
International Journal of Cardiology xxx (2015) xxx–xxx

IJCA-21063; No of Pages 7

Contents lists available at ScienceDirect

International Journal of Cardiology

j ourna l homepage: www.e lsev ie r .com/ locate / i j ca rd
Regulation of uric acid metabolism and excretion
Jessica Maiuolo, Francesca Oppedisano, Santo Gratteri, Carolina Muscoli, Vincenzo Mollace ⁎
Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Italy
⁎ Corresponding author at: Institute of Research for F
University “Magna Graecia” of Catanzaro, Campus Univer
Europa 88100 Catanzaro, Italy.

E-mail address: mollace@libero.it (V. Mollace).

http://dx.doi.org/10.1016/j.ijcard.2015.08.109
0167-5273/© 2015 Published by Elsevier Ireland Ltd.

Please cite this article as: J. Maiuolo, et al., R
j.ijcard.2015.08.109
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 10 August 2015
Accepted 10 August 2015
Available online xxxx

Keywords:
Purine metabolism
Uric acid formation
Xanthine oxidase
Purines perform many important functions in the cell, being the formation of the monomeric precursors of
nucleic acids DNA and RNA themost relevant one. Purineswhich also contribute tomodulate energymetabolism
and signal transduction, are structural components of some coenzymes and have been shown to play important
roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of pu-
rines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine
metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final
compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric
acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metab-
olism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid
is inversely associated with disease severity and especially with cardiovascular disease states. This review
describes the enzymatic pathways involved in the degradation of purines, getting into their structure and bio-
chemistry until the uric acid formation.

© 2015 Published by Elsevier Ireland Ltd.
1. Introduction

Uric acid production and metabolism are complex processes involv-
ing various factors that regulate hepatic production, as well as renal and
gut excretion of this compound. Uric acid is the end product of an exog-
enous pool of purines and endogenous purine metabolism. The exoge-
nous pool varies significantly with diet, and animal proteins contribute
significantly to this purine pool. The endogenous production of uric
acid is mainly from the liver, intestines and other tissues like muscles,
kidneys and the vascular endothelium [1].

Uric acid is a C5H4N4O3 (7,9-dihydro-1H-purine-2,6,8(3H)-trione)
heterocyclic organic compound with a molecular weight of 168 Da.
Many enzymes are involved in the conversion of the two purine
nucleic acids, adenine and guanine, to uric acid. Initially, adenosine
monophosphate (AMP) is converted to inosine via two different
mechanisms; either first removing an amino group by deaminase
to form inosine monophosphate (IMP) followed by dephosphoryla-
tion with nucleotidase to form inosine, or by first removing a
phosphate group by nucleotidase to form adenosine followed by
deamination to form inosine. Guanine monophosphate (GMP) is
converted to guanosine by nucleotidase. The nucleosides, inosine and
guanosine, are further converted to purine base hypoxanthine and gua-
nine, respectively, by purine nucleoside phosphorylase (PNP). Hypoxan-
thine is then oxidized to form xanthine by xanthine-oxidase (XO), and
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guanine is deaminated to form xanthine by guanine deaminase. Xan-
thine is again oxidized by xanthine oxidase to form the final product,
uric acid. Fig. 1 shows the enzymatic pathway for the purines degrada-
tion. At physiologic pH, uric acid is a weak acid with a pKα of 5.8. Uric
acid exists majorly as urate, the salt of uric acid. As urate concentration
increases in blood, uric acid crystal formation increases. The normal ref-
erence interval of uric acid in human blood is 1.5 to 6.0 mg/dL in women
and 2.5 to 7.0 mg/dL in men. The solubility of uric acid in water is low,
and in humans, the average concentration of uric acid in blood is close
to the solubility limit (6.8 mg/dL). When the level of uric acid is higher
than 6.8 mg/dL, crystals of uric acid form as monosodium urate (MSU).
Humans cannot oxidize uric acid to themore soluble compound allanto-
in due to the lack of uricase enzyme. Normally, most daily uric acid
disposal occurs via the kidneys [2].

