
An Interpretation of CCS into Ludics

Stefano Del Vecchio1,2 and Virgile Mogbil1
1LIPN, CNRS – Université Paris 13, Villetaneuse, France

2Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italia.

Abstract

Starting from works aimed at extending the Curry-Howard correspondence to process calculi through linear
logic, we give another Curry-Howard counterpart for Milner’s Calculus of Communicating Systems (CCS)
by taking Ludics as the target system. Indeed interaction, Ludics’ dynamic, allows to fully represent both
the non-determinism and non-confluence of the calculus.
We give an interpretation of CCS processes into carefully defined behaviours of Ludics using a new con-
struction, called directed behaviour, that allows controlled interaction paths by using pruned designs. We
characterize the execution of processes as interaction on behaviours, by implicitly representing the causal
order and conflict relation of event structures. As a direct consequence, we are also able to interpret
deadlocked processes, and identify deadlock-free ones.

Keywords: Calculus of Communicating Systems (CCS), Linear logic, Ludics interaction, non-determinism.

1 Introduction

Process algebras are an approach to concurrent theory, to model interactive systems,
based on communication, often as message-passing, and reasoning on primitive op-
erators like parallel composition; among the most known and used systems there are
Milner’s Calculus of Communicating Systems (CCS) [14], and the π-calculus ([15],
[16]). In our work we focus on the former to give an interpretation in the proof theory
setting of Ludics [12], which bring back together syntax and semantics following the
paradigm of interactive computation, similarly to what is done in game semantics.
Finding a proper Curry-Howard counterpart for such calculi could provide a logical
foundation to concurrent computation, and some insight into its dynamic.

Usual models for concurrency can be used to give semantics to process algebra,
e.g. event structures [23] for CCS [22]. Like Petri Nets [18], event structures are a
true concurrent model but based on explicit causal order and conflict relations to
reveal concurrency. Using closure on these notions, semantical properties easily char-
acterize behaviours such as (no) conflicts, choice independence and confluence. Such
closures are also present in our interpretation but internalized in Ludics’ behaviours
directly by bi-orthogonality. From another view point, our Ludics interpretation of
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CCS expresses all possible schedulings under non-deterministic choices. Somehow
this brings it closer to interleaving models for concurrency like traces and labeled
transition systems [24] whose main ability is to characterize observational equiva-
lence.

Motivations and related works. The motivations of this work come from stud-
ies aiming at extending the Curry-Howard correspondence outside the functional
setting, to model concurrency. Many approaches achieved such a correspondence
(as [7]), though by imposing determinism to processes, i.e. limited to concurrent
systems where only a deterministic behaviour can occur. However, reduction on
processes is, in general, non-deterministic and non-confluent: this intrinsically lim-
its a possible correspondence with cut elimination or normalization of proofs, whose
nature is confluent and deterministic, effectively restraining a process to functional
behaviour.

We start from works based on Linear logic [11] (which inspired many systems,
being a logic particularly tied to interaction) that stress the difficulties with the
mentioned approaches; in particular [4], [3], [5] and [8]. In [8] the authors show
that differential nets are a suitable target system for a correspondence, though the
translation proposed is not modular, in the sense that we cannot compose two differ-
ential nets to represent the (parallel) composition of two processes. But even proof
nets, that have similar dynamics to process calculi, with a local and asynchronous
cut elimination procedure, were unable to express the behaviour of concurrent sys-
tems without a shift of correspondence, based on the scheduling of executions [6]:
from proof-nets as processes to proof-nets as executions, stressing the fact that the
meaning of a proofs lies in its normal form, reached by cut elimination, while the
meaning of a process is not one of its multiple irreducible forms, but how each form
is reached: which channels communicate, and what is the form of the process at
each step. The aim of our work is to try to carry out the same correspondence, but
in the setting of Ludics [12] to overcome the limitations of cut elimination by using
a logical system with interaction at its core.

Ludics has already been related to process calculi in works by C. Faggian and co.:
from this connection the authors aim at gaining a way to represent replication (as
in [2]) and non determinism inside Ludics – whose standard version is lacking both;
however the correspondence between execution and interaction is not developed at
all. As we understand now, our work is rather taking the opposite direction of [9],
by effectively representing the causal order and conflict relation of event structures
in Ludics using behaviours. This is achieved using a new construction, found in [10],
called directed behaviour, that allows controlled interaction paths from carefully
pruned designs. Finally we form a strong correspondence between execution in CCS
and interaction in Ludics, without losing neither its non-determinism nor its non-
confluence (i.e. multiple normal forms).

Outline. After background notions and notations for both Ludics (designs, be-
haviours and interaction) and MCCS (a simple fragment of CCS), we define in the
third section our interpretation ⟦P ⟧ of a process P in term of a Ludics’ behaviour
equipped with an assignment function. Section 4 summarizes the main results for
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MCCS and finishes with their extension to replication-free CCS. At first we focus
on the correspondence between process execution and Ludics interaction: ⟦P ⟧ char-
acterizes all executions on P . We then present the parallel composition as merging
of interpretations, and an operational version of the interpretation corresponding to
the process execution. We also give a characterization of deadlock-free processes, in
the form of a sufficient condition to check on the interpretation for deadlock-freedom.
In the last section we explain how to apply our technique to full CCS, that is an
extension to replication using Terui’s computational Ludics [20].

