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A B S T R A C T

In the EU 2020 biodiversity strategy, maintaining and enhancing forest biodiversity is essential. Forest managers
and technicians should include biodiversity monitoring as support for sustainible forest management and con-
servation issues, through the adoption of forest biodiversity indices. The present study investigates the potential
of a new type of Structure from Motion (SfM) photogrammetry derived variables for modelling forest structure
indicies, which do not require the availability of a digital terrain model (DTM) such as those obtainable from
Airborne Laser Scanning (ALS) surveys. The DTM-independent variables were calculated using raw 3D UAV
photogrammetric data for modeling eight forest structure indices which are commonly used for forest biodi-
versity monitoring, namely: basal area (G); quadratic mean diameter (DBHmean); the standard deviation of
Diameter at Breast Height (DBHσ); DBH Gini coefficient (Gini); the standard deviation of tree heights (Hσ);
dominant tree height (Hdom); Lorey’s height (Hl); and growing stock volume (V). The study included two mixed
temperate forests areas with a different type of management, with one area, left unmanaged for the past 50 years
while the other being actively managed. A total of 30 field sample plots were measured in the unmanaged forest,
and 50 field plots were measured in the actively managed forest. The accuracy of UAV DTM-independent pre-
dictions was compared with a benchmark approach based on traditional explanatory variables calculated from
ALS data. Finally, DTM-independent variables were used to produce wall-to-wall maps of the forest structure
indices in the two test areas and to estimate the mean value and its uncertainty according to a model-assisted
regression estimators. DTM-independent variables led to similar predictive accuracy in terms of root mean
square error compared to ALS in both study areas for the eight structure indices (DTM-independent average
RMSE% = 20.5 and ALS average RMSE% = 19.8). Moreover, we found that the model-assisted estimation, with
both DTM-independet and ALS, obtained lower standar errors (SE) compared to the one obtained by model-
based estimation using only field plots. Relative efficiency coefficient (RE) revealed that ALS-based estimates
were, on average, more efficient (average RE ALS = 3.7) than DTM-independent, (average RE DTM-in-
dependent = 3.3). However, the RE for the DTM-independent models was consistently larger than the one from
the ALS models for the DBH-related variables (i.e. G, DBHmean, and DBHσ) and for V. This highlights the potential
of DTM-independent variables, which not only can be used virtually on any forests (i.e., no need of a DTM), but
also can produce as precise estimates as those from ALS data for key forest structural variables and substantially
improve the efficiency of forest inventories.

1. Introduction

New methods and tools for the integration of spatial and temporal
dimensions in forest ecosystems monitoring are needed to support
sustainable forest management in taking into consideration the vast
array of ecosystem services provided by forests (Fotakis et al., 2012;

Santopuoli et al., 2019; Shang et al., 2019; Winter et al., 2018). The
protection of forest biodiversity is an increasingly important issue at
European level (Arabatzis, 2010; European Environment Agency, 2012;
FOREST EUROPE, 2015; Fotakis et al., 2012; Galluzzi et al., 2019;
Kurttila, 2001). The European Union (2013), in the 2020 strategy for
EU biodiversity, highlights the need to increase the contribution of
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forestry in maintaining and enhancing biodiversity. Moreover, it is re-
ported that by 2020 forest management plans, or equivalent instru-
ments, in line with sustainable forest management, need to provide
“measurable improvement in the conservation status of forest ecosystems and
species and in the provision of related ecosystem services as compared to the
EU 2010 Baseline” (European Commission, 2013). As a consequence
forest managers should include biodiversity monitoring in the phase of
information acquisition to support forest management choices
(Arabatzis, 2010; European Commission, 2013; European Environment
Agency, 2012; Ozdemir, 2008; Winter et al., 2018).

In the context of precision forestry (Taylor et al., 2002), to plan and
to conduct site-specific forest management, the demands for small-scale
forest information have increased. Maps representing the forest en-
vironment under different points of view, for instance through multiple
biodiversity indicators, are considered crucial to support forest man-
agement activities (Corona et al., 2017; Fardusi et al., 2017). For these
reasons, the development of objective and robust methods to model and
map biodiversity indicators is urgently needed.

Frequently, forest biodiversity is described and measured through
indicators based on species compositions (Zellweger et al., 2013), or
structural diversity (McElhinny et al., 2005; Mura et al., 2015). Alpha
or beta biodiversity indicators based on species composition are well
known and established in vegetation science and conservation biology
(Noss, 1990). Forest structure indicators are related to the spatial ar-
rangement of the different components of the forest ecosystem, such as
tree heights at different canopy levels, tree spacing, and dimensioning
(McElhinny et al., 2005). Forest structure is considered one of the most
important indicators of forest health (Franklin and DeBell, 1988; Mura
et al., 2015; Zellweger et al., 2013) and a good predictor of habitat
quality for several animal species (Batisteli et al., 2018; Beedy, 1981;
Bergner et al., 2015; Hanle et al., 2020; Lindberg et al., 2015;
McElhinny et al., 2005). Several authors reported that maintaining and
improving the complexity of forest structure is crucial to counteract the
loss of biodiversity (Adhikari et al., 2020; Bagaram et al., 2018;
Bottalico et al., 2017; Chirici et al., 2012; Corona et al., 2011; Immitzer
et al., 2016; Kolb et al., 1994; Vihervaara et al., 2015; Winter et al.,
2018; Zellweger et al., 2013). The most common structure diversity
indices are based on simple information collected in plots measured in
the field in the framework of forest inventories such as tree diameters at
breast height (DBH) and tree heights (H) (McElhinny et al., 2005).