Uric acid concentration might be measured in serum, plasma, urine
and in exhaled breath condensate. Determination of uric acid concen-
tration includes phosphotungistic acidmethods (PTA), uricasemethods,
high-performance liquid chromatography methods, dry chemistry sys-
tems and biosensor methods. Prior to determination of urate in urine,
alkalinization of urine might be necessary, because of urate crystallize
at pH lower than 5.75 [3]. The production and catabolism of purines
are relatively constant between 300 and 400 mg per day. The kidneys
eliminate approximately two-thirds, while the gastrointestinal tract
eliminates one-third of the uric acid load. Almost all uric acid is filtered
from glomeruli, while post-glomerular reabsorption and secretion reg-
ulate the amount of uric acid excretion. The proximal tubule is the site
of uric acid reabsorption and secretion, and approximately 90% is
reabsorbed into blood. This is primarily accomplished at the proximal
tubular level by transporters that exchange intracellular anions for
olism and excretion, Int J Cardiol (2015), http://dx.doi.org/10.1016/
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Fig. 1. Enzymatic degradation of purines in humans.

2 J. Maiuolo et al. / International Journal of Cardiology xxx (2015) xxx–xxx
uric acid. Almost all reabsorption of uric acid occurs at the S1 segment of
the proximal tubule. In the S2 segment of the proximal tubule, uric acid
is secreted to a greater extent than that which undergoes reabsorption.
Post-secretory reabsorption occurs at a more distal site of the proximal
tubule, and approximately 10% of the filtered uric acid appears in the
urine [1]. Hyperuricemia is a key risk factor for the development of
gout, renal dysfunction, hypertension, hyperlipidemia, diabetes and
obesity. Hyperuricemia occurs as a result of the increased uric acid pro-
duction, the impaired renal uric acid excretion, or a combination of the
two [4]. It is characterized by high uric acid level in the blood, causing
deposition of urate crystals in the joints and kidneys [5]. Generally, hy-
peruricemia in adults is defined as a blood uric acid concentration great-
er than 7.0 mg/dL in men and 6.0 mg/dL in women. In normal humans,
uric acid is excreted in urine. However, uric acid excretion may be
impaired by kidney disease, leading to hyperuricemia [2].

Three urate transporters, URAT1/SLC22A12, GLUT9/SLC2A9, and
ABCG2/BCRP, have been reported to play important roles in the regula-
tion of serum uric acid (SUA), and their dysfunctions cause urate trans-
port disorders. Among them, common dysfunction of ABCG2 exporter
has proved to be amajor cause of hyperuricemia and gout. Furthermore,
renal hypouricemia is caused by increased renal urate excretion [6]. The
molecular identification of URAT1 as the dominant apical urate ex-
changer of the human proximal tubule was a landmark event in the
physiology of urate homeostasis. The URAT1 protein is encoded by the
SLC22A12 gene, part of the large SLC22 family of organic ion trans-
porters. URAT1 is a member of the organic anion transporter (OAT)
branch of this gene family. Heterologous expression in Xenopus oocytes
indicates that human URAT1 is capable of urate transport (14C-labeled
urate uptake), with a Km of 371 ± 28 μM. The basolateral entry of
urate into renal proximal tubule cells is driven at least partially by the
outwardly directed gradient for dicarboxylates such as α-ketoglutarate
(α-KG), which in turn is generated by Na+-dependent uptake via
SLC13A1. Thus, in renal basolateral membrane vesicles, urate exchange
is significantly trans-stimulated byα-KG. OAT1 and OAT3 appear to ex-
change urate with divalent anions such as α-KG, suggesting that they
are suited to basolateral entry of urate, driven by intracellularα-KG, dur-
ing urate secretion. Genetic variation in human ABCG2, an ATP-driven
efflux pump, has emerged as a major factor in human hyperuricemia.
A loss of or reduction in ABCG2-mediated renal urate secretion would
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lead to increased renal urate reabsorption, given that reduced renal
excretion of urate is considered to be the underlying hyperuricemic
mechanism in the vast majority of gout patients [7].

