In addition, 3D exact free vibration solutions are shown in

ables 6 , 7 , 8 regarding, once again respectively, the composite lami-

ate (0 ∘/90 ∘/0 ∘) and each of the two sandwich plates with soft core.

n each table, the free vibration solutions reveal the first twenty natu-

al frequencies, in nondimensionalized form as stated by Eq. (62) , along

ith the associated modes of natural vibration, considering two distinct

ide-to-thickness ratios 𝑎 ∕ ℎ = 4 , 10 , thus including both thick and mod-

rately thick plates. More specifically, for each natural frequency, the

orresponding in-plane mode ( n x , n y ) is reported, which also includes

pecial modes for either 𝑛 𝑥 = 0 or 𝑛 𝑦 = 0 , together with the thickness mode

umber of each pair ( n x , n y ). 

As shown in Tables 6,7,8 , the special modes are, in fact, a signifi-

ant part of the first twenty natural modes of vibration of each (simply

upported) multilayered plate, and even more so when thick plates are

onsidered. As it turns out, for thick plates most notably, among the

rst twenty modes of vibration of each multilayered plate, about six up

o eight modes correspond to special modes , although, as the plate be-

omes less thick, this proportion of special modes among the first twenty

odes of vibration tends to decrease somewhat. Actually, the lower

atural frequencies corresponding to special modes , namely either the
air (0,1) or (1,0), can occur immediately as the second lowest nat-

ral frequency when thick plates are considered, as demonstrated in

ables 6 and 7 . Therefore, even though often overlooked, the signifi-

ance of special modes for thick (simply supported) multilayered plates

s quite undeniable, as emphasized first by Batra and Aimmanee [10] .

oreover, Tables 6,7,8 also reveal, for thick plates most especially, that

or each pair ( n x , n y ) at least up to the second thickness mode can appear

mong the first twenty modes of vibration of each multilayered plate,

hus it cannot be disregarded. In fact, for each thick plate considered,

bout two up to five modes of vibration among the first twenty modes

orrespond to a second thickness mode . This is particularly pronounced

n the free vibration behaviour of the sandwich plate with transversely

sotropic soft core, as shown in Table 7 and further characterized in

ig. 3 . 

In more detail, Fig. 3 focuses on a few modes of natural vibration

o bring light into the first few through-thickness mode shapes of each

n-plane mode ( n x , n y ). It includes for the in-plane mode (1,1), the first

hree thickness modes of the transverse displacement w , and likewise for

he in-plane mode (2,1), the first two thickness modes . As demonstrated

n Fig. 3 , for each in-plane mode, such as (1,1) or (2,1), the natural

odes of vibration from the second thickness mode onwards, rather ex-

ose the transverse normal compressibility of the sandwich plate, as

ostly due to its soft core. Aside from that, Fig. 3 also includes, for the

pecial mode (1,0), the first two thickness modes of the in-plane displace-
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Fig. 3. Exact free vibration solutions of the sandwich plate with transversely isotropic soft core, using 𝑎 ∕ ℎ = 4 : a few natural frequencies (nondimensionalized) and 

associated modes, characterizing the first few through-thickness modes of each in-plane mode. 
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c

ent v . Thus, apparently, for each special mode , such as (1,0) or (0,1),

he natural modes of vibration from the second thickness mode onwards,

urther expose the effect of transverse shear of the sandwich plate, as

rising mainly from its soft core. 

Most noteworthy, comparing the free vibration behaviour of both

andwich plates, reported in Tables 7 and 8 , which differ only on the

ore material, as detailed in Table 1 , clearly indicates that the degree

f the core compressibility plays a key role on the occurrence of higher

hickness modes among the lower natural frequencies. In short, the sig-

ificance of thickness modes , from the second onwards, among the first

wenty, or more, modes of vibration of any multilayered plate is ap-

arently greatly influenced by the degree of sensitivity to the effects of

ransverse shear and normal compressibility of the plate. This gives rea-
on to the relevance of thickness modes when thick plates are considered,

nd most especially sandwich plates exhibiting high core compressibil-

ty. 

.2. Electro-elastic solutions: Piezoelectric composite laminates 

The following 3D exact electro-elastic static solutions of each of the

hree piezoelectric composite laminates, under either a bi-sinusoidal ap-

lied load or a bi-sinusoidal applied electric potential (of a unit value),

re now shown in a series of six tables, namely Tables 9 , 10 , 11 , 12 , 13 , 14 ,

very two tables for each laminate in line with either sensor or actuator

onfiguration, respectively. 
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Table 9 

Exact static solutions of the piezoelectric composite laminate (PZT-4/0 ∘/90 ∘/PZT-4) under an applied load (in SI units); in part, shown by Heyliger [5] . 

a / h z / h 

u · 10 12 

(0 , 𝑎 
2 
) 

v · 10 12 

( 𝑎 
2 
, 0) 

w · 10 11 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜙 · 10 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xz · 10 

(0 , 𝑎 
2 
) 

𝜎yz · 10 

( 𝑎 
2 
, 0) 

𝜎zz · 10 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xx 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎yy 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xy 

(0 , 0) 
D x · 10 12 

(0 , 𝑎 
2 
) 

D y · 10 12 

( 𝑎 
2 
, 0) 

D z · 10 13 

( 𝑎 
2 
, 
𝑎 

2 
) 

4 1/2 −55 . 506 −47 . 552 31.525 0.0000 0.0000 0.0000 10.000 6.9464 6.5642 −2 . 4768 0.0000 0.0000 160.58 

2/5 −31 . 746 −23 . 733 31.761 0.0598 5.7901 5.4892 9.5153 4.0258 3.6408 −1 . 3334 196.60 181.65 −0 . 3384 
2/5 −31 . 746 −23 . 733 31.761 0.0598 5.7901 5.4892 9.5153 0.7907 2.8857 −0 . 2464 −0 . 1249 −0 . 1457 −0 . 3384 
0 −12 . 064 20.394 30.029 0.0611 7.7429 6.8712 4.9831 0.3085 −1 . 9267 0.0370 −0 . 1274 −0 . 1487 0.5053 

0 −12 . 064 20.394 30.029 0.0611 7.7429 6.8712 4.9831 1.3977 0.0991 0.0370 −0 . 1487 −0 . 1274 0.5053 

−2∕5 25.619 39.313 28.766 0.0756 5.4609 5.9752 0.4867 −2 . 7387 −0 . 3617 0.2883 −0 . 1840 −0 . 1578 1.4590 