Three dimensional (3D) Remotely Sensed (RS) data are often used as
auxiliary information to model and predict forest biophysical variables
(Brosofske et al., 2014; Corona, 2010; Fotakis et al., 2012; Mura et al.,
2015; Valbuena et al., 2016; van Ewijk et al., 2019), including forest
biodiversity indicators (Bottalico et al., 2017; Mura et al., 2015;
Valbuena et al., 2016; van Ewijk et al., 2019). Several types of variables
extracted from the RS data can be used to model and predict forest
biodiversity indicators. Variables describing the vertical and horizontal
distribution of the trees in the canopy can be derived from 3D RS data.

Often, variables describing the distribution of trees height, are ex-
tracted from 3D point clouds such as those from Airborne Laser Scanner
(ALS) (Bottalico et al., 2017; Evans et al., 2009; Lefsky et al., 2002; Lim
et al., 2003; Mura et al., 2016; Teobaldelli et al., 2017; Valbuena et al.,
2013; van Ewijk et al., 2019; Winter et al., 2018; Zimble et al., 2003).
Lefsky et al. (2002) and Lim et al. (2003) highlighted the potential of
using ALS returns to estimate canopy structure and functions, and to
predict forest stands variables such as height, biomass, and volume.
Zimble et al. (2003) showed that ALS-derived tree heights could be
useful in the detection of differences in vertical forest structure with
acceptable accuracies. Evans et al. (2009) underline how ALS pulses can
be useful to develop different types of variables for a better compre-
hension of forest structure and spatial dynamics. Moreover, other au-
thors have found that these ALS metrics can be used as predictors of
spatial structure indices (e.g. DBH, H, Growing Stock Volume, standard
deviation of DBH, standard deviation of H, Gini Coefficient, and Lorenz
curve) in different forest types including boreal (Valbuena et al., 2016),

Mediterranean (Bottalico et al., 2017; Teobaldelli et al., 2017), and
temperate biomes (Mura et al., 2015). Niemi and Vauhkonen, (2016)
and Ozdemir & Donoghue (2013) reported that the combination of
traditionally ALS metrics and textural variables computed on ALS high-
resolution raster grid Canopy Height Model (CHM) (i.e. pixel size
0.5 m) are useful to improve the estimation accuracy of traditional
forest variables (e.g. stem volume, basal area) as well as for forest
structure indicators (e.g. tree height diversity and tree DBH diversity).
Moreover, Van Ewijk et al. (2019) demonstrated that the use of texture
and intensity variables calculated on the basis of ALS data improved the
prediction of quadratic DBH and stem density.

Variables describing the horizontal distribution of trees have also
been adopted in the literature. Among these, textural variables
(Haralick et al., 1973) have been used to describe the horizontal dis-
tribution of forests. Textural metrics derived from high-resolution sa-
tellite and aerial images were found to be useful for predicting forest
structure indices and forest cover changes (Bruniquel-Pinel and
Gastellu-Etchegorry, 1998; Gómez et al., 2012; Ozdemir and Karnieli,
2011). For example, St-Onge and Cavayas, (1995) yielded relatively
accurate estimates of crown diameter, stand density, and percent cover
using a MEIS-II image with a ground resolution of 36 cm. Bruniquel-
Pinel and Gastellu-Etchegorry (1998) demonstrated the utility of tex-
tural metrics to predict tree position, Leaf Area Index, and crown cover
from high spatial resolution airborne images acquired by RAMI
pushbroom instruments. Moreover, Ozdemir and Karnieli (2011) de-
monstrated that Basal Area (G), Standard Deviation of DBH (DBHσ), and
DBH Gini Coefficient (Gini), can be predicted and mapped with a rea-
sonable accuracy using the texture features extracted from the spectral
bands of a WorldView-2 image. Gómez et al. (2012) found that texture
variables derived from imagery captured with QuickBird-2 in a Medi-
terranean pine forest are also useful to map forest structural diversity
indices such as DBH, H, and crown diameters.

New methods in computer vision and stereo-matching algorithms
have increased the number of predictors that can be calculated from 3D
photogrammetric data (Bohlin et al., 2012; Iglhaut et al., 2019; Nowak
et al., 2019; Puliti et al., 2015). Nowak et al. (2019) and Iglhaut et al.
(2019) in their reviews reported the complete list of works and appli-
cations developed with unmanned aerial vehicles (UAVs) and Structure
from Motion (SfM) Photogrammetry to predict and to map forest
structure indicators in the context of forest inventories and biodiversity
monitoring.