GLUT9 (SLC2A9) membrane transporter is distinct among other
members of the glucose transporters (GLUT or SLC2) family due to its
substrate specificity and sequence identity. While the majority of 14
members of the GLUT superfamily transport glucose or other monosac-
charides, GLUT9was shown to transport essentially urate. Single nucle-
otide polymorphisms in the SLC2A9 genes have also been associated
with gout, coronary artery disease, and myocardial infarction. All 14
GLUT members share common structural features such as 12 trans-
membrane helices, cytoplasmic amino and carboxytermini, and an N-
linked glycosylation site, although the glycosylation site varies across
the family. Regarding GLUT9, two isoforms, SLC2A9a and SLC2A9b,
have been described encoding the two proteins hGLUT9a and b that dif-
fer only by the first 29 residues of the N-terminal domains. GLUT9a is
expressed ubiquitously, while GLUT9b is restricted to the main organs
involved in urate transport, such as liver and kidney. GLUT9-mediated
urate transport has been characterized. It is independent of sodium,
chloride and anions, but is voltage dependent and currents have been
recorded at physiological pH. Altogether, the data provided so far are
compatiblewith a transportmodel inwhich GLUT9 is a uniport,without
having formally excluded all other possibilities [8].

In addition to problems with uric acid excretion due to kidney dys-
function, hyperuricemia can also result from the increased generation
of uric acid. Diets heavy in purine or fructose, or exposure to lead can
also contribute to high uric acid levels. Fructose is a unique sugar mole-
cule in that it rapidly depletes ATP and increases the amounts of uric
acid. In certain humans, a deficiency of enzymes resulting from genetic
mutations may also cause increased blood uric acid levels. For example,
hypoxanthine-guanine phosphoribosyl transferase (HGPRT) catalyzes
the formation of IMP and GMP for recycling purine bases with 5-
phoshorbosyl-alpha-pyrophosphate (PRPP) as a co-substrate. Lesch–
Nyhan syndrome, a rare inherited X-linked disorder caused by the defi-
ciency of HGRPP, leads to the accumulation of purine and PRPP, which
are used in the salvage pathway of hypoxanthine and guanine. The
HGPRT defect results in the accumulation of hypoxanthine and guanine,
which further leads to high uric acid levels. The excess PRPP also in-
creases the rate of de novo synthesis of purine, and consequently
olism and excretion, Int J Cardiol (2015), http://dx.doi.org/10.1016/
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promotes the production of its end degradation product, uric acid.
Lesch–Nyhan syndrome is the result of the buildup of high levels of
uric acid in the body beginning in infancy, which leads to severe gout,
kidney dysfunction, mental retardation, neurological dysfunction, and
self-mutilating behaviors [2]. High levels of blood uric acid have long
been associated with gout. Gouty arthritis (gout) is a medical condition
characterized by red, tender, hot, and swollen joints caused by recurrent
attacks of acute inflammatory arthritis. Men have a higher risk of devel-
oping gout thanwomen due to higher baseline levels of blood uric acid.
Pathologically, gout is caused by an increase of blood uric acid levels,
which leads to crystal deposits in joints, tendons, and other tissues
and uric acid renal stones. Recently, gout has been linked to cardiovas-
cular disease. Furthermore, multiple studies have also associated hyper-
uricemia with the precursors of cardiovascular diseases, including
hypertension, metabolic syndrome, and coronary artery disease, as
well as with closely related vascular diseases such as cerebrovascular
disease, vascular dementia, preeclampsia, and kidney disease [2,9]. Clin-
ical studies have found that hyperuricemia relateswith elevated plasma
renin activity in patients with hypertension. A model of mild hyperuri-
cemia treated with uricase inhibitor developed hypertension after sev-
eral weeks due to uric acid-mediated renal vasoconstriction with an
activation of the renin–angiotensin system (RAS) [10]. A recent clinical
study reports that high plasma uric acid level, partly secreted from the
failing heart, is a prognostic predictor in patients with congestive
heart failure. In vitro studies reveal that uric acid induces gene
expression of chemokines and growth factors, such as monocyte
chemoattractant protein-1 (MCP-1) and platelet-derived growth factor,
and stimulates proliferation of vascular smooth muscle cells. Further-
more, uric acid induced MCP-1 expression in vascular smooth muscle
cells was attenuated by antioxidants, suggesting an involvement of
redox-dependent mechanism. In vascular smooth muscle cells, uric
acid activates critical proinflammatory pathways and stimulates cell
proliferation. In endothelial cells, uric acid decreases nitric oxide bio-
availability and inhibits cell migration and proliferation, which are me-
diated in part by the expression of C-reactive protein. In adipocytes, the
redox-dependent effects of uric acid are mediated by the activation of
intracellular oxidant production via NADPH oxidase. Activation of ERK
in response to uric acid has been shown in vascular smooth muscle
cells and adipocytes [11]. In contrast to chronic hyperuricemia, acute in-
crease of plasma uric acid (UA) may induce various beneficial effects to
human subjects. Administration of UA increases plasma antioxidant ca-
pacity, reduces exercise associated oxidative stress in healthy subjects
and restores endothelial function in patients with type 1 diabetes and
regular smokers. UA, as the most abundant aqueous antioxidant, ac-
counting for up to 60% of plasma antioxidative capacity,may involve dif-
ferent mechanisms of action. It is a free radical scavenger which
stabilizes vitamin C in serum,mostly due to its iron chelating properties
and quenches peroxynitrite, a potentially harmful oxidant, resulting in
formation of a stable nitric oxide (NO) donor in vitro. At concentrations
close to physiological levels in humans, UA prevents hydrogen
peroxide-induced inactivation of extracellular superoxide-dismutase
(ecSOD), an enzyme that scavenges superoxide anions (•O2−). Also, it
has been suggested that UA counteracts oxidative damage related to
atherosclerosis and aging in humans. Taken together, these findings
imply that UA could act beneficially in preserving vascular function,
both under physiological and pathological challenges. The pro-oxidant
and pro-inflammatory actions attributed to UA could be largely the re-
sult of the conversion of xanthine dehydrogenase to xanthine oxidase
and of the consequent accumulation of reactive oxygen species (ROS)
which occurs in parallelwith UAproduction as an effect of ATP degrada-
tion under ischemic conditions. In this case, the ROS by-production
might cause the inflammatory reaction and the arterial wall damage
which have been attributed to excess of UA [12]. Hyperuricemia has a
dramatically different, protective effect in neurodegenerative disease,
including Parkinson's disease (PD), multiple sclerosis, and Alzheimer's
disease/dementia. For example, higher uric acid levels reduce the risk
Please cite this article as: J. Maiuolo, et al., Regulation of uric acid metab
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of PD and reduce the risk of disease progression. Although the associat-
ed mechanisms are likely heterogeneous, most theories incorporate
some role for the well-described antioxidant effect of uric acid [8].