−2∕5 25.619 39.313 28.766 0.0756 5.4609 5.9752 0.4867 −3 . 5769 −4 . 2348 1.5605 156.24 181.80 1.4590 

−1∕2 47.089 60.683 28.428 0.0000 0.0000 0.0000 0.0000 −6 . 2126 −6 . 8658 2.5901 0.0000 0.0000 −142 . 46 
10 1/2 −929 . 59 −552 . 49 578.94 0.0000 0.0000 0.0000 10.000 40.023 32.776 −14 . 248 0.0000 0.0000 139.12 

2/5 −750 . 11 −372 . 56 580.91 0.4434 15.129 12.851 9.5404 31.287 24.031 −10 . 793 481.75 368.57 −0 . 4125 
2/5 −750 . 11 −372 . 56 580.91 0.4434 15.129 12.851 9.5404 3.3243 16.521 −1 . 9940 −0 . 3700 −0 . 4317 −0 . 4125 
0 −212 . 98 227.27 582.15 0.4448 18.923 18.542 5.0065 0.7867 −9 . 1428 0.0254 −0 . 3712 −0 . 4330 0.5936 

0 −212 . 98 227.27 582.15 0.4448 18.923 18.542 5.0065 8.8940 −0 . 3492 0.0254 −0 . 4330 −0 . 3712 0.5936 

−2∕5 383.45 764.08 577.96 0.4614 12.939 15.235 0.4625 −16 . 628 −2 . 8835 2.0382 −0 . 4492 −0 . 3850 1.6201 

−2∕5 383.45 764.08 577.96 0.4614 12.939 15.235 0.4625 −24 . 103 −31 . 418 11.031 361.99 476.09 1.6201 

−1∕2 562.43 942.61 575.89 0.0000 0.0000 0.0000 0.0000 −32 . 802 −40 . 109 14.468 0.0000 0.0000 −135 . 96 
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Table 10 

Exact static solutions of the piezoelectric composite laminate (PZT-4/0 ∘/90 ∘/PZT-4) under an applied potential (in SI units); in part, shown by Heyliger [5] . 

a / h z / h 

u · 10 12 

(0 , 𝑎 
2 
) 

v · 10 12 

( 𝑎 
2 
, 0) 

w · 10 12 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜙

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xz · 10 3 

(0 , 𝑎 
2 
) 

𝜎yz · 10 3 

( 𝑎 
2 
, 0) 

𝜎zz · 10 3 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xx · 10 2 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎yy · 10 2 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xy · 10 2 

(0 , 0) 
D x · 10 10 

(0 , 𝑎 
2 
) 

D y · 10 10 

( 𝑎 
2 
, 0) 

D z · 10 11 

( 𝑎 
2 
, 
𝑎 

2 
) 

4 1/2 −28 . 002 −32 . 765 −16 . 058 1.0000 0.0000 0.0000 0.0000 88.918 111.80 −146 . 04 −152 . 21 −152 . 21 −241 . 84 
2/5 9.5340 4.7353 −13 . 956 0.9929 38.247 56.266 −7 . 5347 −102 . 91 −79 . 852 34.294 −150 . 94 −150 . 85 −4 . 1875 
2/5 9.5340 4.7353 −13 . 956 0.9929 38.247 56.266 −7 . 5347 −9 . 4310 −51 . 677 6.3361 −0 . 2071 −0 . 2417 −4 . 1875 
0 2.7374 0.0297 −14 . 707 0.4477 8.2398 −23 . 857 −14 . 605 −3 . 0553 −1 . 3928 1.2287 −0 . 0934 −0 . 1090 −3 . 1825 
0 2.7374 0.0297 −14 . 707 0.4477 8.2398 −23 . 857 −14 . 605 −29 . 126 −1 . 3087 1.2287 −0 . 1090 −0 . 0934 −3 . 1825 
−2∕5 −0 . 7427 −1 . 7835 −14 . 415 −0 . 0001 −19 . 463 −23 . 371 −1 . 8720 8.0547 1.5720 −1 . 1217 0.0000 0.0000 −2 . 8702 
−2∕5 −0 . 7427 −1 . 7835 −14 . 415 −0 . 0001 −19 . 463 −23 . 371 −1 . 8720 9.5233 14.524 −6 . 0713 −0 . 0809 −0 . 1003 −2 . 8702 
−1∕2 −1 . 8287 −2 . 8618 −14 . 246 0.0000 0.0000 0.0000 0.0000 22.821 27.784 −11 . 273 0.0000 0.0000 −2 . 7935 

10 1/2 −12 . 022 −13 . 407 −13 . 912 1.0000 0.0000 0.0000 0.0000 14.141 16.803 −24 . 445 −60 . 885 −60 . 885 −41 . 680 
2/5 3.1351 1.7484 −13 . 533 0.9987 2.6520 3.4886 −0 . 1956 −16 . 999 −14 . 334 4.6946 −60 . 791 −60 . 787 −3 . 4653 
2/5 3.1351 1.7484 −13 . 533 0.9987 2.6520 3.4886 −0 . 1956 −1 . 2165 −7 . 5678 0.8674 −0 . 0833 −0 . 0972 −3 . 4653 
0 1.2395 0.0398 −13 . 697 0.4910 0.9355 −1 . 9643 −0 . 3946 −0 . 4437 −0 . 2816 0.2272 −0 . 0410 −0 . 0478 −3 . 2966 
0 1.2395 0.0398 −13 . 697 0.4910 0.9355 −1 . 9643 −0 . 3946 −5 . 1966 −0 . 1341 0.2272 −0 . 0478 −0 . 0410 −3 . 2966 
−2∕5 −0 . 4221 −1 . 4665 −13 . 664 0.0002 −1 . 0165 −1 . 6466 −0 . 0466 1.8816 0.5299 −0 . 3354 0.0000 0.0000 −3 . 2409 
−2∕5 −0 . 4221 −1 . 4665 −13 . 664 0.0002 −1 . 0165 −1 . 6466 −0 . 0466 −0 . 0175 1.9895 −1 . 8156 −0 . 0148 −0 . 0179 −3 . 2409 
−1∕2 −0 . 8469 −1 . 8900 −13 . 596 0.0000 0.0000 0.0000 0.0000 2.0456 4.0503 −2 . 6310 0.0000 0.0000 −3 . 2357 
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Table 11 