The increasing attention to 3D photogrammetry is also due to the
recent advancements in RS using lightweight UAVs equipped with di-
gital cameras. In fact, UAV can provide at forest management scale an
alternative low cost option to acquire multi-temporal RS data (Bagaram
et al., 2018; Hese and Behrendt, 2017; Lisein et al., 2013; Puliti et al.,
2019; Saarinen et al., 2018; Shen et al., 2019; Wallace et al., 2016;
Zahawi et al., 2015). For example, Shen et al. (2019) used spectral and
structural predictors derived by UAV-based multispectral and RGB
photogrammetric point cloud to predict forest structural attributes such
as Lorey’s mean height (HL) and Growing Stock Volume. Saarinen et al.
(2018) applied individual tree crown approach (ITC) and semi-in-
dividual tree crown approach (semi-ITC) in estimating plot-level bio-
diversity indicators with UAV-based hyperspectral imagery. They found
that biodiversity indicators like the amount of deadwood and species
richness were mainly underestimated with photogrammetric point
clouds, while indicators of structural variability (i.e., DBHσ and H) were
the most accurately estimated biodiversity indicators with relative Root
Mean Square Error (RMSE) between 24.4% and 29.3%. Giannetti et al.
(2018a) developed a new set of Digital Terrain Model (DTM) in-
dependent explanatory variables to model and map traditional forest
inventory variables (e.g. stem volume) from raw UAV photogrammetric
data (i.e. without the input of external ALS DTM data). These variables
describe both the vertical and horizontal distribution of the trees and
the vegetation’s spectral properties. DTM-independent variables are
very promising as they enable to extend the use of UAVs beyond only
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those areas where accurate DTMs are available. Puliti et al. (2020)
adopted the DTM-independent approach developed by Giannetti et al.
(2018a) to estimate the mean and its uncertainty for traditional forest
inventory variables in a Pinus radiata plantation in New Zealand. Their
results showed that these variables performed similarly to ALS and
better than UAV laser scanning data even though there was some in-
dication of potential bias when using DTM-independent variables for
estimation purposes. Given the relevance of DTM-independent vari-
ables remains crucial to further assess their use for modelling different
types of variables and in different forest types. To our knowledge, the
potential of UAV photogrammetric DTM-independent explanatory
variables to model and map structural complexity indices was not in-
vestigated yet.

The objective of this study was to demonstrate the feasibility of
using DTM-independent variables (Giannetti et al., 2018a) from 3D
UAV photogrammetric data as predictor variables for modelling and
mapping, according to an area-based approach (Næsset, 2002), the
following forest structure complexity indices: basal area (G; m2 ha−1),
quadratic mean diameter (DBHmean; cm), the standard deviation of DBH
(DBHσ; cm), DBH Gini coefficient (Gini), standard deviation of H (Hσ h;
m), dominant height (Hdom; m), Lorey’s height (Hl; m), and stem vo-
lume (V; m3 ha−1). The accuracy of models based on DTM-independent
variables was compared with that of models based on more traditional
predictors calculated on ALS data. Moreover, we produced wall-to-wall
maps with both DTM-independent and ALS models to estimate mean
values of forest structure indices and their uncertainty according to
model-assisted regression estimators.

2. Materials and methods

2.1. Study areas

The experiment was carried out in two study areas located in central
Italy, in the Apennine mountains of Tuscany Region within the province
of Florence (Fig. 1).

The first study area (115 ha) is located in the State forest of
Vallombrosa. At the end of the 1970s the State forest was declared
Nature Reserve and management aims, which in the past were oriented
to wood production, were reoriented towards multifunctionality and
biodiversity conservation. As a result, during the past 40–50 years, most
of the forest was undisturbed and left to natural evolution. The Reserve
is included in the Special Areas of Conservation (SAC) “Vallombrosa
and S. Antonio Forest” (IT5140012) under the Natura 2000 Network
(Habitats Directive 92/43/EC), two priority habitats (9210* and 9220*)
are included in the SAC. The study area is characterized by steep slopes
(mean slope = 41%) and high altitude difference (1080–1432 m a.s.l.).
The forest is dominated by pure European beech (Fagus sylvatica L.)
stands with other isolated broadleaves (Common ash (Fraxinus excelsior
L.), oaks (Quercus cerris L.), European hop-hornbeam (Ostrya carpinifolia
Scop.), common holly (Ilex aquifolium L.), sycamore (Acer pseudopla-
tanus. l.) and ilex (Ilex aquifolium L)), silver fir (Abies alba M.) planta-
tions, and other conifers plantations (Pseudotsuga menziesii Franco,
Pinus Nigra J.F. Arnold, Chamaecyparis, Spach) (Fig. 1). The beech
forests are even-aged (155–230 year) stands with simplified forest
structures, which are mostly derived from coppices converted to high-
forests. All the conifers plantations are even-aged. Silver fir plantations
derived by the traditional management systems carried out in Val-
lombrosa by local monks for wood production with a traditional rota-
tion age of 100 years. More details about the management history of
Vallombrosa forest can be found in Bottalico et al. (2014). Douglas fir
and Chamaecyparis are experimental plantations started in 1926 and
1922, respectively. The black pine plantations began in 1923 to replace
silver fir and chestnut stands damaged by pathogens. Mixed deciduous
broadleaves forests are scarcely represented in the study area and are
mostly aged coppices used in the past for firewood production.

The second study area has a total area of 290 ha and is located in the

District of Rincine (Florence), and it is a public property of the Tuscany
region which is actively managed for timber production. The area is
located at an altitude ranging between 500 and 900 m a.s.l. The forest
composition is characterized by oaks (Quercus cerris L., Quercus pub-
escens L.) mixed whit other broadleaves (Ostrya carpinifolia Scop;
Carpinus betulus L.; Fraxinus ornus, L.; Prunus avium L.; Ulmus spp.),
European beech (Fagus sylvatica L.), chestnut (Castanea Sativa Mill.),
and conifer plantations dominated by Pinus Nigra J.F.Arnold and
Pseudotsuga menziesii Franco with several other non-indigenous species
(Cedrus libani, A.Rich., Cupressus Arizzonica, Chamaecyparis, Spach)
(Fig. 1). The conifer plantations are even-aged experimental trials
started between 1965 and 1975 for pulpwood production. The broad-
leaves forests are mostly manage as coppice for firewood production.
The Rincine forest management follows the criteria of Sustainable
Forest Management certified by both Forest Stewardship Council (FSC)
and by the Programme for the Endorsement of Forest Certification
schemes (PEFC) systems. Rincine district is also a Model Forest
(International Model Forest Network (IMFN), 2008). In particular, the
objective of the Model Forest is to support the sustainable management
of natural resources through a participatory, landscape-level approach
that reflects environmental and socio-economic issues from the per-
spectives of local needs and global concerns (International Model Forest
Network (IMFN), 2008).