2. 5′-Nucleotidase

Enzyme 5′-Nucleotidase hydrolyzes nucleotide monophosphates or
deoxynucleotidemonophosphates to nucleotides and deoxynucleotides
more inorganic phosphate. This enzyme, together with nucleotide ki-
nase, regulates the pool of the nucleotides in cells [13]. Seven isoforms
of the enzyme 5′-Nucleotidases have been isolated and characterized,
and have a different nomenclature depending on the subcellular locali-
zation. Five isoforms are cytosolic, one is located in the mitochondrial
matrix and one is related to the outer plasma membrane.

The first cytosolic isoform (cN-I) is particularly expressed in the
skeletal andheartmuscles [14]. cN-I has been isolated and characterized
from the heart of many animals including the man. The activity of this
cytosolic isoform is greatly affected by pH, which, in different species,
should be between 6.5 and 7.0 and divalent cations Mg2+, Mn2+ and
Co2+ [15]. In humans two genes are noted NT5C1A andNT5C1B that en-
codes for its related products cN-IA and cN-IB. TheNT5C1A gene is locat-
ed on chromosome 1 and its related protein product, cN-IA, is described
as an enzyme that prefers the AMP as a substrate. In humans, themRNA
of this isoform is particularly present in the skeletal muscle, but also in
the heart, in the brain, in the pancreas, in the liver, in the testes and
the uterus [16]. Human cN-IA has particular relevance in the protection
of the heart; in fact, in normal conditions the formation of AMP is great-
er, while under conditions of ischemia or hypoxia it's adenine to be pro-
duced in large quantities [17]. The increased production of adenine, in
this case, is the result of the inhibition of adenosine kinase activity and
the increased activity of cN-IA [18]. From the structural point of view
the enzyme cN-IA appears to be a tetramer. cN-IA prefers AMP as a sub-
strate and the human form has a Km between 1.46 and 1.9mM [15]. The
geneNT5C1B codes for cN-IB and is located on chromosome 2. From the
functional point of view cN-IB differs little from cN-IA and its substrate
of excellence is AMP. In humans cN-IB is ubiquitously expressed and
mRNA expression is particularly high in the testis and lowest in the
brain and skeletal muscle; cN-IB exists as a dimer [19].