2 Background

Ludics is an abstraction of multiplicative-additive linear logic proofs in sequent cal-
culus, under focused discipline (used for optimizing proof-search space by Andreoli
[1]), thus cut-free and with a strict alternation between positive and negative
rules. Designs the objects of Ludics, replace formulas with addresses ξ, ζ, . . . (se-
quences of natural numbers); subformulas becomes sub-addresses ξ.1, ξ.2.1, . . .. To
give an intuition, proofs are rewritten in the following way:

Example 2.1 A focused proof of the formula ((A1 ⊗A2)&B)`C is:

⊢ A1, C,Δ1 ⊢ A2,Δ2

⊢ A1 ⊗A2, C,Δ ⊢ B,C,Δ

⊢ ((A1 ⊗A2)&B)`C,Δ

where the connectives & and ` are introduced at the same time. Going further,
and considering only positive formulas, it becomes

A�1 ⊢ C,Δ1 A�2 ⊢Δ2

⊢ A1 ⊗A2, C,Δ ⊢ B,C,Δ

((A1 ⊗A2)� ⊕B�) ⊗C� ⊢Δ

Finally in Ludics, formulas are forgotten, and we have

ξ.1.1 ⊢ ξ.3,Δ1 ξ.1.2 ⊢Δ2

⊢ ξ.1, ξ.3,Δ ⊢ ξ.2, ξ.3,Δ

ξ ⊢Δ

where the Δis are sets of addresses.

Formally, designs can be defined thus:

Definition 2.2 A design D is a tree of abstract sequents built and labeled by rules
called actions, such that each branch ends with a positive action. The rules are the
following:

● Daimon (Dai+Δ ∶) ⊢Δ
�

where Δ is a finite set of addresses. The Daimon is a positive action.
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● Positive action:
. . . ξ.i ⊢Δi . . .

⊢Δ, ξ
(+, ξ, I)

where i ∈ I, with I ⊂ N. I is the ramification of the rule and ξ is its focus. Δis
are disjoint and included in Δ.

● Negative action:
. . . ⊢ ξ.I,ΔI . . .

ξ ⊢Δ
(−, ξ,N)

where N is the ramification of the rule, and ξ its focus. N ⊂ Pfin(N), ξ.I =
ξ.1, . . . , ξ.n, with 1, . . . , n ∈ I and I ∈ N ; the ΔIs are included in Δ.

The ramification denotes the number of branches generated by the rule; i.e. the
premises containing the sub-addresses ξ.i, with i ∈ I, or ζ.i1, . . . , ζ.in with i1, . . . , in ∈
I and I ∈ N . Any rule with a sub-address ξ.i as focus is justified by the rule
introducing ξ.

Positive and negative actions are strictly alternated and Dai+ can only be the
last action of a design.

Interaction is the equivalent in Ludics of cut elimination, and define its dy-
namic; the way a design interact is explicited by its syntax, closing the gap with
semantics. We use the presentation and definitions found in [17], essentially the same
as the seminal article [12]. The following example gives an idea of two orthogonal
designs and interaction between them:

ξ.1.1.1 ⊢
(+, ξ.1.1,{1})4

⊢ ξ.1.1
(−, ξ.1,{{1}})3

ξ.1 ⊢

ξ.2.1.1 ⊢
(+, ξ.2.1,{1})8

⊢ ξ.2.1
(−, ξ.2,{{1}})7

ξ.2 ⊢
(+, ξ,{1,2})0

⊢ ξ

�10

⊢ ξ.2.1.1, ξ.1.1.1
(−, ξ.2.1,{{1}})9

ξ.2.1 ⊢ ξ.1.1.1
(+, ξ.2,{1})6

⊢ ξ.1.1.1, ξ.2
(−, ξ.1.1,{{1}})5

ξ.1.1 ⊢ ξ.2
(+, ξ.1,{1})2

⊢ ξ.1, ξ.2
(−, ξ,{{1,2}})1

ξ ⊢
Here the numbers denote the n-th interaction step. Interaction starts from the
cut on the bases (i.e. conclusions ⊢ ξ and ξ ⊢), and checks the premises of the
+ rule: if the ramification {1,2} finds a match in the corresponding negative rule,
interaction continues, and ends successfully if it reaches a daimon �: it fulfills the
role of axioms, stopping proof-search. In case of successful interaction between two
designs D and C, we say that they are orthogonals, denoted D
C or C ∈ D� (and
vice-versa). We will interpret processes as behaviours ; formally we have

Definition 2.3 A behaviour is a set of designs B = {D1, . . . ,Dn} of same base
closed by bi-orthogonality, i.e. such that B�� =B.

MCCS, a fragment of Milner’s CCS. At first we restrict our setting to the
multiplicative fragment of CCS, as presented in [4], in short called MCCS, to keep
it as simple as possible. In section 4.5 the same tools will be used to represent non-
deterministic choice and name hiding (aka restriction). Replication is addressed in
section 5 and treated in a reformulated version of Ludics by K. Terui, called c-ludics
[20]. MCCS terms are described by the following syntax:

P,Q ∶= 1 ∣ al.P ∣ am.P ∣ (P ∣ Q)
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a, b, c, . . . denotes channel names occurrences, taken from a countable setA of names,
and are labeled with locations l,m, o, . . ., taken from a countable set Loc of locations
(LocP denotes the locations of a process P ). They are denoted al, bm, co, etc. al.P is
the positive action prefix, am.P the negative one, and P ∣ Q the parallel composition
of two processes. We use 1 to denote the empty process, instead of the traditional 0,
since it is not only the neutral element of the non-deterministic choice (+), but also
of the parallel composition (P ∣ 1 ≡ P ), which shows a multiplicative behaviour in
our interpretation (as we will see, there is also a connection with the linear logic unit
1). A partial order on locations <P is induced by the prefix order of the occurrences
of channel names they label: if P = al.bm ∣ Q, then l <P m. A synchronization,
denoted i, j, u, v, . . ., is a pair (al, am) of dual channel-name occurrences, which we
can synchronize to perform execution, by the local rule

al.P ∣ am.Q→(l,m) P ∣ Q.