In the two study areas, five of the 14 European Forest Types (Barbati
et al., 2014; Giannetti et al., 2017) are represented.

2.2. Field data and computation of forest structure indices

In each study area, a local field-based forest inventory was carried
out (Fig. 1). In Vallombrosa field measurements were conducted in a
total of 30 circular fixed-area sample plots of 13 m radius (each plot
covers 530 m2). Fieldwork was carried out in June 2015. Field plots
were selected using a tessellation stratified sampling scheme (Barabesi
and Franceschi, 2011) based on an hexagonal grid with hexagons of
1 ha.

In Rincine the field measurements were carried out in 50 squared
fixed-area plots of an area of 530 m2. Fieldwork was carried out be-
tween June and September 2016. Field plots were selected using the
one-per-stratum stratified sampling scheme (Barabesi et al., 2012;
Fattorini et al., 2016) based on a 23 × 23 m grid. The study area was
partitioned into 50 strata (i.e., polygons based on equal-size strata
obtained by means of clusters) and one grid cell of 23 × 23 in each
stratum was selected randomly as field plot to measure.

In both study areas, the coordinates of plot centres were recorded
using Global Navigation Satellite Systems (GNSS) Trimble Geo 7x dual-
frequency receiver, observing the pseudorange of both GPS and
GLONASS. The recorded GNSS positions were post-processed with
correction from a base station into a sub-meter precision. In each plot,
the DBH and height of all trees (H) with a DBH ≥ 2.5 cm were regis-
tered using a caliper and a Haglof Vertex IV device.

Field data were used to calculate a set of eight structural complexity
indices based on tree DBH and height. The indices considered in this
work were selected after a literature review of possible biodiversity
drivers (Bottalico et al., 2017; McElhinny et al., 2005; Meng et al.,
2016; Mura et al., 2015; Ozdemir and Karnieli, 2011; Valbuena et al.,
2016; Ziegler, 2000). In the selection, we also considered data which
are routinely acquired during National Forest Inventories. In particular,
we calculated the following: four DBH related indices (G, DBHmean,

Gini); one tree height-related index (Hσ) and three indices that combine
DBH and H (Hl, Hdom, V). In the next paragraphs, the indices chosen in
this study are briefly presented based on the literature review. Table 1
summarizes the mean estimates (μi) and the standard error (SE) of the
indices for the two study areas based on design-based estimators.

Basal area (G) is a forest inventory variable describing the amount
of an area (m2) occupied by tree stems at breast height (i.e., 1.3 m
above ground). G is directly related to growing stock volume and
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biomass which are important variables supporting traditional forest
management approaches oriented to a sustainable wood production as
well as for biodiversity conservations purposes (McElhinny et al.,

2005). Quadratic mean diameter (DBHmean) is considered an important
indicator to describe successional stages and for assessing the type of
forest management and the level of naturalness of forest habitats
(McElhinny et al., 2005; Uuttera et al., 1998; Ziegler, 2000). Generally,
the DBHmean is related to forest stand age (McElhinny et al., 2005;
Ziegler, 2000). DBHmean (expressed in cm) is calculated as:

= G
πn

DBH 4
mean (1)

where G is the total basal area (expressed in cm2) and n is the number of
trees in the plot. The standard deviation of DBH (DBHσ) is a measure of
the variability in tree size. It is considered an important indicator of
micro-habitat diversity in forest stands (McElhinny et al., 2005; Mura
et al., 2015; Ozdemir and Karnieli, 2011). Generally, the high degree of
biodiversity is associated to high variation in stem diameters that is
related to the presence of different successional stages in a given forest
stand (Bradshaw and Lindén, 1997; Esseen et al., 1992). DBHσ is cal-
culated as:

=
∑ −

−
=DBH

(DBH DBH)
n 1σ

i 1
n

i
2

(2)

where i is the tree index, n is the number of trees in the plot,
−

DBH is the
mean plot-level diameter, and DBHi is the diameter of the of i-th tree.

Fig. 1. Study areas with forest types and location of the field plots.

Table 1
Forest structural indices summary of design-based estimates of mean-value (μ )i
and Standard Error (SE) (Fattorini et al., 2016).

Structural index and Forest biophysical proprieties Study area μi SE

G (m2ha−1) Vallombrosa 59.5 4.21
Rincine 48.41 2.35

DBHmean (cm) Vallombrosa 27.6 0.02
Rincine 27.20 1.34

DBHσ (cm) Vallombrosa 12.6 1.17
Rincine 7.51 0.39

Gini (0–1) Vallombrosa 0.46 0.17
Rincine 0.32 0.20

Hdom (m) Vallombrosa 29.4 1.57
Rincine 23.7 1.01

Hl (m) Vallombrosa 24.5 1.52
Rincine 21.3 1.03

Hσ (m) Vallombrosa 7.1 0.81
Rincine 3.7 0.19

V (m3ha−1) Vallombrosa 624.3 42.31
Rincine 492.9 36.40
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Gini coefficient (Gini) is also used for measuring tree size diversity in a
forest stand (Lexerød and Eid, 2006; Valbuena et al., 2016). Theoreti-
cally, the minimum value of this coefficient is zero when all trees have
equal size, while the maximum value is 1 when all trees except one
have a value of zero (Meng et al., 2016; Ozdemir and Karnieli, 2011;
Valbuena et al., 2016). The index describes tree size inequality for each
field plot (Valbuena et al., 2016). Gini coefficient is calculated as:

=
∑ − −

∑ −
=

=

Gini
(2t n 1)G

G (n 1)
t 1
n

t

t 1
n

t (3)

where Gt is the basal area for tree in rank t (m2ha−1) and t is the rank of
a tree in order from 1,…., n (Meng et al., 2016).