The second cytosolic isoform (cN-II) was the first nucleotidase to be
described and purified. Through its activities hydrolyzes preferably 5′-
IMP, 5′-GMP, 5′-deoxy-IMP and 5′-deoxy-GMP by adjusting the cell
concentration of IMP and GMP [20]. cN-II gene is located on chromo-
some 10 [21]. Its mRNA is expressed in an ubiquitously manner with a
higher expression in the pancreas, in the skeletal muscle and heart
[22]. From the structural point of view cN-II appears to be a tetramer ca-
pable of forming oligomers of highermolecularweight upon addition of
ATP. The enzyme works optimally at a pH value of 6.5, but in the case
that you verify a transfer reaction of the phosphate group, the optimum
pH result appears to be 7.0. Moreover, its activity is dependent on the
presence of the cation Mg2+. When Mg2+ is replaced by Co2+ and
Zn2+ cN-II activity is much lower [20,23]. A correlation has been
shown between a high activity of this citosolic enzyme and develop-
ment of neurological disorders [24].

The gene for the third 5′-Nucleotidase cytosolic (cN-III) is located on
chromosome 7 and this isoform is the only one to be composed of a sin-
gle monomer [25]. The cN-III catalyzes the dephosphorylation of nucle-
oside monophosphates pyrimidine nucleoside and has no activity on
the purine substrates. The enzyme is expressed in many parts such as
the human heart, the bone marrow, the liver, the testis, the colon, the
stomach and the brain. The deficiency of this enzyme is associated
with a form of hemolytic anemia. In particular homozygous patients
withmutations in the gene for cN-III develop anemia andmassive accu-
mulation of cytidine and uridine phosphate that interfere with glycoly-
sis erythrocyte [26]. In general, themutations that affect this gene cause
aberrant splicing and premature stop codons that abruptly interrupt the
normal amino acid sequence of the relative protein [25]. Even this
olism and excretion, Int J Cardiol (2015), http://dx.doi.org/10.1016/
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isoform, such as 5′-Nucleotidase cytosolic I and II, is linked for its activity
to ion Mg2+ and its optimal pH is 7,5.

The gene for the fourth cytosolic isoform (cN-IV) is localized on chro-
mosome 17 and its active enzyme is a dimeric deoxyribonucleotidase.
The DNA sequence is formed by 5 exons and 4 introns [27].

The mitochondrial 5′(3′)-deoxyribonucleotidase (mdN) function is
to protect the mitochondria from excessive dTTP levels. Its gene, as
cN-IV, is located on chromosome 17 and consists of 5 exons and 4 in-
trons, suggesting a common origin with an homology of 52%. Recombi-
nant human and rat enzymes show a low activity with purine
monophosphate and no activity with cytidinemonophosphate. In addi-
tion to this mdN requires Mg2+ ion and an optimal pH of 5.0 to 5.5 [28].

Finally, we must consider the last isoform of nucleotidase cell
surface-located (ecto-nucleotidases, eN). Principal functional role of
ecto-nucleotidases is to hydrolyze ribo- and deoxyribonucleoside 5′-
monophosphates including AMP, CMP, UMP, IMP, and GMP even if
whereby AMP generally is the most effectively hydrolyzed nucleotide.
In fact the production of extracellular adenosine from extracellular
AMP is considered to be a major function of eN. Changes in expression
of these enzyme are responsible for the availability of adenosine. Addi-
tional functions of eN are tomaintain the exact amount of adenosine for
cellular reuptake and purine salvage and ensure the major pathway for
communication between cells [29].

3. Adenosine deaminase

Adenosine deaminase (ADA) is an important enzyme in the purine
metabolism that catalyzes the deamination of both adenosine and 2′-
deoxyadenosine to inosine and 2′-deoxyinosine, respectively, and am-
monia. Adenosine is an endogenous purine nucleoside that acts as a ho-
meostatic network regulator in all living systems via multiple AR-
dependent and AR-independent (where AR is adenosine receptor)
pathways. Within cells, adenosine is involved in cellular energy and
purinemetabolism, but it is also released to or produced in the extracel-
lular medium where it binds to the cell membrane ARs and its action is
determined by the receptor to which it binds. Adenosine plays an im-
portant role in different metabolic and pathological conditions, such as
the intrarenal metabolic regulation of kidney function, in asthma and
hypoxia, in cardiac ischemia, and in regulating the severity of inflamma-
tion during an immune response. There is general agreement that aden-
osine is an important neuromodulator in the central nervous system,
playing a crucial role in neuronal excitability and synaptic/nonsynaptic
transmission in the hippocampus and basal ganglia. Adenosine is also
associatedwith Alzheimer's disease, Parkinson's disease, schizophrenia,
Huntington's disease, epilepsy, drug addiction, and sleep [30].