Exact static solutions of the piezoelectric composite laminate (PZT-4/0 ∘/90 ∘/0 ∘/PZT-4) under an applied load (in SI units). 

a / h z / h 

u · 10 12 

(0 , 𝑎 
2 
) 

v · 10 12 

( 𝑎 
2 
, 0) 

w · 10 11 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜙 · 10 3 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xz 

(0 , 𝑎 
2 
) 

𝜎yz 

( 𝑎 
2 
, 0) 

𝜎zz 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xx 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎yy 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xy 

(0 , 0) 
D x · 10 12 

(0 , 𝑎 
2 
) 

D y · 10 12 

( 𝑎 
2 
, 0) 

D z · 10 12 

( 𝑎 
2 
, 
𝑎 

2 
) 

4 1/2 −0 . 4895 −0 . 5135 0.3131 0.0000 0.0000 0.0000 1.0000 6.5304 6.6454 −2 . 4105 0.0000 0.0000 15.650 

2/5 −0 . 2530 −0 . 2771 0.3153 0.0576 0.5421 0.5512 0.9529 3.6267 3.7425 −1 . 2740 181.76 186.26 −0 . 0327 
2/5 −0 . 2530 −0 . 2771 0.3153 0.0576 0.5421 0.5512 0.9529 3.0418 0.7603 −0 . 2354 −0 . 1401 −0 . 1201 −0 . 0327 
2/15 0.0407 −0 . 0987 0.3027 0.0570 0.8386 0.6965 0.6633 −0 . 1667 0.4052 −0 . 0258 −0 . 1387 −0 . 1189 0.0211 

2/15 0.0407 −0 . 0987 0.3027 0.0570 0.8386 0.6965 0.6633 0.3153 1.2613 −0 . 0258 −0 . 1189 −0 . 1387 0.0211 

0 0.0392 0.0419 0.2972 0.0587 0.8650 0.7463 0.4970 0.2052 −0 . 2671 0.0360 −0 . 1225 −0 . 1429 0.0484 

−2∕15 0.0259 0.1848 0.2928 0.0619 0.8745 0.6324 0.3321 0.1054 −1 . 8168 0.0936 −0 . 1291 −0 . 1506 0.0769 

−2∕15 0.0259 0.1848 0.2928 0.0619 0.8745 0.6324 0.3321 −0 . 1890 0.0029 0.0936 −0 . 1506 −0 . 1291 0.0769 

−2∕5 0.2748 0.3420 0.2856 0.0727 0.5369 0.5621 0.0469 −2 . 9237 −0 . 3230 0.2739 −0 . 1769 −0 . 1516 0.1401 

−2∕5 0.2748 0.3420 0.2856 0.0727 0.5369 0.5621 0.0469 −3 . 5488 −3 . 8716 1.4825 156.17 168.70 0.1401 

−1∕2 0.4881 0.5548 0.2824 0.0000 0.0000 0.0000 0.0000 −6 . 1678 −6 . 4882 2.5065 0.0000 0.0000 −13 . 728 
10 1/2 −6 . 5396 −6 . 9134 5.3701 0.0000 0.0000 0.0000 1.0000 32.727 33.445 −12 . 933 0.0000 0.0000 12.650 

2/5 −4 . 8721 −5 . 2463 5.3878 0.4003 1.2562 1.2788 0.9583 24.618 25.337 −9 . 7270 380.44 391.65 −0 . 0312 
2/5 −4 . 8721 −5 . 2463 5.3878 0.4003 1.2562 1.2788 0.9583 21.129 2.6544 −1 . 7972 −0 . 3898 −0 . 3341 −0 . 0312 
2/15 −1 . 2853 −1 . 7812 5.3962 0.4003 2.4635 1.5306 0.6735 5.7576 1.0442 −0 . 5447 −0 . 3897 −0 . 3340 0.0294 

2/15 −1 . 2853 −1 . 7812 5.3962 0.4003 2.4635 1.5306 0.6735 0.9162 7.7892 −0 . 5447 −0 . 3340 −0 . 3897 0.0294 

0 0.0557 0.0907 5.3933 0.4025 2.4981 1.6997 0.5005 0.2224 −0 . 2039 0.0260 −0 . 3359 −0 . 3919 0.0598 

−2∕15 1.3915 1.9629 5.3864 0.4063 2.4800 1.5113 0.3275 −0 . 4696 −8 . 1974 0.5958 −0 . 3390 −0 . 3955 0.0904 

−2∕15 1.3915 1.9629 5.3864 0.4063 2.4800 1.5113 0.3275 −5 . 8566 −0 . 6170 0.5958 −0 . 3955 −0 . 3390 0.0904 

−2∕5 4.9565 5.4140 5.3584 0.4185 1.2638 1.2914 0.0420 −21 . 136 −2 . 2210 1.8420 −0 . 4074 −0 . 3492 0.1528 

−2∕5 4.9565 5.4140 5.3584 0.4185 1.2638 1.2914 0.0420 −24 . 649 −25 . 528 9.9695 373.18 386.89 0.1528 

−1∕2 6.6147 7.0716 5.3396 0.0000 0.0000 0.0000 0.0000 −32 . 712 −33 . 590 13.157 0.0000 0.0000 −12 . 337 
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Table 12 

Exact static solutions of the piezoelectric composite laminate (PZT-4/0 ∘/90 ∘/0 ∘/PZT-4) under an applied potential (in SI units). 

a / h z / h 

u · 10 12 

(0 , 𝑎 
2 
) 

v · 10 12 

( 𝑎 
2 
, 0) 

w · 10 11 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜙

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xz 

(0 , 𝑎 
2 
) 

𝜎yz 

( 𝑎 
2 
, 0) 

𝜎zz 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xx 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎yy 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xy 

(0 , 0) 
D x · 10 8 

(0 , 𝑎 
2 
) 

D y · 10 8 

( 𝑎 
2 
, 0) 

D z · 10 8 

( 𝑎 
2 
, 
𝑎 

2 
) 