The standard deviation of H (Hσ), describes the variation of the trees
along with the vertical stratum. Large variations in tree height are,
usually, linked with a variety of tree ages and species in a stand, and
can be used as an indicator of micro-habitats diversity for wildlife
(Bottalico et al., 2017; McElhinny et al., 2005; Mura et al., 2015;
Zenner, 2005). Hσ is calculated as:

=
∑ −

−
=H

(H H)
n 1σ

i 1
n

i
2

(4)

where i is the tree index, n is the number of trees in the plot and
−

H is
mean plot-level height and Hi is the height of the i-th tree.

The dominant height (Hdom) is an indicator of forest site pro-
ductivity (Skovsgaard and Vanclay, 2008) and, at least in Italy, it is
calculated as the mean height of the 100 largest trees in terms of DBH
per hectares. The Lorey’s height (Hl) weights the contribution of trees to
the stand height by their basal area. Thus, Lorey's mean height is cal-
culated as:

=
∑ ∗=H

G H
Gl

i 1
n

i i

(5)

where i-th is the tree index, G is the total basal area in the plot and Gi is
the basal area of the i-th tree in the plot, and Hi is the height of the i-th
tree in the plot. The plot-level growing stock volume (V) was calculated
based on the equations developed by Tabacchi et al. (2011) in the
framework of the 2nd Italian National Forest Inventory based on tree
DBH and height.

2.3. UAV photogrammetric data and computation of DTM-independent
predictors

A SenseFly eBee Ag fixed-wing UAV equipped with a SONY WX 18
MP RGB camera was used for image acquisition. The UAV flew over
Vallombrosa in June 2015 and over Rincine in July 2016. Both flights
were performed under leaf-on conditions. In each area, UAV acquisition
was completed in one working day. Before UAV acquisitions, 12 ground
control points (GCPs) were placed on the ground in each study area. We
used 50 × 50 cm targets with a black and white checkerboard pattern
to ensure the largest contrast in the images. The targets were fixed to
the ground in open areas, and their coordinates were recorded with a
Trimble Geo 7X receiver (Trimble, 2017); data collection lasted for
approximately 15 min for each target with a 2-sec logging rate. The
recorded coordinates were post-processed with correction data from the
nearest ground base station using Pathfinder software. In the two study
areas, the post-processed GCP coordinates revealed standard deviations
for northing, easting, and height of 0.7 cm, 0.5 cm, and 1.4 cm, re-
spectively.

The flight parameters were the same in the two study areas: flight
altitude of 145 m above ground, and flight lines oriented parallel to the
slope with an overlap of 85% longitudinal and 75% lateral. The flight
lines parallel to the slope, and the artificial intelligence of UAV, allow
the SenseFly eBee Ag fixed-wing UAV to change the height of the flight
based on a DTM. This flight pattern allows maintaining a constant
ground sampling distance (GSD). The total flight time was 69 min in

Vallombrosa (169 ha, 1.6 ha/minute) divided into two flights, and
82 min in Rincine (290 ha, 3.5 ha/minute) divided into four flights.
Flight lines spacing was 40 m and the distance between two consecutive
photos was 35.7 m. The focal length of the camera was set to 4 mm and
the ISO sensibility was 100 with a shutter speed of 1/2000 sec. A total
of 228 images were acquired in Vallombrosa and 506 in Rincine with a
field of view of 200 × 150 m. After visual inspection, the quality of the
images acquired in the two study areas was considered satisfactory,
without any problem related to light, atmospheric conditions, satura-
tion, or blurriness because we flew around noon with uniform sunny
condition.

Three-dimensional data were extracted from the UAV images using
the Agisoft PhotoScan Pro software (Agisoft LLC, 2017). This software
uses a combination of SfM and stereo-matching algorithms for image
alignment and multi-view stereo reconstruction and fully automates the
photogrammetric workflow. As a result 3D and 2D data can be exported
as georeferenced points cloud, digital surface models (DSM) and or-
thophotos (Agisoft LLC, 2017). This software has been already used for
forest applications (Bagaram et al., 2018; Giannetti et al., 2018b;
Kachamba et al., 2016; Marra et al., 2018; Puliti et al., 2019, 2015). In
the two study areas, the UAV images were processed as follows: (a)
image alignment; (b) mesh building; (c) guided marker positioning and
optimization of camera alignment (georeferencing of created scene), (d)
dense cloud generation and (e) raster grid DSM generation with a
ground resolution of 0.5 m× 0.5 m. We refer to Puliti et al. (2015) for a
detailed description of processing parameters used in Agisoft Photoscan
and for a detailed description of parameters associated with 3D UAV
photogrammetric point-cloud generation. From the SfM photogram-
metric workflow, we obtained point clouds having a density of 44.25
points m−2 in Vallombrosa and of 48.36 points m−2 in Rincine, raster
grid DSM with a GSD of 0.5 m and orthomosaic with a GSD of 0.10 m in
both study areas.