ADA exists in all human tissues, but the highest levels and activity
are found in the lymphoid system such as lymphnodes, spleen, and thy-
mus. It is also essential for the proliferation, maturation and function of
T lymphocyte cells. It is assumed that ADA plays a crucial role in devel-
opment of the immune system,while its innate deficiency causes severe
combined immunodeficiency (SCID).Moreover, ADAactivity changes in
a variety of other diseases including acquired immunodeficiency syn-
drome (AIDS), anemia, various lymphomas, tuberculosis, and leukemia.
On the other hand, ADA regulates the levels of endogenous adenosine
which results in immune system suppression by inhibiting lymphoid
or myeloid cells, including neutrophils, macrophages, lymphocytes
and platelets [31].

Adenosine deaminase is a zinc-containing (β/α)8-barrel enzyme.
The (β/α)8 or triose phosphate isomerase (TIM) barrel, consisting of
eight parallel central β-strands and eight peripheral α-helices, is one
of the most commonly observed protein folds. In all (β/α)8 enzymes,
despite the diversification in catalytic residues and substrate specific-
ities, the active sites are funnel-shaped pockets formed by the C-
terminal ends of the eightβ strands and the βα loops that linkβ strands
with the subsequent α-helices. In contrast, the loops, locating at the
back side of the barrel and linking the α-helices with the subsequent
Please cite this article as: J. Maiuolo, et al., Regulation of uric acid metab
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β-strands, are believed to be involved in protein stability. The spatial
separation of regions important for activity and for stability is thought
to be important for enzymes, which allows conformational changes
during the ligand/substrate binding, catalysis or the allostery regulation
process and maintains the global stable native structure of a protein
[32].

ADA can adopt two very different conformations: the closed and the
open forms. In the absence of substrate, ADA adopts the open form. The
closed form of the enzyme is usually observed in complexes with sub-
strate analogs possessing the adenine framework, indicating that it is
reached after substrate binding. The closed form consists of a hydropho-
bic subsite (F0) and a hydrophilic area (S0) perfectly enclosed within a
structural gate consisting of the peptide backbone of a β-strand (L1822-
D185) and two leucine side chains (Leu 58 and Leu 62) from anα-helix
(T57-A73).When the structural gate opens, the active site turns into the
open form that conserves the S0 and F0 subsites, and shows two addi-
tional hydrophobic subsites around the gate, defined as F1 and F2. The
removal of a specific watermolecule binding at the bottom of the active
site might be a trigger of conformational change from the open to the
closed form. Adenosine, or compounds that mimic substrate binding
to the active site, interferes with the “trigger water” molecule that
moves away. As a consequence, the transition to the closed form is pro-
moted and the interaction between substrate and enzyme is increased
[30]. There are two different types of ADAs: ADA1 and ADA2. Both of
these enzymes have been found in humans along with a gene for
ADA-like protein (ADAL or ADA3) with unknown function. Although
ADA1 does not express any signal sequence normally required for pro-
tein secretion by cells, the enzymehas been found in extracellular fluids.
ADA2 differs from ADA1 in terms of molecular weight and catalytic pa-
rameters. In humans, the ADA1 isoenzyme is encoded by the 32 kb ADA
gene on chromosome 20q and occurs as a soluble 41-kDa monomer
with 363 amino acids. ADA2 is encoded by the cat eye syndrome critical
region gene 1 (CECR1), a gene located on chromosome 22, member of a
novel family of ADGFs (ADA-related growth factors). ADA2 has amolec-
ular mass of approximately 100 kDa. ADA2, an enzyme more abundant
in plasma than in ADA1, has aMichaelis–Menten constant Km=2mM,
which is several orders higher than the concentration of adenosine in
plasma (0.1 μM), suggesting that the rate of adenosine deamination cat-
alyzed by ADA2 is close to zero at physiological adenosine concentra-
tions. Only certain cell types express ADA2 in humans, whereas ADA1
is present in all cells. The optimum pH for ADA2 activity is different
from ADA1 (pH 6.5 and 7.5 for ADA2 and ADA1 respectively); ADA2
displays lower sensitivity to many specific inhibitors of ADA1 and is
more stable at high temperatures than ADA1. This suggests that ADA2
expresses its activity only at high levels of adenosine and low pH, condi-
tions that are associated with tumor growth, hypoxia, and inflamma-
tion. However, at physiological concentrations of adenosine, ADA2 has
an extremely low ADA activity and thus, may function differently from
its catalytic form. This additional ADA-independent activitymay explain
the existence of two ADAs with the same catalytic activities in humans.
ADA2 is a symmetrical homodimer in contrast with the monomeric
ADA1. Comparison of the catalytic sites of both isoenzymes revealed
large differences in the arrangement of the binding pockets, which ex-
plains the differences in the affinity of these proteins to their substrates
and inhibitors. Extensive glycosylation and the presence of a conserved
disulfide bond and a signal peptide in the enzymatic molecule strongly
suggest that ADA2, in contrast to ADA1, is specifically designed to act in
the extracellular environment according to its presence in the serum
[30,33].