The set of synchronizations of P is denoted SP . If two synchronizations u, v have
a location in common, then (u, v) ∈ XP , the set of xor conditions of P , a conflict-
like relation. With xor(u) = {v1, . . . , vn ∣ (u, vi) ∈ XP ,1 ≤ i ≤ n} we denote the
set of synchronizations in conflict with u, i.e. the ones that cannot be in the same
execution sequence with u. The partial order on locations <P is naturally extended
to synchronizations and denoted ≼SP : u ≼SP v if there is a location l ∈ u and a
location m ∈ v such that l <P m. Equality comes from the fact that a location of
u could be smaller or greater than a location of v and vice-versa, forming a cycle
u ≼ v ≼ u in the order.

3 The interpretation

We present here the interpretation of the MCCS fragment. Firstly, the elements
of the process relevant for execution must be represented: via an assignment of
locations, cuts, and xor conditions to addresses, we can code them into designs.
We interpret each element of LocP , SP and XP into negative designs, then put
them together as premises (sub-designs) of a single positive design, the base design,
denoted DP , that is a preliminary and naive interpretation of a process P .

Secondly, also the order and conflict relations between these elements need to
be coded, and respected during interaction: a new operation on designs is used to
restrict interaction paths accordingly to the said relations, and closure properties
are obtained by bi-orthogonality, generating a behaviour. The partial orders <P
and ≼SP and the conflict relation XP are represented using particular directed (or
non commutative) modifications of DP , called restriction designs, denoted R(P ).
These modifications exploit a technique found in [10], the pruning of a branch of a
design, which affects interaction in the context of a behaviour. The role of R(P )
is restricting the possible interactions on DP by forcing them to respect the prefix
order and conflict relation, once we put the designs together as the set of generators
of a behaviour. Using the designs of the previous example, we try to give an intuition
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of the idea behind the pruning.

Example 3.1 D ∶

ξ.1.1.1 ⊢
(+, ξ.1.1,{1})

⊢ ξ.1.1
(−, ξ.1,{{1}})

ξ.1 ⊢

ξ.2.1.1 ⊢
(+, ξ.2.1,{1})

⊢ ξ.2.1
(−, ξ.2,{{1}})

ξ.2 ⊢
(+, ξ,{1,2})

⊢ ξ

C ∶

�
⊢ ξ.2.1.1, ξ.1.1.1

(−, ξ.2.1,{{1}})
ξ.2.1 ⊢ ξ.1.1.1

(+, ξ.2,{1})
⊢ ξ.1.1.1, ξ.2

(−, ξ.1.1,{{1}})
ξ.1.1 ⊢ ξ.2

(+, ξ.1,{1})
⊢ ξ.1, ξ.2

(−, ξ,{{1,2}})
ξ ⊢

E ∶

�
⊢ ξ.1.1.1, ξ.2.1.1

(−, ξ.1.1,{{1}})
ξ.1.1 ⊢ ξ.2.1.1

(+, ξ.1,{1})
⊢ ξ.2.1.1, ξ.2

(−, ξ.2.1,{{1}})
ξ.2.1 ⊢ ξ.2

(+, ξ.2,{1})
⊢ ξ.2, ξ.1

(−, ξ,{{1,2}})
ξ ⊢

Both C and E are orthogonal to D. However

D∗ ∶ p
ξ.1 ⊢

�
⊢ ξ.2.1

(−, ξ.2,{{1}})
ξ.2 ⊢

(+, ξ,{1,2})
⊢ ξ

where p denotes a pruning on the branch starting with ξ.1 ⊢, is orthogonal only to
E: interaction cannot continue on ξ.1, since it is not introduced by a rule anymore,
but can only pass through ξ.2 ⊢, stopping at the � above ξ.2.1. In conclusion, E ∈
{D,D∗}�, since it visits the ξ.2 branch first, while C ∉ {D,D∗}�; in this way we have
forced interaction to respect the order ξ.2 < ξ.1.

Formally, let [ ]P be an assignment function from LocP ∪SP ∪XP to addresses:
for x ∈ LocP ∪SP , we build the negative design G[x] described by the device of Fig.1
where [x]P is the address assigned to the synchronization or location in question;
for instance [u]P = ξ.1 and [l]P = ξ.2, with u ∈ SP and l ∈ LocP . Each (u, v) ∈ XP ,
to fork the interaction path, is interpreted by w[u, v], in Fig.1, where we note the
action as & since it is a binary negative rule, and xoru&xorv is an address assigned
to the clause (u, v). Then, the base design is:

DP = ( ⊗
x∈(SP∪LocP ),(u,v)∈XP

{G[x],w[u, v]})

where ⊗ stands for a sole positive rule (+, ξ, I) with each element of the set as an

G[x] =

[x]P .1.1 ⊢

⊢ [x]P .1

[x]P ⊢ w[u, v] =

xoru.1 ⊢
⊢ xoru

xorv.1 ⊢
⊢ xorv

xoru & xorv ⊢ R(i) =

..