Based on the derived photogrammetric data, DTM-independent
predictors were calculated as reported by Giannetti et al. (2018a) based
on the non-normalized UAV photogrammetric point cloud and the
raster grid DSM for each one of the field plots available in the two study
areas clipping the point clouds and DSM by a shape representing the
perimeter of the plot (e.g. a 13 m radius circle in Vallombrosa, and a
23 m side square in Rincine). Furthermore, the same variables were
calculated for all grid cells of dimensions 23 m × 23 m tessellating the
entire study areas to produce wall-to-wall maps of the eight structural
indices. The size of the cells mimics the area of the field plots (i.e.
530 m2).

A total of 163 DTM-independent variables were computed. In de-
tails, 148 were point cloud variables and 15 were DSM variables. The
point cloud variables were computed based on z, z standard, intensity,
RGB value and combined z and intensity (Giannetti et al., 2018a). The
DSM variables were calculated based on average and standard devia-
tion statistics of Grey-level co-occurrence matrix textural of mean,
variance, homogeneity, contrast, dissimilarity, entropy and second
moment (Haralick et al., 1973). In addition, from DSM also the number
of local maxima was extracted with a search window of 3 × 3 pixel, or
1.5 × 1.5 m. A detailed description of the DTM-independent variables
used in the current study can be found in Giannetti et al. (2018) and in
Annex 1. The point cloud DTM-independent variables were computed
using the R-CRAN package lidR (Roussel, 2020), while the DSM DTM-
independent variables were computed using lidR (Roussel, 2020) and
GLCM package in R (Zvoleff, 2015).

2.4. ALS data and computation of ALS predictors

In the two study areas, the ALS survey was carried out in May 2015
under leaf-on condition using a Eurocopter AS350 B3 equipped with a
LiDAR RIEGL LMS-Q680i sensor. The flight height was 1000 m above
ground level. Full-waveform LiDAR data were registered and dis-
cretized to a point density of 10 points m−2. Standard procedures for
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pre-processing ALS data (e.g. outliers and noise removal, classification
of ground/non-ground, and computation of height on the ground) were
carried out with the LAStools software (Isenburg, 2017) in order to
obtain ALS normalized point clouds. More details on the ALS data can
be found in (Chirici et al., 2018).

A total of 32 predictors were calculated from the DTM normalized
ALS data. These variables included typically used predictors for forest
biophysical variables and included three types of predictors: statistical
(McGaughey, 2014), height, and density (Næsset, 2004). The variables
were computed using the R-CRAN package lidR (Roussel, 2020). A
summary of ALS explanatory variables is provided in Table 2. The ALS
explanatory variables were calculated as done for DTM-independent,
for each one of the field plots available in the two study areas. Fur-
thermore, the same variables were calculated for all grid cells of di-
mensions 23 m × 23 m tessellating the entire study areas to produce
wall-to-wall maps of the eight structural indices.

2.5. Regression models

Multiple linear regression models were used fitting each forest
structure indices, derived by field data, as response variables and using
either the DTM-independent or the ALS explanatory variables as pre-
dictors.

The predictors were selected initially by carrying out a correlation
analyses between the metrics to check for the mutually correlated
variables using Person’s product moment correlation (r) matrix. When
two metrics have r > 0.85, only the one that was less correlated with
other metrics was used in the models as independent variables. The best
combination of explanatory variables was then selected using a subset
regression procedure using a branch-and-bound algorithm (Clausen and
Perregaard, 1999) implemented in the R-cran package leaps (Lumley,
2017). The algorithm was addressed to optimize the Adjusted R2 (Adj.
R2) for each possible predictors combination. The algorithm was set to
find at least five explanatory variables that maximized the Adj. R2,
searching for one-variable model, two-variables model until five-vari-
ables models. To select the best combination of predictors and to avoid
overfitting, for each of the combinations selected by the branch-and-
bound algorithm (one-variable, two variables until five variables
models) we performed additional tests: (1) the hypothesis test (Piñeiro
et al., 2008) and (2) the analysis of the degree of overfitting to the sample
(Valbuena et al., 2017). The hypothesis test allows to assess the residual
distribution analytically without the visual interpretation of the

scatterplot observed vs. predicted (Piñeiro et al., 2008; Valbuena et al.,
2017). Through such test, we assessed whether observed and predicted
values follow the line 1:1 analyzing the intercept (α), and the slope (β)
of the linear regression model between observed and predicted values:

̂= +α βy yi i (6)

where yi are the observed values and ̂yiare the predicted values derived
by cross-validation using the leave-one-out procedure (LOO). The LOO
was carried out by leaving out each ith plot iteratively, the model was
then fitted using the remaining plots, applied to the ith observation, and
the LOO residual calculated as the difference between the predicted
values ( ̂yi) and the observed values (yi). The hypothesis test is proven by
not rejecting the null hypothesis that =β 0 and =α 1 for

̂ ̂− = +α βy y yi i i (7)

The analysis of the degree of overfitting to the sample was performed
using a replication method comparing cross-validation results against
model residual analyzing the sums of squares ratio (SSR) obtained by
comparison of the same measure acquired by model fit against cross-
validation (Valbuena et al., 2017). The SSR is a ratio of increase in
unexpected variance and was employed to adjust the inflation of un-
explained variance in the cross-validation with a limit of 10%.