ADA1 plays a metabolic role not only as a key cytosolic enzyme in
the purine pathway, but also as an ecto-enzyme by regulating extracel-
lular adenosine levels [30]. In fact, although the location of ADA ismain-
ly cytosolic, it has been found on the cell surface of many cell types,
including neurons; therefore it can be considered as an ecto-enzyme.
Since ADA is a peripheral membrane protein it needs integral mem-
brane proteins to be anchored to the membrane. Apart from A1Rs and
olism and excretion, Int J Cardiol (2015), http://dx.doi.org/10.1016/
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A2BRs, another class of ecto-ADA-binding protein is CD26, a multifunc-
tional transmembrane glycoprotein, acting as a receptor and a proteo-
lytic enzyme. It has been shown that ADA anchored to the dendritic
cell surface, probably by the A2BR, binds to CD26 expressed on the
surface of T-cells, triggering co-stimulation and enabling an enhanced
immune response [34].

As the most abundant type of white blood cells that responds to in-
fection and attacks of foreign invaders, neutrophils might possess more
than one type of adenosine receptor, and adenosine regulates neutro-
phil function in an opposing manner through the ligation of ADA1
(immunostimulatory) and ADA2 (immunosuppressive) receptors. A
number of ADA inhibitorswith various degrees of potency have been re-
ported. In one study, immunosuppressive and anti-inflammatory effects
of FR234938, as a non-nucleoside inhibitor of ADA, were investigated.
Moreover, deoxycoformycin, another ADA inhibitor, has been investi-
gated in treatment of colon carcinoma cells and hematological neo-
plasms. By contrast, ibuprofen and medazepam effects on immune
deficiency have been reported. This revealed that purine compound
may act as ADA activator [31]. Thus, ADA, being a single chain protein,
performs more than one function, consistent with the definition of a
moonlighting protein. Moonlighting means the performance of more
than one function by a single protein. This phenomenon is becoming
recognized as a common phenomenon with important implications
for systems biology and human health. ADA can be considered a classi-
cal example of this particular family of multifunctional proteins being,
independently, an enzyme that degrades adenosine, a costimulator pro-
moting T-cell proliferation and differentiation mainly by interacting
with the differentiation cluster CD26, and an allosteric modulator of
ARs that are members of the GPCR family [30].
Fig. 2. In the left panel for XDH, xanthine is oxidized to uric acid and electrons transferred via Fe/
oxidized to uric acid and electrons are transferred to the FAD where O2 is reduced to O•− and
Modified from Ref. [35].
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4. Xanthine oxidase