�
⊢ [l].1

[l] ⊢ ..
p

[i] ⊢ ..

⊢ ξ

Fig. 1. Device designs, and restriction design for i ∈ SP .
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element of the ramification I (we assume that the assigned addresses have all the
same prefix ξ). Each negative design is thus a different premise, each containing a
sub-address of the focus. A restriction R(i) for a synchronization i = (am, ao) such
that, for instance, l <P o, is an alteration of a copy of DP obtained by forcing a �
on G[l] and a pruning on G[i]. Such restriction R(i) is of the form described in
Fig.1, where the dots ⋯ stands for all the other sub-designs of DP , which remain
unaffected. Any interaction with a design orthogonal to both R(i) and DP will be
forced to visit [l] ⊢ before [i] ⊢. For (u, v) ∈ XP , instead, we need two restriction
designs described in Fig.2; thus tying each member of the xor pair (u or v) to a
different branch of the negative rule, which effectively fork the interaction path. To
finish we need to put the base design and all restriction designs together: they form
the generators of a behaviour, obtained by bi-orthogonality. Therefore, let

BP = B��P = ({DP } ∪R(x) ∪R((u, v)))��

for all x ∈ (SP ∪ LocP ), (u, v) ∈ XP (note that R(x/(u, v)) is actually a set of
restrictions, usually more than one design). Then, the interpretation of P is
⟦P ⟧ = (BP , [ ]P ), the pair formed by the behaviour BP and an assignment function
[ ]P from SP , XP and LocP to addresses.

4 Main results

In this section we present results for MCCS, and will extend the setting to
replication-free CCS only later, for which all the results remain valid. Solutions
for the extension to replication are presented in the next section, giving a correspon-
dence for full CCS.

The results consist of the expected correspondence between process execution
and interaction in Ludics (Theorem 4.3), and between parallel composition and the
merging of interpretations – that is, the operation ⊗ on behaviours, the ludical
correspective of the linear logic tensor – when composing independent processes
(Theorem 4.5); then, an operation mimicking execution on behaviours, giving us
an intended weak subject reduction property (Theorem 4.6), and a characterization
of deadlock-free processes, based on the notion of visitable paths of a behaviour
(Theorem 4.8).

..

�
⊢ xoru

xorv.1 ⊢
⊢ xorv

xoru & xorv ⊢ ..
p

[u] ⊢ ..

⊢ ξ

..

xoru.1 ⊢
⊢ xoru

�
⊢ xorv

xoru & xorv ⊢ ..
p

[v] ⊢ ..

⊢ ξ

Fig. 2. Two restriction designs for (u, v) ∈ XP .
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4.1 Correspondence between execution and interaction

In order to form a correspondence between the dynamic of a process P and its inter-
pretation ⟦P ⟧ we need to be able to extract from interaction the relevant information
describing execution. The core notion is the one of visited actions inside an interac-
tion path. The actions considered at each step by interaction are said visited, and an
interaction path on a design is the sequence of visited actions. Our aim is to give a
definition of associated execution which will make any orthogonal design describe an
execution sequence, even if the empty one; at the same time the directed restrictions
will ensure that if a design is orthogonal to BP then its associated execution on the
process P is admissible, i.e. it respects the partial order on synchronizations <SP ,
and the xor conditions XP , thus being a possible execution sequence on P . The
following notion is therefore well defined. Let KDC be the sequence of actions of D
visited during interaction with C, we have

Definition 4.1 Let C ∈B�P . The execution on P associated to C is →i1 ⋯ →in , the
execution sequence such that for all synchronization i ∈ (i1, . . . , in),

(−, [i],{{1}})(+, [i].1,{1}) = G[i] ∈ KDPC ,

ordered as they are visited by the interaction path.

4.1.1 An Example of associated execution
Example 4.2 Let DP =

⋯

ξ.1.1.1 ⊢
⊢ ξ.1.1

(+, ξ.1.1,{1})4

ξ.1 ⊢ (−, ξ.1,{{1}})3

ξ.2.1.1 ⊢
⊢ ξ.2.1

(+, ξ.2.1,{1})8

ξ.2 ⊢ (−, ξ.2,{{1}})7 ⋯
⊢ ξ

(+, ξ, I)0

and C=

⊢ ξ.2.1.1, ξ.1.1.1,Δ �10

ξ.2.1 ⊢ ξ.1.1.1,Δ
(−, ξ.2.1,{{1}})9

⊢ ξ.1.1.1, ξ.2,Δ
(+, ξ.2,{1})6

ξ.1.1 ⊢ ξ.2,Δ
(−, ξ.1.1,{{1}})5

⊢ ξ.1, ξ.2,Δ
(+, ξ.1,{1})2

ξ ⊢ (−, ξ,{I})1

Assume ξ.1 = [i] and ξ.2 = [j]. Then KDPC =
(+, ξ, I)(−, [i],{{1}})(+, [i].1,{1})(−, [j],{{1}})(+, [j].1,{1}).
Therefore the execution associated to KDPC is →i,j. Furthermore i, j are minimal

synchronizations with respect to ≼SP , since they are visited first in DP (and therefore
also have no xor conditions).