The SSR was calculated as:

=SSR SS
SS

cv

fit (8)

where SScv is the square root of the sum of squares attained in the
cross-validation and SS fit is the sum of squares of the model residuals
(j), i.e. the value fitted without cross-validation, and are calculated as:

̂∑= −
=

SS (y y)cv

i 1

n

i i
2

(9)

̂∑= −
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j 1
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j j
2
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where ̂yjare the non cross-validated predictions and yj are the observed
values.

Moreover, for each of the models we evaluated the predictive ac-
curacy at plot level using the LOO cross-validation procedure using Adj.
R2, RMSE, relative RMSE (RMSE%), mean difference (MD) and relative
mean difference (MD%) because these parameters are the most common
accuracy values used in previous studies. The accuracy parameters were
calculated as:

=
∑ −=MD

y y
n

( )i
n

i i1 
(11)
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∑ −=RMSE
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n

( )i
n

i i1
2

(12)

where n is the number of plots. RMSE% was calculated as the percentage
of RMSE on the average observed value of the variable measured in the
field.

In the end, among the models that respect the SSR < 1.1. (i.e.
means that the level of divergence of 10% is acceptable) and the hy-
pothesis test we chose the ones that produced the higher Adj. R2 and the
lowest values of RMSE, MD, RMSE%, and MD%.

2.6. Mapping and estimation

The DTM-independent models and ALS models, developed in
Section 2.5 were then applied to every 23 × 23 cells to produce a map
for each one of the selected diversity indices in the two study areas.

Moreover, we estimated the mean and variance for all the structure
indices considered for the two areas using the model-assisted regression
(GREG) (Särndal et al., 2003) as done by Bottalico et al. (2017), Mura

Table 2
ALS predictor variables.

DTM dependent metrics Descriptive feature

Tot Total Number of points
Min Minimum
Max Maximum
Avg Average
Range Range
Sd Standard deviation
Var Variance
Cv Coefficient of variation
Iq Interquantile distance
Sk Skewness (Davies and Goldsmith, 1984; McGaughey,

2014)
Ku Kurtosis (Davies and Goldsmith, 1984; McGaughey,

2014)
Aad Average absolute deviation (McGaughey, 2014)
p1, p2, …, p95, p100 percentile of 10, 20, 30, 50, 60, 70, 80, 90, 95, 100 h

distribution
p99/p25 Ratio of percentiles
p99/p50 Ratio of percentiles
p99/p75 Ratio of percentiles
d1, d2,….,d9,d10 proportion of points above the 1st,…,10th fraction to

the total number of points (cutoff = 1.30)
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et al. (2015) and Chirici et al. (2020).
The map-based estimate of the structure indices in one area was:

̂̂ ∑=
=

μ 1
N

ymap
j 1

N

i
(13)

where N is the total number of 23 × 23 m forested population units in
the study area and ̂yi is the model prediction for the i-th population unit
of the index. The map estimate was then adjusted for systematic errors
using a bias estimate calculated as:

̂̂ ∑= −
=

μBîas( ) 1
n

(y y)map
i 1

n

i i
(14)

where n is the sample size, ̂yi is the model prediction for the i-th sample
plot and yi is the observed value for the i-th plot. The GREG estimate is
the map estimate with the estimated bias subtracted

̂ ̂ ̂= −μ μ μBîas( )GREG map map (15)

while the standard error (SE) of ̂μGREG is
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In addition, to assess the efficiency of the model-assisted estimator,
we compared it with the original design-based estimates produced by
the field plot measures and its relative efficiency coefficient (RE) cal-
culated as:

=
μ

μ
RE

Var( )
Var( )

i

GREG


 (18)

Because RE coefficient is the ratio between the variances of Var μ( )i
and Var μ( )GREG

 (Moser et al., 2017), RE can be interpreted as the factor
by which the original sample size would have to be increased to achieve
the same precision as that obtained using the remotely sensed auxiliary
data. The Var μ( )i was calculated based on field data and the sampling
design as reported in Fattorini et al. (2016) (Table 1).

3. Results

3.1. Regression models

Individual models were developed for each of the different set of
predictors (UAV DTM-independent vs. ALS), for each dependent vari-
able (i.e. the eight indices G, DBHmean, DBHσ, Gini, Hσ, Hdom, Hl and V)
and for each of the study areas (i.e. Vallombrosa and Rincine). Using
the SSR (i.e. SSR < 1.1) in conjunction with the hypothesis test, we
found that the number of predictor entered in the models ranged be-
tween 1 and 4 for both DTM-independent (Table 3) and ALS models
(Table 4). However, the models that used DTM-independent have in
general, more predictors compared to the ones with ALS (Tables 3 and
4).

In Vallombrosa the DTM-independent variables resulted in con-
sistently larger Adj. R2 for G, DBHmean, Gini, and Hσ, while ALS vari-
ables had higher Adj. R2 for Hl, while comparable results between the
two set of predictors were observed for V, Hdom, and DBHσ (Tables 3
and 4). In Rincine, among the two sets of variables, DTM-independent
variables produced more accurate results with larger Adj. R2 for DBHσ
while ALS resulted in larger Adj. R2 for G, Hdom, and Hl. In Rincine
comparable results between the two set of variables were observed for
Gini, Hσ, and V (Tables 3 and 4).

The LOO of the selected models revealed that the differences in

predictive accuracy in terms of RMSE% between DTM-independent and
ALS models in Vallombrosa ranged between −4.65% and 3.79% while
in Rincine ranged between −3.51% and 7.02% (Fig. 2). In all the se-
lected models MD values were relatively small, never higher than 1.3%
of the mean reference value measured in the field and the two-side t-test
never revealed MD statistically significant values (p-values ≥ 0.82).