4 1/2 −32 . 461 −28 . 943 −1 . 5650 1.0000 0.0000 0.0000 0.0000 112.68 95.779 −147 . 57 −152 . 21 −152 . 21 −24 . 183 
2/5 5.0703 8.6139 −1 . 3523 0.9930 5.7957 4.4650 −0 . 7857 −79 . 342 −96 . 367 32.887 −150 . 85 −150 . 92 −0 . 4188 
2/5 5.0703 8.6139 −1 . 3523 0.9930 5.7957 4.4650 −0 . 7857 −55 . 001 −8 . 7343 6.0763 −0 . 2417 −0 . 2072 −0 . 4188 
2/15 1.6080 3.3055 −1 . 4096 0.6134 −2 . 0500 2.3233 −1 . 7107 −18 . 085 −3 . 9834 2.1818 −0 . 1493 −0 . 1280 −0 . 3433 
2/15 1.6080 3.3055 −1 . 4096 0.6134 −2 . 0500 2.3233 −1 . 7107 −2 . 8884 −35 . 472 2.1818 −0 . 1280 −0 . 1493 −0 . 3433 
0 0.9736 1.6621 −1 . 4100 0.4477 −2 . 4738 −0 . 5933 −1 . 5459 −1 . 9333 −18 . 116 1.1704 −0 . 0934 −0 . 1090 −0 . 3183 
−2∕15 0.4633 0.5086 −1 . 4052 0.2927 −2 . 7123 −1 . 9004 −1 . 1305 −1 . 0587 −5 . 8132 0.4316 −0 . 0611 −0 . 0712 −0 . 3008 
−2∕15 0.4633 0.5086 −1 . 4052 0.2927 −2 . 7123 −1 . 9004 −1 . 1305 −5 . 3493 −1 . 0879 0.4316 −0 . 0712 −0 . 0611 −0 . 3008 
−2∕5 −1 . 2088 −0 . 9850 −1 . 3883 −0 . 0001 −1 . 9391 −1 . 8550 −0 . 1673 12.768 0.9991 −0 . 9741 0.0000 0.0000 −0 . 2870 
−2∕5 −1 . 2088 −0 . 9850 −1 . 3883 −0 . 0001 −1 . 9391 −1 . 8550 −0 . 1673 10.559 9.4835 −5 . 2723 −0 . 0855 −0 . 0813 −0 . 2870 
−1∕2 −2 . 2532 −2 . 0310 −1 . 3728 0.0000 0.0000 0.0000 0.0000 23.370 22.303 −10 . 296 0.0000 0.0000 −0 . 2799 

10 1/2 −13 . 207 −12 . 615 −1 . 2650 1.0000 0.0000 0.0000 0.0000 16.993 15.856 −24 . 823 −60 . 885 −60 . 885 −4 . 1679 
2/5 1.9882 2.5802 −1 . 2265 0.9987 0.3625 0.3268 −0 . 0208 −14 . 335 −15 . 473 4.3918 −60 . 787 −60 . 789 −0 . 3465 
2/5 1.9882 2.5802 −1 . 2265 0.9987 0.3625 0.3268 −0 . 0208 −8 . 5253 −1 . 0483 0.8114 −0 . 0972 −0 . 0833 −0 . 3465 
2/15 0.9345 1.3537 −1 . 2383 0.6575 −0 . 2067 0.2090 −0 . 0464 −4 . 0317 −0 . 5588 0.4064 −0 . 0640 −0 . 0549 −0 . 3340 
2/15 0.9345 1.3537 −1 . 2383 0.6575 −0 . 2067 0.2090 −0 . 0464 −0 . 4506 −5 . 7490 0.4064 −0 . 0549 −0 . 0640 −0 . 3340 
0 0.4973 0.8113 −1 . 2410 0.4910 −0 . 2348 0.0038 −0 . 0412 −0 . 2554 −3 . 4453 0.2324 −0 . 0410 −0 . 0478 −0 . 3297 
−2∕15 0.0668 0.3046 −1 . 2421 0.3264 −0 . 2477 −0 . 1013 −0 . 0286 −0 . 0617 −1 . 2885 0.0660 −0 . 0272 −0 . 0318 −0 . 3266 
−2∕15 0.0668 0.3046 −1 . 2421 0.3264 −0 . 2477 −0 . 1013 −0 . 0286 −0 . 3144 −0 . 1231 0.0660 −0 . 0318 −0 . 0272 −0 . 3266 
−2∕5 −0 . 8773 −0 . 6625 −1 . 2399 0.0002 −0 . 0984 −0 . 0855 −0 . 0033 3.7183 0.2947 −0 . 2735 0.0000 0.0000 −0 . 3241 
−2∕5 −0 . 8773 −0 . 6625 −1 . 2399 0.0002 −0 . 0984 −0 . 0855 −0 . 0033 0.3484 −0 . 0643 −1 . 4802 −0 . 0154 −0 . 0148 −0 . 3241 
−1∕2 −1 . 2623 −1 . 0478 −1 . 2337 0.0000 0.0000 0.0000 0.0000 2.2205 1.8083 −2 . 2208 0.0000 0.0000 −0 . 3236 
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Table 13 

Exact static solutions of the piezoelectric composite laminate (PVDF/90 ∘/0 ∘/90 ∘/PVDF) under an applied load (in SI units); in part, shown by Heyliger et al. [40] . 

a / h z / h 

u · 10 12 

(0 , 𝑎 
2 
) 

v · 10 12 

( 𝑎 
2 
, 0) 

w · 10 11 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜙 · 10 3 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xz 

(0 , 𝑎 
2 
) 

𝜎yz 

( 𝑎 
2 
, 0) 

𝜎zz 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xx 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎yy 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xy 

(0 , 0) 
D x · 10 12 

(0 , 𝑎 
2 
) 

D y · 10 12 

( 𝑎 
2 
, 0) 

D z · 10 12 

( 𝑎 
2 
, 
𝑎 

2 
) 

