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ARTICLE INFO ABSTRACT

Available online 3 October 2013 Diabetic patients with coronary artery disease have an altered myocardial metabolism of glucose and free fatty
acids (FFA) and accelerated and diffuse atherogenesis with involvement of peripheral coronary segments that
causes chronic hypoperfusion and hibernation. Therefore, in coronary diabetic patients the ischaemic metabolic
changes that occur as a consequence of the mismatch between blood supply and cardiac metabolic requirements
are heightened by the diabetic metabolic alterations.

Important metabolic alterations in diabetic patients are the decreased utilization of glucose and the increase in
muscular and myocardial FFA uptake and oxidation. These metabolic changes are responsible for the increased
susceptibility of the diabetic heart to myocardial ischaemia and to a greater decrease of myocardial performance
for a given amount of ischaemia compared to non diabetic hearts.

A therapeutic approach aimed at an improvement of cardiac metabolism through manipulations of the utilization
of metabolic substrates should result in an improvement of myocardial ischaemia and of left ventricular function.
The inhibition of FFA oxidation improves cardiac metabolism at rest, increases the cardiac resistance to ischaemia
and therefore reduces the decline of left ventricular function due to chronic hypoperfusion and repetitive epi-
sodes of myocardial ischaemia in patients with and without diabetes.

Modulation of myocardial FFA metabolism should be the key target for metabolic interventions in diabetic pa-
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tients with coronary artery disease.
© 2013 The Authors. Published by Elsevier Ireland Ltd. Open access under CC RY-NC.ND license.

1. Introduction

Diabetic patients without overt coronary artery disease have a prog-
nosis that is similar to that of non-diabetic patients with coronary dis-
ease and coronary diabetic patients have a cardiovascular death rate
double than that of non-diabetic patients with coronary artery disease
[1-3]. In addition, diabetic patients with ischaemic heart disease have
an increased incidence of heart failure than non diabetic patients be-
cause of the altered myocardial metabolism and accelerated and diffuse
atherogenesis. The diffuse distribution of atherosclerosis in patients
with type 2 diabetes mellitus is related in part to the metabolic derange-
ments of diabetes and in part to the clustering of different risk factors
such as elevated blood pressure, central obesity and altered lipid profile.

In patients with diabetes mellitus and coronary artery disease the
metabolic changes occurring as a consequence of the mismatch be-
tween blood supply and cardiac metabolic requirements are heightened
by the diabetic metabolic changes. The presence of myocardial insulin
resistance has been demonstrated in diabetic patients with and without
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coronary artery disease suggesting that even early stages of altered
glycaemic control may affect myocardial metabolism and predispose
to the diabetic cardiomyopathy [4-7]. Several metabolic alterations
occur in the pre-diabetic and in the diabetic state that may heighten
the effect of myocardial ischaemia and contribute to the development
of diabetic cardiomyopathy [8,9]. The lack of insulin and the state of insu-
lin resistance may influence cardiac function through several different
mechanisms such as decreased glucose transport and carbohydrate
oxidation, increase in free fatty acid (FFA) utilization, decrease in
sarcolemmal calcium transport and alterations in myofibrillar regu-
latory contractile proteins. In diabetic patients, myocardial glucose
uptake, availability and utilization are blunted in both fasting condi-
tion and after insulin stimulation [10].

In diabetics and in subjects with insulin resistance the abnormalities
in glucose uptake and utilization are coupled with an increase in FFA ox-
idation not only in the skeletal myocytes but also in the cardiomyocytes.
These metabolic changes of the diabetic heart and skeletal myocytes
lead to a diminished production of high energy phosphate since the
beta-oxidation of FFA is less efficient than the glycolysis in generating
energy. The heart uses ATP (adenosine triphosphate) as the main source
of energy. ATP is mainly produced by the oxidation of acetyl coenzyme
A into the mitochondria. The two main metabolic pathways for energy
supply in the heart are FFA oxidation and breakdown of glucose and car-
bohydrates in the glycolysis. Both pathways, in the presence of oxygen
produce acetil-CoA that enters the Krebs cycle. In aerobic conditions
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the main source of myocardial energy comes from FFA. However, glu-
cose oxidation produces the required energy for the normal functioning
of the Na*/K-ATPase and the Ca®"-ATPase pumps that are crucial for
the preservation of membrane potential and calcium transport. Since
the glycolitic and pyruvate pathways require less oxygen per mole of
ATP generated than FFA oxidation during increased myocardial require-
ment or decreased oxygen availability glucose and lactate become the
main source of energy and the myocardial glucose uptake may increase
by 30 fold.