By construction of the interpretation and definition of associated execution, we
find the expected correspondence between execution on processes and interaction on
behaviours:

Theorem 4.3 Let P be a MCCS process, ⟦P ⟧ characterizes all executions on P .
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With characterizes we mean that to each interaction between BP and B�P is as-
sociated an execution, and each execution is associated to at least one interaction. It
correspond to an admissible execution since the restriction designs force interaction
to respect the partial order <P and conflict relation XP .

4.2 Parallel composition as merging of interpretations

To make the translation modular we need to represent the parallel composition on
processes P ∣ Q by a composition of their respective behaviours BP and BQ, via a
logical operation on them. This operation, called merging, is based on ⊗, the Ludics
equivalent of the linear logic tensor ⊗, which is the extension to behaviours of the
more primitive composition ⊙ on positive designs, also called merging (of designs).
Informally, let D and C be designs of the same base ⊢ ξ and of respective first action
(+, ξ, I) and (+, ξ, J), such that I ∩ J = ∅. Then,

D ⊙ C = {(+, ξ, I ∪ J)c ∣ (+, ξ, I)c ∈ D or (+, ξ, J)c ∈ C}

where c denotes a branch (usually called a chronicle) of the design in question. If
I ∩ J ≠ ∅ or either D or C are �, then D ⊙ C = �.

The full operation is defined thus:

Definition 4.4 [17] Let B and E be positive behaviours, with disjoint ramifications
of the first rule, and of same base. Then

B⊗E = {D ⊙ C ∣ D ∈B,C ∈ E }��

This operation, along with a composition of the assignments [ ]P ∪ [ ]Q and a
few intermediate steps, let us compose the interpretations of two processes P and
Q to achieve the interpretation of P ∣ Q. In the trivial case where P and Q cannot
communicate, it is a straight correspondence:

Lemma 4.1 Given BP and BQ as behaviours with the same base, and disjoint
ramifications of the first rule, if there is no communication between P and Q, then
the corresponding interpretation is

⟦P ∣ Q⟧ = (BP ⊗BQ, [ ]P ∪ [ ]Q).

The assumption poses no issues, since the addresses assigned by the function
[ ]P are completely arbitrary, and it only matters which element is assigned to
which address. We may also assume a renaming of either [ ]P or [ ]Q to have them
disjoint : this would let DP and DQ have the same base, but a disjoint ramification of
the first action; i.e. no common sub-address, and thus no conflict in the assignments
[ ]P and [ ]Q. If there are possible communications between P and Q a few
modifications are needed on the construction of the interpretation, to account for
the new synchronizations generated in the parallel composition P ∣ Q, and their xor
conditions; but the logical core operation ⊙ is kept intact on the base designs. The
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new objects that need to appear in the merging can be captured by the sets

newSP ∣Q = SP ∣Q ∖ (SP ∪ SQ) and newXP ∣Q = XP ∣Q ∖ (XP ∪XQ).

We can deduce the new synchronizations, xor conditions and their restriction
designs by checking [ ]P and [ ]Q, which carry the information about channel
names, with no need to know the structure of the processes. What we need to
add is a design NP ∣Q which accounts for the new element generated in the parallel
composition. Given two processes P and Q, let (+, ξ, I) and (+, ξ, J) be the
first action of, respectively, DP and DQ; then NP ∣Q is the following design, for
N ∩ I = N ∩ J = ∅

G[k1] ⋯ G[kn] w[x1, y1] ⋯ w[xn, yn]
(+, ξ,N)

⊢ ξ

where we have {k1, . . . , kn} = newSP ∣Q, and {(x1, y1), . . . , (xn, yn)} = newXP ∣Q.
With [ ]N we denote the assignment of newSP ∣Q and newXP ∣Q to addresses

introduced by the ramification N . We then consider DP ⊙DQ⊙NP ∣Q, and build the
restriction designs on this extended base design in the same way, to make interaction
respect <P ∣Q, which is the union of the two partial orders <P ∪ <Q (no new location
is generated), and XP ∣Q. The only new restrictions will be the ones about elements
of newSP ∣Q and newXP ∣Q. The result of the operation takes the base design DP ⊙
DQ ⊙NP ∣Q together with the restrictions re-built on it, to generate a behaviour by
bi-orthogonal closure; the result of this operation is denoted (BP � BQ)��. Then,
by taking the union of the assignments we get the merging of interpretations :

⟦P ⟧� ⟦Q⟧ = ((BP �BQ)��, [ ]P⊙Q ∪ [ ]N ).

The following result is a generalization of the previous lemma:

Theorem 4.5 Let P,Q be MCCS processes. We have ⟦P ⟧� ⟦Q⟧ = ⟦P ∣ Q⟧.

4.3 Subject reduction property

An explanation of the interpretation can be found by understanding process ex-
ecution inside ⟦P ⟧. This can be seen through a subject reduction property. We
define the reduction on ⟦P ⟧ for a given u ∈ SP as an operation that matches exe-
cution →u on P , denoted ⟦P ⟧ ↝u (⟦P ⟧)u. Technically, we use an operation called
trimming, that is a carefully defined projection on behaviours (originally defined
in [12] and [17]), essentially a removal of a sub-ramification from the first action
(+, ξ, I) of DP (operation that affects the whole behaviour, since it is built on DP ).
Informally, reduction is defined by erasing a sub-ramification, thus the entire sub-
designs G[x] or w[x, y], corresponding to a designed synchronization u = (al, am),
called the branches associated to u: G[u], G[l] and G[m], G[x] and w[u,x] for
x ∈ xor(u), and w[x, y] for y ∈ xor(x). Let K = {i, . . . ,m} be the corresponding
sub-ramification, then the first action of DP becomes (+, ξ, I ∖K).
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As a consequence, all the R(P ) will miss the same sub-designs, as well as the
whole behaviour BP . There is a sort of inclusion of (⟦P ⟧)u in ⟦P ⟧ from the point
of view of the possible interactions and associated executions; that is, for each in-
teraction path KC′ on (⟦P ⟧)u, there is an interaction path KC on ⟦P ⟧ such that
the execution associated to KC′ is either the same, or a sub-execution, of the one
associated to KC . This second case holds if KC′ visits G[v] for a synchronization v