4 1/2 −0 . 5301 −0 . 7759 0.3791 0.0000 0.0000 0.0000 1.0000 10.335 1.7726 −0 . 6595 0.0000 0.0000 −1 . 2758 
2/5 −0 . 3181 −0 . 5201 0.3722 0.2785 0.6756 0.1587 0.9647 6.2992 1.2367 −0 . 4233 −3 . 9568 −3 . 0595 −0 . 9899 
2/5 −0 . 3181 −0 . 5201 0.3722 0.2785 0.6756 0.1587 0.9647 0.8554 5.8445 −0 . 3722 −0 . 5810 −0 . 6778 −0 . 9899 
2/15 −0 . 1248 −0 . 0268 0.3606 0.1909 0.8526 0.8117 0.6803 0.4495 0.5500 −0 . 0673 −0 . 3982 −0 . 4646 −0 . 7695 
2/15 −0 . 1248 −0 . 0268 0.3606 0.1909 0.8526 0.8117 0.6803 1.5539 0.3863 −0 . 0673 −0 . 4646 −0 . 3982 −0 . 7695 
0 0.0368 0.0409 0.3553 0.1544 0.9223 0.8441 0.4987 −0 . 2140 0.2056 0.0345 −0 . 3757 −0 . 3221 −0 . 6879 
−2∕15 0.1994 0.0968 0.3507 0.1215 0.8005 0.8480 0.3180 −1 . 9888 0.0352 0.1315 −0 . 2958 −0 . 2536 −0 . 6227 
−2∕15 0.1994 0.0968 0.3507 0.1215 0.8005 0.8480 0.3180 −0 . 0310 −0 . 9376 0.1315 −0 . 2536 −0 . 2958 −0 . 6227 
−2∕5 0.3614 0.5466 0.3426 0.0639 0.7026 0.1477 0.0356 −0 . 4004 −5 . 7705 0.4032 −0 . 1332 −0 . 1554 −0 . 5357 
−2∕5 0.3614 0.5466 0.3426 0.0639 0.7026 0.1477 0.0356 −6 . 8924 −1 . 0979 0.4585 −2 . 1520 −1 . 2193 −0 . 5357 
−1∕2 0.5444 0.7784 0.3406 0.0000 0.0000 0.0000 0.0000 −10 . 381 −1 . 5819 0.6680 0.0000 0.0000 −0 . 3939 

10 1/2 −8 . 2443 −9 . 0228 6.7157 0.0000 0.0000 0.0000 1.0000 62.792 7.7540 −3 . 4880 0.0000 0.0000 −0 . 9744 
2/5 −6 . 3519 −6 . 9887 6.7171 0.5644 1.8357 0.3131 0.9648 48.426 6.0402 −2 . 6948 −6 . 1349 −3 . 3381 −0 . 8201 
2/5 −6 . 3519 −6 . 9887 6.7171 0.5644 1.8357 0.3131 0.9648 3.2054 30.066 −2 . 3695 −0 . 4710 −0 . 5495 −0 . 8201 
2/15 −2 . 2088 −1 . 9843 6.7326 0.4862 2.1512 2.0438 0.6836 1.2513 8.7167 −0 . 7448 −0 . 4057 −0 . 4733 −0 . 7406 
2/15 −2 . 2088 −1 . 9843 6.7326 0.4862 2.1512 2.0438 0.6836 9.6366 1.1934 −0 . 7448 −0 . 4733 −0 . 4057 −0 . 7406 
0 0.0700 0.0695 6.7306 0.4499 2.3648 2.0884 0.5007 −0 . 1181 0.2195 0.0248 −0 . 4380 −0 . 3754 −0 . 7052 
−2∕15 2.3481 2.1182 6.7228 0.4153 2.1392 2.0601 0.3177 −9 . 8697 −0 . 7526 0.7933 −0 . 4043 −0 . 3466 −0 . 6724 
−2∕15 2.3481 2.1182 6.7228 0.4153 2.1392 2.0601 0.3177 −0 . 8119 −8 . 9277 0.7933 −0 . 3466 −0 . 4043 −0 . 6724 
−2∕5 6.4713 7.1030 6.6878 0.3508 1.8570 0.3112 0.0355 −2 . 7581 −30 . 194 2.4110 −0 . 2927 −0 . 3415 −0 . 6145 
−2∕5 6.4713 7.1030 6.6878 0.3508 1.8570 0.3112 0.0355 −49 . 109 −5 . 9379 2.7421 −5 . 4404 −2 . 6170 −0 . 6145 
−1∕2 8.3508 9.1271 6.6774 0.0000 0.0000 0.0000 0.0000 −63 . 377 −7 . 6429 3.5306 0.0000 0.0000 −0 . 4825 
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Table 14 

Exact static solutions of the piezoelectric composite laminate (PVDF/90 ∘/0 ∘/90 ∘/PVDF) under an applied potential (in SI units); in part, shown by Heyliger et al. [40] . 

a / h z / h 

u · 10 13 

(0 , 𝑎 
2 
) 

v · 10 13 

( 𝑎 
2 
, 0) 

w · 10 12 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜙

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xz · 10 2 

(0 , 𝑎 
2 
) 

𝜎yz · 10 2 

( 𝑎 
2 
, 0) 

𝜎zz · 10 2 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xx · 10 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎yy · 10 

( 𝑎 
2 
, 
𝑎 

2 
) 

𝜎xy · 10 

(0 , 0) 
D x · 10 9 

(0 , 𝑎 
2 
) 

D y · 10 9 

( 𝑎 
2 
, 0) 

D z · 10 9 

( 𝑎 
2 
, 
𝑎 

2 
) 

4 1/2 −0 . 4643 0.5861 1.2758 1.0000 0.0000 0.0000 0.0000 −25 . 243 −42 . 687 0.0615 −8 . 6944 −8 . 3346 −5 . 2861 
2/5 −1 . 5054 −1 . 7490 0.2075 0.9592 −8 . 6801 −26 . 955 1.6395 3.2423 −27 . 743 −1 . 6435 −8 . 3396 −7 . 9934 −3 . 9772 
2/5 −1 . 5054 −1 . 7490 0.2075 0.9592 −8 . 6801 −26 . 955 1.6395 1.7155 18.635 −1 . 4451 −2 . 0011 −2 . 3347 −3 . 9772 
2/15 −0 . 6095 −0 . 7781 0.2195 0.5995 −3 . 9058 1.1331 5.2068 0.9346 8.4394 −0 . 6162 −1 . 2507 −1 . 4592 −3 . 2452 
2/15 −0 . 6095 −0 . 7781 0.2195 0.5995 −3 . 9058 1.1331 5.2068 6.7126 1.0434 −0 . 6162 −1 . 4592 −1 . 2507 −3 . 2452 
0 −0 . 3645 −0 . 6192 0.2201 0.4431 2.1796 2.6658 5.0696 4.1162 0.8518 −0 . 4368 −1 . 0785 −0 . 9244 −2 . 9989 
−2∕15 −0 . 2346 −0 . 5106 0.2197 0.2973 6.0668 3.8691 4.2795 2.7082 0.6938 −0 . 3309 −0 . 7235 −0 . 6201 −2 . 8241 
−2∕15 −0 . 2346 −0 . 5106 0.2197 0.2973 6.0668 3.8691 4.2795 0.5158 5.5352 −0 . 3309 −0 . 6201 −0 . 7235 −2 . 8241 
−2∕5 −0 . 2836 −0 . 4959 0.2206 0.0235 7.6575 14.925 0.8611 0.3845 5.2690 −0 . 3461 −0 . 0490 −0 . 0571 −2 . 6734 
−2∕5 −0 . 2836 −0 . 4959 0.2206 0.0235 7.6575 14.925 0.8611 −11 . 611 −20 . 106 −0 . 3937 −0 . 2042 −0 . 1963 −2 . 6734 
−1∕2 −0 . 4545 −0 . 9503 −0 . 3939 0.0000 0.0000 0.0000 0.0000 −8 . 2111 −19 . 118 −0 . 7094 0.0000 0.0000 −2 . 6577 