In diabetic and pre-diabetic states a reduced glucose uptake and uti-
lization coupled with a preferential FFA oxidation occur as a conse-
quence of inadequate insulin receptor signalling or decreased insulin
levels [10,11]. An important metabolic alteration of diabetes is the in-
creased FFA concentrations and increased muscular and myocardial
FFA uptake and oxidation. The increased uptake and utilization of FFA
during increased metabolic demands or during ischaemia is responsible
for greater decrease of myocardial performance for given amount of
ischaemia compared to non diabetic hearts and for the increased sus-
ceptibility of diabetic heart to myocardial ischaemia [10,12-14]. The
preferential increased uptake of FFA during stress or ischaemia also
causes a parallel increase of intermediate metabolic products that are
toxic for the cells especially during ischaemia or increased workload
[14]. Therefore, the abnormal increase in FFA uptake and utilization
contributes to both the development of contractile dysfunction and to
the increased sensitivity of the heart to injury during ischaemia. Fur-
thermore, the decreased energy production of the diabetic heart related
to the decreased glucose utilization and preferential FFA oxidation leads
to important alterations in calcium homeostasis that are responsible for
the impaired systolic and diastolic function of the diabetic heart. The
impairment of systolic and diastolic function of the diabetic heart may
remain subclinical in some cases, while in the presence of reduced
coronary blood flow (such as during acute myocardial ischaemia or
chronic coronary artery disease) or during increased myocardial energy
requirement (such as in presence of arterial hypertension) it may facil-
itate the development of overt heart failure.

2. Metabolic approach to coronary artery disease in diabetics

In diabetic patients with coronary artery disease a therapeutic ap-
proach aimed at an improvement of cardiac metabolism through
manipulations of the utilization of metabolic substrates should result in
an improvement of myocardial ischaemia and of left ventricular function.

Modulation of myocardial FFA metabolism is an important target for
metabolic interventions in patients with coronary artery disease with
and without diabetes. In diabetic patients the effects of modulation of
FFA metabolism should be even greater that those observed in patients
without diabetes.

It is well known that the improvement of glucose metabolism in
patients with acute ischaemic syndromes improves cardiovascular
outcome. The administration of the glucose-insulin-potassium (Sodi
Pallares or GIK solution) induces a reduction of FFA oxidation in the
ischaemic heart. In the DIGAMI and in the ECLA studies the long-term
mortality in diabetic patients admitted for acute MI was reduced by a
24 h GIK infusion [15,16]. A meta-analysis of the trials on GIK infusion
in patients with acute MI showed a 28% reduction in mortality at one-
year follow-up and this therapeutic regimen has been recommended
for all diabetic patients suffering acute MI [17].

In chronic conditions, improvement of cardiac metabolism can be
obtained by both an aggressive control of glucose metabolism with
anti-diabetic agents and insulin and through the modulation of FFA
metabolism. Trimetazidine is an effective anti-anginal agent that shifts
cardiac energy metabolism from fatty acid oxidation to glucose oxida-
tion by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A
thiolase [18,19]. The benefits of increased glycolytic substrate utilization
are attributed to several mechanisms. The expected number of moles of
ATP produced per mole of oxygen consumed is 12% higher for glucose