such that u ≼SP v – since G[u] has been erased in (⟦P ⟧)u, then execution on G[v]
is directly possible, while on ⟦P ⟧, G[u] must be visited first. The first case holds,
in general, since (DP )u is strictly smaller than DP , thus any interaction on (BP )u
is also possible on BP . Note that the restrictions corresponding to the elements
associated to u automatically disappear in the behaviour (BP )u: since the branches
of these elements are erased, there are no more � and prunings in the restrictions
in question, making them exactly equal to (DP )u.

The reduction on the interpretation is the operational side of our interpretation:

Theorem 4.6 Let P be a MCCS process interpreted by ⟦P ⟧. Given a synchroniza-
tion u ∈ SP such that P →u P ′, we have ⟦P ′⟧ = (⟦P ⟧)u, i.e.

P →u P ′

⟦P ⟧ ↝u (⟦P ⟧)u

⟦−⟧ ⟦−⟧

The interpretation is thus not preserved during execution, but this must be the case
if we want to fully represent the dynamic of a process. Indeed we preserve the non-
confluence of execution: ⟦P ⟧ keeps all the possible executions to normal forms of P .
As a consequence, for some maximal execution sequences, we have:

Corollary 4.7 Let One = (+, ξ,∅)
⊢ ξ (the design generating the behaviour that

corresponds to the linear logic multiplicative unit 1), and let P be a MCCS process:

if P →∗ 1 then ⟦P ⟧ ↝∗ {One}�� for the same synchronization sequence.

4.4 Deadlocks

By restricting a behaviour interpreting a process P to the set of its visitable paths,
i.e. the branches of BP which are actually visited by some interaction with B�P ,
we obtain what is called the incarnation of a behaviour, which can give us some
important information about the process. The result can be seen as a projection on
BP that erases the sub-ramification – and thus the sub-designs – never visited during
interaction. We can restrict the definition to the incarnation of DP , denoted ∣DP ∣,
i.e. the branches of DP visited by some interaction, with the following consequences:

Theorem 4.8 (i) If ∣DP ∣ = DP , then P is deadlock free.

(ii) If ∣DP ∣ ≠ DP , then the non visitable part of DP is never accessed by interaction,
and its process counterpart represent the common part of all normal forms,
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where no synchronizations can occur (for any execution path); moreover, P is
not reducible to 1.

A process P is deadlocked if P is in normal form, P ≠ 1, and there is also a cycle
in the partial order ≼SP on synchronizations; other definitions focus on the lack of
communication on certain chosen occurrences of channel names (as for instance in
[13]). In case (i), P is deadlock free since any part of P is potentially synchronizable
(is visitable in ⟦P ⟧). We don’t know if P →∗ 1, but for each channel there is at
least one execution path where it is synchronized with a dual, i.e. any part of P can
be accessed by some execution. Thus, there are no cycles in the order ≼SP , and we
can potentially communicate with any channel of P (i.e for all channels there is a
synchronizing execution sequence).

In case (ii), for the correspondence between interaction and execution, if a part
of DP is never visited, then there are some channels of the process that cannot be
synchronized (either there is no dual, a deadlock, or the execution is blocked for
some other reason) and, since each occurrence of a channel name is represented in
⟦P ⟧, we also know which these channels are. Notice that ∣DP ∣ is the only relevant
design to check, since the restriction designs are modifications of DP only needed
to restrain the possible interactions, and interaction-order. Thus, if an interaction
visits any branch of a restriction R(⋯), then it visits the same branch on DP .

For the same correspondence, we can interpret deadlocked processes in be-
haviours with no issues: the deadlocked part will just be non visitable in ⟦P ⟧. For
example:

P = a1.b
2
.Q ∣ b3.c4.R ∣ c5.a6.S

is deadlocked, with a cycle u1 = (a1, a6) ≼SP u2 = (b
2
, b3) ≼SP u3 = (c4, c5) ≼SP u1.

On the side of ⟦P ⟧, we have restrictions which will prevent us to interact with
any ui, since each G[ui] (1 ≤ i ≤ 3) have as requisite a G[l] for a location l of
another synchronization in the cycle, which is not accessible as well for the same
reason; therefore, there will be no orthogonal design interacting with any G[ui].

4.5 Extension to replication-free CCS: Non-deterministic Choice and Hiding

We present here the replication-free fragment of CCS, and the extension of the pre-
vious results. The non-deterministic choice + (also called sum) is a mutual exclusion
between its two members; it waits for an external choice, i.e. a context in parallel
composition, which selects one process to use by synchronizing with the channels of
one of the two members, dropping the other for that execution path. Execution is
therefore generalized in the following way:

P = al.P ′ + bm.Q′ ∣ an.P ′′ + b
o
.Q′′ →(l,n) P

′ ∣ P ′′

From the point of view of interaction the interpretation is extended with a xor

condition in XP on the synchronizations on a and b, i.e u = (al, an) and v = (bm, b
o
).