10 1/2 −1 . 1452 −1 . 0928 0.9744 1.0000 0.0000 0.0000 0.0000 −13 . 605 −26 . 632 −0 . 4521 −3 . 4777 −3 . 3338 −3 . 4903 
2/5 −1 . 6255 −2 . 1655 0.1934 0.9702 −3 . 3161 −7 . 7775 0.1810 −8 . 5482 −24 . 123 −0 . 7658 −3 . 3739 −3 . 2340 −3 . 2795 
2/5 −1 . 6255 −2 . 1655 0.1934 0.9702 −3 . 3161 −7 . 7775 0.1810 0.7373 9.1874 −0 . 6733 −0 . 8096 −0 . 9445 −3 . 2795 
2/15 −1 . 2542 −1 . 8136 0.2043 0.6475 −2 . 2475 −0 . 2943 0.7413 0.6104 7.7069 −0 . 5449 −0 . 5403 −0 . 6304 −3 . 1572 
2/15 −1 . 2542 −1 . 8136 0.2043 0.6475 −2 . 2475 −0 . 2943 0.7413 5.4151 0.7548 −0 . 5449 −0 . 6304 −0 . 5403 −3 . 1572 
0 −1 . 1431 −1 . 7260 0.2091 0.4901 0.1350 0.2344 0.7859 4.9454 0.7182 −0 . 5096 −0 . 4772 −0 . 4090 −3 . 1141 
−2∕15 −1 . 0842 −1 . 6555 0.2135 0.3347 2.3542 0.7366 0.7130 4.6908 0.6858 −0 . 4866 −0 . 3258 −0 . 2793 −3 . 0829 
−2∕15 −1 . 0842 −1 . 6555 0.2135 0.3347 2.3542 0.7366 0.7130 0.5384 7.0315 −0 . 4866 −0 . 2793 −0 . 3258 −3 . 0829 
−2∕5 −1 . 1073 −1 . 6543 0.2221 0.0269 3.2011 6.9407 0.1585 0.5186 7.0081 −0 . 4905 −0 . 0225 −0 . 0262 −3 . 0555 
−2∕5 −1 . 1073 −1 . 6543 0.2221 0.0269 3.2011 6.9407 0.1585 −11 . 045 −22 . 789 −0 . 5579 −0 . 0937 −0 . 0901 −3 . 0555 
−1∕2 −1 . 1938 −1 . 8760 −0 . 4825 0.0000 0.0000 0.0000 0.0000 −10 . 359 −22 . 597 −0 . 6201 0.0000 0.0000 −3 . 0527 
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Fig. 4. Exact static solutions of the piezoelectric composite laminate (PVDF/90 ∘/0 ∘/90 ∘/PVDF) under an applied load or electric potential, using 𝑎 ∕ ℎ = 4 : through- 

thickness distributions of displacements and electric potential (in SI units). 
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In all Tables 9,10,11,12,13,14 alike, the exact static solutions pro-

ide a detailed through-thickness evaluation of all displacements and

tresses, together with the electric potential and all electric displace-

ents, considering two distinct side-to-thickness ratios 𝑎 ∕ ℎ = 4 , 10 , thus

ncluding both thick and moderately thick plates. This comprehen-

ive evaluation for each of the three piezoelectric composite laminates,

n both sensor and actuator configurations, ends up adding much to

he original benchmarks by Heyliger [5] as well as Heyliger et al.

40] concerning two of these piezoelectric composite laminates. In fact,

n these original works, no graphical description is presented for any

f the two piezoelectric composite laminates. Hence, in the interest

f a more clear understanding of the static behaviour of piezoelec-

ric composite laminates, Figs. 4 and 5 demonstrate, for the laminate

PVDF/90 ∘/0 ∘/90 ∘/PVDF) as an example, the exact through-thickness

istributions of main electric and elastic field variables, considering an

pplied load or electric potential, side-by-side. Actually, Figs. 4 and 5 in-

lude only one side-to-thickness ratio 𝑎 ∕ ℎ = 4 , as characteristic of thick

lates, which typically exhibit more intricate through-thickness distri-

utions. 

All together, Figs. 4 and 5 provide a broad perception of

he static behaviour of a piezoelectric composite laminate, namely

PVDF/90 ∘/0 ∘/90 ∘/PVDF), enlightening the distinction between sensor
nd actuator configurations, as it affects the corresponding through-

hickness distributions of main electric and elastic field variables. From

 modelling viewpoint, all through-thickness effects exhibited in both

onfigurations must be captured accurately, thus the aforementioned 𝐶 0 
𝑧 

nterlaminar continuity requirements of displacements and transverse

tresses must be extended to the electric potential and transverse elec-

ric displacement. Besides, within each layer, a high-order variable de-

cription, in general, seems most suitable, especially when thick plates

re considered. 

Furthermore, 3D exact free vibration solutions of each of the three

iezoelectric composite laminates are shown in Tables 15 , 16 , 17 . In

ssence, the free vibration solutions reveal the first twenty natural fre-

uencies, along with the associated modes of natural vibration, consider-

ng two distinct side-to-thickness ratios 𝑎 ∕ ℎ = 4 , 10 , thus including again

hick and moderately thick plates. More precisely, for each natural fre-

uency, the corresponding in-plane mode ( n x , n y ) is reported, including

pecial modes for either 𝑛 𝑥 = 0 or 𝑛 𝑦 = 0 , together with the thickness mode

umber of each pair ( n x , n y ). 