The physiological role of xanthine oxidoreductase enzyme (XOR) is
to catalyze the terminal two reactions of purine catabolism in human.
In particular XOR catalyses the oxidation from hypoxanthine to xan-
thine and from xanthine to uric acid, with the simultaneous reduction
of NAD+ or O2. XOR is a housekeeping and the rate-limiting enzyme
in purine catabolism. This enzyme exists in two forms: xanthine dehy-
drogenase (XDH), which prefers NAD+ as electrons acceptor and xan-
thine oxidase (XO), which prefers O2. When the oxygen is the final
electron acceptor electrons bind unstably to oxygen forming hydrogen
peroxide (H2O2) and superoxide anion (O•−). These reactive oxygen
species (ROS) produced by XOR, are responsible for cytotoxicity in
physiological and pathological conditions [35]. However it is important
to understand that under certain conditions also XDH reduces O2 to
generate ROS. This happens when the NAD+ levels are low. The XOR
molecule belongs to themetalloflavoprotein family and is a homodimer
of 145–150 kDa subunits in which each subunit corresponds to one cat-
alytic center composed of three redox domains [36]. Thefirst and largest
domain contains the cofactor molybdenum, the intermediate domain
contains flavin adenine dinucleotide (FAD) cofactor and the last and
smallest domain contains the two iron sulfur centers [37]. In each reac-
tion there occurs an oxidative hydroxylation with electrons transfer
from molybdenum to other reaction centers. The molybdenum center
is the site of purine oxidation while NAD+ or O2 reduction continues
at the FAD. The two Fe/S clusters provide the conduit for electron flux
between the Molybdenum center and the FAD. Fig. 2 shows a represen-
tative pattern of XDH and XOR. The human gene for XOR is located on
the short arm of chromosome 2 and contains 36 exons [38]. Many
S centers to the FADwhereNAD+ is reduced to NADH. In the right panel for XO, xanthine is
H2O2.
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studies have unequivocally demonstrated that its expression is strictly
controlled by repressor proteins that limit XOR expression. The first reg-
ulation of XOR occurs at transcriptional level and its gene expression
may be regulated by nutritional factors, steroid hormones, growth
factors, cytokines, and insulin [39]. XOR expression decrease was ob-
served after intake of tungsten which antagonizes molybdenum or
with a diet poor in proteins. Otherwise a lack of vitamin E increased
its protein expression [40]. There is also a post-transcriptional control
of XOR activity consisting in a conversions between active and inactive
forms [41]. In mammals XOR is distributed in some organs as liver, in-
testine and blood where its levels are very high and has been purified
from cytosolic fractions, as peroxisomes and cellular membrane [42].
Based on protein expression, the highest activity levels of human XOR
are present in the intestine and liver, while a very low activity has
been detected in other human organs. Interestingly, human endothelial
cells have been identified as having high levels in XOR activity. Recent
studies have shown that XOR activity is undetectable in human serum,
brain, heart and skeletal muscle tissues [43]. Inhibitors of XOR are
used as anti-gout drugs. Allopurinol and other compounds can inhibit
this enzymebecause act as inhibitors that bind to themolybdenum cen-
ter competitively respect to xanthine. For instance, patients with chron-
ic heart failure and increased expression of XOR, are treated with
allopurinol and this treatment led to improvement in myocardial effi-
ciency [44]. However it's important to emphasize that the XOR-
generated ROS are responsible for many biological activities including
a defense against infection. XOR has antimicrobial properties inhibiting
growth of bacteria in vitro and in vivo [45]. The bactericidal activity of
XOR may be potentiated by the ability to produce peroxynitrite. When
XOR activity produces superoxide radical, this reactive molecule can
combinewith nitric oxide (NO) and form peroxynitrite (ONOO−), a po-
tent non-radical oxidant species. NO is normally generated by nitric
oxide synthase but XOR may also contribute to produce NO especially
in hypoxic conditions. Nevertheless NO is involved also in nitration of
tyrosine residues and the dysfunction of proteins due to nitration are
connected to cardiovascular diseases, ischaemic injury, hypertension
and heart failure. In addition to this was observed that myocardial con-
tractile function decreases with increasing XOR activity and ONOO−

generation [46]. In conclusion xanthine dehydrogenase/xanthine
oxidase (XDH/XO) is responsible for the production of uric acid and
ROS with pathophysiological consequences. The increase of XOR
activity is connected with hypertension, dyslipidemia, diabetes,
and atherosclerosis.
5. Conclusion

Elevated serum levels of uric acid has been shown to play an impor-
tant role in many disease states including gout and articular degenera-
tive disorders as well as vascular inflammation and atherosclerosis.
The balance of uric acid formation and excretion is driven by several en-
zymatic pathways which occur via different genetically-defined iso-
forms being also highly regulated by pathophysiological determinants
including metabolic products and free radical species. XOR represents
themost relevant pathway involved in uric acid overproduction and of-
fers significant perspectives for a better pharmacological approach for
treating hyperuricemia-related vascular and non vascular disorders.
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