Indeed, once we have performed execution on one, the other is excluded from the
same execution path. On the other hand, both are possible until a choice is made,
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and choosing one of the two synchronizations u and v, by transitivity of the partial
order <P on locations, necessarily exclude from any further execution all the internal
synchronizations of P ′ (if v is chosen) or P ′′ (if u is chosen) – as in event structures,
where the conflict relation is hereditary w.r.t. causal implication. This is effectively
described by the xor relation already present in the MCCS interpretation, that can
mimic the non-deterministic choice, by extending it to members of a sum +.

The hiding operator extends the term syntax with νa(P ), also known as re-
striction P /a in early texts. It declares that a channel name is bound and private
inside its scope, then hidden, i.e. that cannot communicate with channels outside
its scope. If P = νa(al.R) ∣ am.Q then the pair (al, am) cannot synchronize, and
hence the channels would not be able to communicate. The execution rule is then
considered under the scope of ν operators, up to common structural equivalence,
which let push the hiding inside a process, until it reaches its maximal/minimal
scope:

νa(P ∣ Q) ≡ νa(P ) ∣ Q, if a ∉ fv(Q),
νa(P ) ∣ νb(Q) ≡ νa(νb(P ∣ Q)) ≡ νb(νa(P ∣ Q)), if a ∉ fv(Q) and b ∉ fv(P ).

where fv notes the un-bound channels of a process. For a simple interpretation
of hiding, we already have all the needed material: we restrict our definition of
synchronizations so that only some pairs of dual channels are considered. We can
denote with alν such a bound name; then we exclude from SP any pair (al, am) such
that only one channel is tagged, i.e. either is alν or amν . If both are tagged then it is
still a synchronization. This implies that inside DP and R(P ) there is no trace at
all of the hiding that can occur in the process P , we can only check its presence from
the static assignment [ ]P , which only tells us singularly which channels occurrences
are hidden. The result is that we forbid some interaction paths by not interpreting,
instead of resorting to more restrictions.

5 Replication: a reformulation in computational Ludics

To handle replication one can follow the ideas of [21] to type event structures, by
considering a restricted version of the π-calculus 1 , a linear typed version of San-
giorgi’s πI-calculus [19]. Such calculus has the same expressive power as the version
with free name passing, and linearity only breaks for replicated outputs, but deter-
minism is preserved by the uniqueness of inputs. This allow us to keep both ≼SP
and locations for synchronizations, even with replication. By this way the presented
tools can be applied.

Another possibility to represent replication comes from an already existing ver-
sion of Ludics dedicated for this. K. Terui formulated a complementary syntax
for Ludics called computational Ludics [20] (aka c-ludics), closer to higher order
π-calculus, to achieve practical advantages with the general goal of developing an

1 Notice that [21] introduces such calculus to bypass the main difficulty to extend CCS semantics to the
π-calculus: to switch from dynamic α-conversion that allows to represent the dynamic creation of a name,
to a static one at typing time.
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interactive theory of computability and complexity based on Ludics. The feature
that seems most interesting to us is the possibility to represent infinite designs by a
finite generator, allowing recursive definitions. Design generators let us easily extend
the interpretation to the full calculus with replication.

Terui’s syntax is based on a signature A = (A,ar), where A is a set of names,
and ar ∶ A → N is a function giving an arity to each name. A denumerable set of
variables V is needed, denoted x, y, z, . . .. A positive action is either �, Ω (noting
the divergence), or a, with a ∈ A; a negative action is x ∈ V , or a(x1, . . . , xn), with
a ∈ A and ar(a) = n. x1, . . . , xn are distinct variables, and �→x a denotes a vector of
variables of the arity of a. Informally, a design D is co-inductively defined by

P ∶∶= � ∣ Ω ∣ (N0 ∣ a⟨N1, . . . ,Nn⟩),

N ∶∶= x ∣ ∑a(�→x a).Pa.

P denotes the positive actions, N the negative actions. A name denotes both the
polarity and cardinality of the ramification of a rule, and, in the negative rule, the
variables stand for each sub-address of the ramification. If N0 is not a variable x in
a positive design, then it becomes a cut.

A reformulation of the designs used in the translation is possible, since it holds
the following:

Remark 5.1 Standard c-designs 2 (i.e. ≠ Ω, linear, cut-free and identity-free)
correspond to the original designs.

Consequently, it is easy to show that using the pruning to build restriction designs
can naturally be applied to c-designs. Assuming an assignment from LocP ,SP ,XP

to names, we have the following correspondence:
● G[u] = [u](xu).(xu ∣ [u.1]⟨0⟩).
● w[u, v] = [xoru](xu).xu ∣ [xoru.1]⟨0⟩ + [xorv](xv).xv ∣ [xorv.1]⟨0⟩.
● DP = x0 ∣ a⟨G[x], . . . ,w[x, y], . . .⟩, with x varying on SP ∪LocP , and (x, y) on XP ;

where [ ] denotes the assignment function. Interaction is called reduction, and
is defined in λ-calculus style on positive c-designs with a cut, by:

(∑a(�→xa.Pa) ∣ a⟨
�→
N ⟩) → Pa[

�→
N /�→xa]

where
�→
N is of lenght ar(a). The reduction relation select the a(�→xa) that matches

with a⟨
�→
N ⟩, thus assuring us that they have the same arity. Then, in the corre-

sponding Pa, each variable is substituted by a negative design inside the scope of a;
reduction can then continue on Pa[