An additional remark is appropriate at this point, since in agreement

ith the leading work by Heyliger and Saravanos [7] on exact free vi-

ration solutions of piezoelectric composite laminates, an equal density

f a unit value is assumed for every layer, as in 𝜌 = 1 kg/m 

3 , as stated
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Fig. 5. Exact static solutions of the piezoelectric composite laminate (PVDF/90 ∘/0 ∘/90 ∘/PVDF) under an applied load or electric potential, using 𝑎 ∕ ℎ = 4 : through- 

thickness distributions of stresses and electric displacements (in SI units). 

Table 15 

Exact free vibration solutions of the piezoelectric composite laminate (PZT-4/0 ∘/90 ∘/PZT-4): first twenty natural frequencies (in units of 

10 3 rad/s) and associated modes ( n x , n y )–N z (in-plane mode and thickness mode number). 

a / h 

𝜔 1 

𝜔 11 

𝜔 2 

𝜔 12 

𝜔 3 

𝜔 13 

𝜔 4 

𝜔 14 

𝜔 5 

𝜔 15 

𝜔 6 

𝜔 16 

𝜔 7 

𝜔 17 

𝜔 8 

𝜔 18 

𝜔 9 

𝜔 19 

𝜔 10 

𝜔 20 

4 56.685 80.444 80.444 103.670 103.670 137.144 156.511 156.511 157.620 157.620 

(1,1)–1 (0,1) –1 (1,0) –1 (1,2)–1 (2,1)–1 (2,2)–1 (1,3)–1 (3,1)–1 (0,2) –1 (2,0) –1 

181.552 181.552 184.178 211.307 211.307 218.196 229.268 229.268 229.328 229.328 

(2,3)–1 (3,2)–1 (1,1)–2 (1,4)–1 (4,1)–1 (3,3)–1 (0,1) –2 (1,0) –2 (0,3) –1 (3,0) –1 

10 13.000 28.754 28.754 32.372 32.372 40.988 48.998 48.998 58.407 58.407 

(1,1)–1 (1,2)–1 (2,1)–1 (0,1) –1 (1,0) –1 (2,2)–1 (1,3)–1 (3,1)–1 (2,3)–1 (3,2)–1 

64.521 64.521 70.732 70.732 72.691 78.237 78.237 79.883 90.004 90.004 

(0,2) –1 (2,0) –1 (1,4)–1 (4,1)–1 (3,3)–1 (2,4)–1 (4,2)–1 (1,1)–2 (3,4)–1 (4,3)–1 

i  

l  

S  

o  

i  

e  

i  

d  

o

 

a  

v  

p  

fi  
n Table 2 . This is done similarly for all three piezoelectric composite

aminates, including one original benchmark shown by Heyliger and

aravanos [7] . Even so, as most useful for future assessments, the scope

f the exact free vibration solutions provided here is not actually lim-

ted to this density value alone, so long as an equal density is kept for

very layer of the laminate. To be precise, if another density value is of

nterest, as in 𝜌′ , the corresponding natural frequencies 𝜔 ′ can be readily
etermined by a multiplying factor i.e. 𝜔 ′ = 𝜔 
√
𝜌∕ 𝜌′, for each same case

f square plate geometry ( a and h ), rather in line with Eq. (62) . 

Examining closely Tables 15,16,17 , it is evident that special modes

re, once again, a significant part of the first twenty natural modes of

ibration of each (simply supported) piezoelectric composite laminate,

articularly when thick plates are considered. In such case, among the

rst twenty modes of vibration of each piezoelectric composite lami-
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Table 16 

Exact free vibration solutions of the piezoelectric composite laminate (PZT-4/0 ∘/90 ∘/0 ∘/PZT-4): first twenty natural frequencies (in units of 

10 5 rad/s) and associated modes ( n x , n y )–N z (in-plane mode and thickness mode number); in part, shown by Heyliger and Saravanos [7] . 

a / h 

𝜔 1 

𝜔 11 

𝜔 2 

𝜔 12 

𝜔 3 

𝜔 13 

𝜔 4 

𝜔 14 

𝜔 5 

𝜔 15 

𝜔 6 

𝜔 16 

𝜔 7 

𝜔 17 

𝜔 8 

𝜔 18 

𝜔 9 

𝜔 19 

𝜔 10 

𝜔 20 

4 57.074 80.330 80.555 101.421 105.244 136.604 152.192 156.766 158.412 159.576 

(1,1)–1 (1,0) –1 (0,1) –1 (1,2)–1 (2,1)–1 (2,2)–1 (1,3)–1 (2,0) –1 (0,2) –1 (3,1)–1 

178.693 183.055 191.301 204.883 217.262 217.402 226.148 226.874 228.490 231.486 

(2,3)–1 (3,2)–1 (1,1)–2 (1,4)–1 (4,1)–1 (3,3)–1 (2,4)–1 (3,0) –1 (0,1) –2 (1,0) –2 

10 13.526 27.822 30.949 32.365 32.380 41.578 47.104 51.608 57.615 59.845 

(1,1)–1 (1,2)–1 (2,1)–1 (1,0) –1 (0,1) –1 (2,2)–1 (1,3)–1 (3,1)–1 (2,3)–1 (3,2)–1 

64.462 64.579 68.181 72.843 73.217 76.453 78.109 79.959 89.049 89.801 

(2,0) –1 (0,2) –1 (1,4)–1 (3,3)–1 (4,1)–1 (2,4)–1 (1,1)–2 (4,2)–1 (3,4)–1 (1,5)–1 

Table 17 

Exact free vibration solutions of the piezoelectric composite laminate (PVDF/90 ∘/0 ∘/90 ∘/PVDF): first twenty natural frequencies (in units 

of 10 5 rad/s) and associated modes ( n x , n y )–N z (in-plane mode and thickness mode number). 

a / h 

𝜔 1 

𝜔 11 

𝜔 2 

𝜔 12 

𝜔 3 

𝜔 13 

𝜔 4 

𝜔 14 

𝜔 5 

𝜔 15 

𝜔 6 

𝜔 16 

𝜔 7 

𝜔 17 

𝜔 8 

𝜔 18 

𝜔 9 

𝜔 19 

𝜔 10 

𝜔 20 

4 52.241 59.859 59.859 93.081 98.627 119.712 119.713 125.243 141.135 148.353 

(1,1)–1 (0,1) –1 (1,0) –1 (1,2)–1 (2,1)–1 (0,2) –1 (2,0) –1 (2,2)–1 (1,3)–1 (3,1)–1 

164.142 167.209 179.552 179.555 191.439 197.933 198.717 208.960 213.130 215.013 

(2,3)–1 (3,2)–1 (0,3) –1 (3,0) –1 (1,4)–1 (3,3)–1 (4,1)–1 (2,4)–1 (4,2)–1 (1,0) –2 