than for FFA oxidation although it is reasonable to believe that the im-
provement of glucose metabolism may increase ATP production up to
30%. By decreasing fatty acid oxidation, trimetazidine stimulates glucose
utilization, restoring coupling between glycolysis and carbohydrate ox-
idation, and leading to ATP production with less oxygen consumption
[18]. By stimulating membrane phospholipid turnover during ischaemia
and reperfusion, trimetazidine redirects fatty acids towards phospho-
lipids, increasing cell tolerance to ischaemia-reperfusion damage.
The anti-ischaemic properties of trimetazidine are independent from
haemodynamic changes and are associated with a greater recovery of
mechanical function after ischaemia. The cardioprotective effects of
trimetazidine have been confirmed in human models of ischaemia-re-
perfusion including patients undergoing PTCA and CABG [20-22].
Several studies have shown that trimetazidine is as effective as
classic haemodynamic agents in improving myocardia ischaemia
along with an improved tolerance profile [23,24]. In stable effort angina,
trimetazidine improves exercise tolerance and elevates ischaemic thresh-
old as much as b-blockers or Ca-channel blockers [23,24]. In particular,
the VASCO-angina study [25] has recently shown that trimetazidine im-
proves effort-induced myocardial ischaemia and functional capacity in
patients with chronic stable angina receiving beta-blockers. Also, when
given in association to b-blockers, trimetazidine has a greater anti-
ischaemic effect than nitrates and calcium-channel blockers [26,27].
The mechanism of action of trimetazidine, based on a switch from fatty
acids to glucose utilization [18] makes this drug the ideal treatment of
myocardial ischaemia in diabetic patients with and without left ventric-
ular dysfunction. The TRIMPOL-1 study showed that four weeks of treat-
ment with trimetazidine significantly decreased the number of anginal
episodes and improved myocardial ischaemia and exercise capacity in
diabetic patients [28]. Our group has shown that, in diabetics with chron-
ic stable angina, the adjunct of trimetazidine to standard medical therapy
reduces the number of episodes of ST segment depression (Fig. 1), the
episodes of silent ischaemia and the total ischaemic burden [29].

3. Modulation of cardiac metabolism in diabetic patients with
heart failure

Due to the preferential promotion of glucose and pyruvate oxidation,
trimetazidine improves the activity of the sodium-potassium ATPase
and the calcium uptake pump of the sarcoplasmic reticulum, that are
respectively responsible of left ventricular systolic depolarization and
diastolic relaxation. Furthermore, the metabolic effects of Trimetazidine
translate into a reduced total ischaemic burden and into a better utiliza-
tion of metabolic substrates that translates into a greater mechanical
efficiency [29-35]. Our group has shown that trimetazidine added to
standard medical therapy improves left ventricular systolic and diastolic
function in diabetic patients with ischaemic cardiomyopathy suggesting
that the adjunct of targeted cardiac metabolic therapy to usual care
improves cardiac metabolism especially in the areas of hybernated
myocardium (Fig. 2) [29]. The observed improvement of left ventricular
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Fig. 1. Effect of trimetazidine on episodes of myocardial ischaemia and total ischaemic bur-
den in patients with coronary artery disease. Trimetazidine added to standard anti-anginal
therapy significantly reduced the episodes of silent and symptomatic myocardial ischae-
mia and the total ischaemic burden compared to placebo.
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Fig. 2. Effect of trimetazidine on left ventricular function in diabetic patients with coronary
artery disease. Trimetazidine added to standard therapy for heart failure significantly im-
proved left ventricular function compared to placebo.

function was paralleled by a similar improvement of left ventricular
diastolic compliance suggesting that the experimental evidence of an
improvement of sarcoplasmic Ca™2 pump does translate into an effect
of trimetazidine on diastolic function. Similar findings have been obtain-
ed by Fragasso et al. who have also reported an improvement in glucose
metabolism and a decrease in endothelin-1 after chronic trimetazidine
therapy in patients with diabetic cardiomyopathy [36]. These findings
suggest that the improvement of cardiac and muscular glucose metab-
olism through FFA inhibition improves overall glucose metabolism as
shown by a significant decrease of HbA1c. The effect of trimetazidine
on endothelin-1 suggests that the drug may also have an effect on the
vascular endothelium.

Whether the effects of trimetazidine on myocardial ischaemia and
left ventricular function have prognostic importance is still unclear.
However, we have reported a reduction in cumulative events in patients
with ischaemic heart failure in whom trimetazidine was added on top of
standard therapy further supporting the importance of this drug in the
treatment of patients with heart failure [37]. Finally, our group has
recently demonstrated that trimetazidine on top of medical therapy
reduces mortality and morbidity in heart failure with impaired left
ventricular function [38].

4. Conclusion

The metabolic changes of diabetes alter myocardial metabolism
reducing cardiac susceptibility to ischaemic stimuli and cardiac perfor-
mance. In diabetic coronary patients, the episodes of transient myocardial
ischaemia coupled with the chronic myocardial hypoperfusion cause a
progressive decline of left ventricular function. The inhibition of FFA oxi-
dation improves cardiac metabolism at rest, increases the cardiac ischae-
mic and therefore reduces the decline of left ventricular function due to
chronic hypoperfusion and repetitive episodes of myocardial ischaemia.
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