�→
N /�→xa], until a normal form is reached (a variable

x or �), or it diverges (Ω). Using the reduction relation, we can rewrite example
3.1 using prunings and � easily:
● D = x0 ∣ a0⟨a1(x1).x1 ∣ a11⟨0⟩, a2(x2).x2 ∣ a21⟨0⟩⟩
● C = a0(x1, x2).x1 ∣ a1⟨a11(x11).x2 ∣ a2⟨a21(x21).�⟩⟩.
2 See [20], remark 2.2.
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● E = a0(x1, x2).x2 ∣ a2⟨a21(x21).x1 ∣ a1⟨a11(x11).�⟩⟩
● D∗ = x0 ∣ a0⟨0p, a2(x2).�⟩.
where p denotes a pruning, and 0 the empty negative action: it denotes that the +
action has a premise, but there is no further action in the branch. Both reductions
C ∣ D and E ∣ D reach � after five reduction steps. Instead, only E is orthogonal to
D∗. To perform reduction, we must substitute x0 in D∗ with E , obtaining

E ∣ D∗ = (a0(x1, x2).x2 ∣ a2⟨a21(x21).x1 ∣ a1⟨a11(x11).�⟩⟩) ∣ a0⟨0p, a2(x2).�⟩
Reduction reach � in only 2 steps:

(i) (a2(x2).�) ∣ (a2⟨a21(x21).0p) ∣ a1⟨a11(x11).�⟩⟩.
(ii) �.

Instead, the reduction

C ∣ D∗ = (a0(x1, x2).x1 ∣ a1⟨a11(x11).x2 ∣ a2⟨a21(x21).�⟩⟩)∣a0⟨0p, a2(x2).�⟩
at the second step diverges:

(i) (0p) ∣ (a1⟨a11(x11).�) ∣ a2(x2).� ∣ a2⟨a21(x21).⟩⟩.
(ii) Ω; since 0p has no P0 and variables to perform the substitution on.

Therefore, the reformulation in c-ludics does not affect restriction designs, or
the behaviour BP , and the correspondence between execution and interaction still
holds. About the merging of interpretations, the operation ⊙ is simply an extension
of the arity of a positive rule – or a substitution with a name of the needed arity
– by putting together in the scope of this action all the negative designs that we
have. Thus from D = x0 ∣ a1⟨N1, . . . ,Nk⟩ and C = x0 ∣ a2⟨Nk+1, . . . ,Nk+n⟩ we obtain
D ⊙ C = x0 ∣ a3⟨N1, . . . ,Nk,Nk+1, . . . ,Nk+n⟩.

Trimming, instead, require us to erase the sub-ramification associated to a certain
synchronization from DP , thus reducing the arity of the first action a, and removing
the corresponding negative designs (the dual operation of ⊙). A substitution to a
name of the right arity might be required, but the operation itself poses no issues.
When reducing DP to One, the form we obtain is One = x0 ∣ a⟨⟩ = x0 ∣ a, a positive
action with a 0-ary name.

The main issue with c-ludics is that some difficulties arises when defining the
assignment function, since names require modifications every time we act on DP ,
and variables are not absolute values. Both cases complicate the read back from ⟦P ⟧
to elements and relations of the process. This forces the assignment to be deduced
from the structure of a c-design, and not be independent from it anymore, while also
losing the 1 − 1 correspondence with elements of the process.
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6 Conclusion

The interpretation of CCS into Ludics tries to overcome the problems, and satisfy
the goals, that motivated our work. Its main properties are:
● A logical characterization of the full dynamic of processes without imposing func-

tional behaviour, resorting to multiple translations by partially determinizing ex-
ecution via scheduling, or sacrificing the non-determinism or non-confluence itself
(by imposing linearity and other constraints on the syntax).

● A partial modularity in the interpretation, which let us combine the interpreting
structures, behaviours in our case, as we do with processes via parallel com-
position. We are able to represent the composition via a ludical operation on
behaviours that, in the trivial case where there is no communication between two
processes, exactly interpret the linear logic tensor ⊗. Otherwise, some more arti-
ficial and non-ludical steps are required, by working on the assignment functions,
but the core operation ⊙ is kept intact on the base designs.

● Insights on the dynamics of processes, as expliciting what parallel composition
entails when two process communicate, what causes forks in an execution paths,
and how the different reduced forms of a process are related through their inter-
pretations.

As a consequence of these properties, we have that:
● subject reduction describe a particular inclusion between the interpretations of

a process and of one of its reduced forms, with respect to their structures and
possible interactions;

● along with execution, deadlocks are also characterized. Instead of being a property
of the interpretation – as it is with typing systems, where if a process is typable,
then it is deadlock free – the interpretation in Ludics is oblivious of their presence,
as is interaction on behaviours. Still, we have a way to know if a process is
deadlock-free, or if it can’t be reduced to 1, via the visitable paths of a behaviour.

Finally, the reformulation in c-ludics [20] let us have access to non-linearity and
recursive definition in the form of finite designs generators, and thus extend the
interpretation to the full calculus by using the same techniques presented here.

Another point requiring further investigation is the evident strong connection
with event structures, which seem naturally represented by directed behaviours,
generated via restriction designs of a base one. Indeed, event structures are indirectly
already represented, passing through processes, since they are a model of CCS-like
calculi [22].
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