10 12.113 23.944 23.944 26.010 29.515 37.899 44.470 47.888 47.888 50.294 

(1,1)–1 (0,1) –1 (1,0) –1 (1,2)–1 (2,1)–1 (2,2)–1 (1,3)–1 (0,2) –1 (2,0) –1 (3,1)–1 

52.604 55.832 64.093 66.815 70.165 71.397 71.831 71.831 75.507 81.438 

(2,3)–1 (3,2)–1 (1,4)–1 (3,3)–1 (2,4)–1 (4,1)–1 (0,3) –1 (3,0) –1 (4,2)–1 (3,4)–1 
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ate, about seven or eight modes correspond to special modes . In detail,

or thick plates most notably, the second and third lowest natural fre-

uencies typically correspond to special modes , namely either the pair

0,1) or (1,0), as demonstrated in all Tables 15–17 . Thus, special modes

f (simply supported) piezoelectric composite laminates clearly cannot

e overlooked, though naturally, the relevance of special modes tends

o subside somewhat as the plate becomes less thick. Along with this,

ables 15–17 also indicate that for thick plates, in particular, at least up

o the second thickness mode can appear among the first twenty modes

f vibration of each piezoelectric composite laminate. Specifically, for

ach thick laminate considered, about one up to three modes of vibra-

ion among the first twenty modes correspond to a second thickness

ode . Actually, comparing the free vibration behaviour of two analo-

ous piezoelectric composite laminates as shown in Tables 16 and 17 ,

uggests that laminates involving PZT-4 (as opposed to PVDF) are appar-

ntly more susceptible to the occurrence of a second (or higher) thickness

ode among the lower natural frequencies. This laminate free vibration

ehaviour is therefore further characterized in Fig. 6 , in line with the

forementioned Table 16 . 

As intended, Fig. 6 provides some more insight into a few modes of

atural vibration, namely, the first few through-thickness mode shapes

f each in-plane mode ( n x , n y ). More precisely, it displays for the in-

lane mode (1,1), the first four thickness modes of the transverse dis-

lacement w , and similarly for the in-plane mode (2,1), the first two

hickness modes . As already seen before, Fig. 6 also reveals that, for each

n-plane mode as (1,1) or (2,1), the natural modes of vibration from

he second thickness mode onwards, rather expose the transverse normal

ompressibility of the laminate. Further to this, the thickness modes of the

ransverse displacement w , apparently can be divided into either sym-

etric or antisymmetric modes with respect to the plate mid-surface,

hile exhibiting such transverse normal compressibility, as clearly man-

fested by the first four thickness modes of the in-plane mode (1,1). Other

han that, Fig. 6 also displays for the special mode (0,1), the first two

hickness modes of the in-plane displacement u . Thus, it demonstrates

hat, for each special mode as (0,1) or (1,0), the natural modes of vi-

ration from the second thickness mode onwards, expose also the effect

f transverse shear of the laminate. Ultimately, the importance of thick-
 o  
ess modes , from the second onwards, among the first twenty, or more,

odes of vibration of any piezoelectric composite laminate seems to be

ost influenced by the degree of sensitivity to the effects of transverse

hear and normal compressibility of the plate, which are naturally much

ore pronounced when thick plates are considered. 

. Conclusions 

As cutting-edge structural design technology unfolds, pushing for-

ard the capabilities of multilayered piezoelectric and/or composite

lates, 3D exact solutions continue to be a cornerstone in the accu-

acy assessment of the most advanced theories and finite element mod-

ls, relying much on benchmarking. This work on 3D exact electro-

lastic static and free vibration solutions of multilayered plates provides

 comprehensive evaluation of well-known benchmarks for piezoelec-

ric and/or composite laminates as well as soft core sandwich plates,

dding much to thus far available in the literature. The exact solution

ethod for simply supported multilayered plates is fully described in

ine with earlier leading works, compiled in a single study in a consis-

ent form throughout. It considers extension mode piezoelectric layers

nd/or purely elastic layers, such as composite layers, including all par-

icularities arising from an orthotropic, transversely isotropic or simply

sotropic layer. Furthermore, within the free vibration solution, not only

hickness modes are addressed for each in-plane mode ( n x , n y ), but also

he so-called special modes for either 𝑛 𝑥 = 0 or 𝑛 𝑦 = 0 are here purposely

ighlighted, though often overlooked. 

The benchmarks for each multilayered plate cover both static and

ree vibration solutions, divided into purely elastic solutions, as in com-

osite laminates and soft core sandwich plates, or else, electro-elastic so-

utions, namely piezoelectric composite laminates, considering not only

ut especially thick plates. For each multilayered plate, the static so-

ution considers either a bi-sinusoidal applied load or a bi-sinusoidal

pplied electric potential, providing a detailed through-thickness eval-

ation of displacements and stresses, and when present, the electric po-

ential and electric displacements. In fact, through-thickness distribu-

ions are also demonstrated to further characterize the static behaviour

f a soft core sandwich plate as well as a piezoelectric composite lam-
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Fig. 6. Exact free vibration solutions of the piezoelectric composite laminate (PZT-4/0 ∘/90 ∘/0 ∘/PZT-4), using 𝑎 ∕ ℎ = 4 : a few natural frequencies (in units of 10 5 

rad/s) and associated modes, characterizing the first few through-thickness modes of each in-plane mode. 
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nate, enlightening the distinction between sensor and actuator config-

rations. The respective free vibration solution reveals the first twenty

atural frequencies and associated modes, including all together spe-

ial modes and thickness modes . Most especially, for (simply supported)

hick plates, among the first twenty modes of vibration, typically around

5% is associated with special modes and around 15% corresponds to a

econd thickness mode . Actually, the second and third lowest natural fre-

uencies are often associated with special modes , namely (0,1) and (1,0),

hus clearly cannot be disregarded. In addition, a few through-thickness

odes are also displayed to further characterize the free vibration be-

aviour of a soft core sandwich plate as well as a piezoelectric composite

aminate. In the end, the significance of thickness modes , from the second

nwards, seems to be most influenced by the degree of sensitivity to the

ffects of transverse shear and normal compressibility of the plate. This
 t
ives reason to the relevance of thickness modes when thick plates are

onsidered, and most especially sandwich plates exhibiting high core

ompressibility. 
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