The analysis of the residuals revealed no violation of the assump-
tions of linearity, normality of the residuals, homoscedasticity, and
independence for any of the models. The NCV test, the Kolmogorov
Smirnov and the Durbin-Watson tests always resulted in p-values >
0.05. The assumptions are confirmed, also, by hypothesis test and SSR
analysis (Fig. 3).

3.2. Mapping and area-wide estimation

To give an example of the possible application of DTM-independent
variables to produce maps to support forest management and biodi-
versity monitoring, we applied the models from Tables 3 and 4 to create
maps of the eight studied structure indices in the two study areas
(Fig. 4). We then estimated the mean ( ̂μGREG) and the SE according to
the GREG estimator for all the mapped indices derived by DTM-in-
dependent models and ALS models in both study areas (see Table 5).
Moreover, we used the RE to assess the increase in precision when using
remotely sensed data (i.e., model-assisted) rather than using a design-
based estimate (Table 5) based on field plot data alone (Table 1). We
found comparable results between the ̂μGREG and ̂SE μ( )GREG between
model-assisted estimates that use DTM-independent models and the
ones that use ALS models (Table 5). Moreover, the RE revealed that
model-assisted estimates, with DTM-independent and ALS models, were
more efficient compared to the ones obtained with design-based esti-
mates (Tables 1 and 5). The RE coefficient ranged between 1.0 and 6.43
(average RE = 3.3) for DTM-independent and between 1.0 and 11.7
(average RE = 3.7) for ALS. The RE for the estimates based on the
DTM-independent models was consistently larger than the one from the
ALS models for the DBH-related variable (i.e. G, DBHmean, and DBHσ)
and for V. On the other hand, the RE for height-related variables was
always the largest for estimates based on ALS data. While for the Gini
coefficient the RE was similar for the two study areas and larger for
Rincine compared to Vallombrosa.

4. Discussion

In this study, we assessed the use of DTM-independent predictors
(Giannetti et al., 2018a) calculated from 3D UAV photogrammetric data
to model, to map and to derived model-based estimates of the main
value and its uncertainty of eight forest structure complexity indices (G,
DBHmean, DBHσ, Gini, Hσ, Hdom Hl, and V). In order to assess the relative
validity of DTM-independent predictors we constrasted the results
against a traditional set of predictors (i.e. ALS) and we assessed them
across two different mixed temperate forests characterized by different
types of management systems, i.e. the Vallombrosa forest, which in the
last 40–50 years was mainly left to a natural evolution, and the Forest
district of Rincine, that is actively managed with a sustainable forest
management approach.

The current discussion is focused on three main aspects: (i) com-
paring the accuracy derived by DTM-independent regression models in
modelling forest structure indices across the two forests in relation to
the benchmark (i.e. ALS regression models), and the results obtained by
previous research using different types of predictors; (ii) evaluate the
accuracy of estimates derived using a model assisted estimator, and (iii)
discuss the utility of maps in producing an inference.

DTM-independent models produced comparable results between the
two studied areas in terms of Adj. R2 (i.e. Vallombrosa: 0.40 ≤ Adj.
R2 ≤ 0.79; Rincine: 0.38 ≤ Adj. R2 ≤ 0.78), but in terms of RMSEs%
slightly more accurate results were observed in Vallombrosa
(12.81% ≤ RMSE% ≤ 23.29%) compared to those retrieved in Rincine
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(15.06% ≤ RMSE% ≤ 29.00%) (Fig. 3).
In both the areas DTM-independent models produced accurate re-

sults in modelling the V (Table 3 and Fig. 3), even if the models based
on ALS achieved slightly better results (Table 4 and Fig. 3). In Val-
lombrosa the predictive accuracy of the estimate for V
(RMSE% = 15.95) was slightly higher than in Rincine
(RMSE% = 24.34) most probably because the forest of Vallombrosa is
composed by high forests and the volumes in the different forest stands
are more homogeneous than in Rincine where there is a greater mixture
of coppices and high forests. In terms of RMSE%, the predictive accuracy
of DTM-independent models for V in both study areas was comparable
to that of previous studies based on ALS variables in similar forests for
which RMSE% typically ranged between 16.7% and 30% (Corona &
Fattorini 2008; Barbati et al., 2009; Tonolli et al., 2011; Bottalico et al.,
2017; Giannetti et al., 2018a). In Vallombrosa we found comparable
results with the ones obtained by Jayathunga et al. (2018) in an un-
even-aged mixed conifer-broadleaf forest (i.e. RMSE% = 16.7%) and
the ones of Puliti et al. (2015) in one boreal forest (i.e.
RMSE% = 14.95%) using height metrics calculated on normalized
photogrammetric point cloud with DTM based on ALS, while Shen et al.
(2019), in less complex forest i.e. ginkgo plantation in China, reached
lower RMSE% for V (i.e. between 13.26% and 14.33%) using height

Table 3
Variables selections and models accuracies, in terms of RMSE, RMSE%, Adj.R2, SRR and Hypothesis test for the multiple regression models using the UAV DTM-
independent variables as predictors (α = intercept slope of observed vs predicted regression; β = slope of observed vs prediction regression; * level of significance
for rejection [*not significant < 0.001]).

Structural index Study Area DTM-independent variablesa RMSE RMSE% Adj. R2 SSR HTα HTβ

G [m2ha−1] Vallombrosa zsd + i_4q_d10 + num_max 7.5 12.81 0.76 0.98 1.32* 0.86*
Rincine AAD_B + P99P75 12.9 26.72 0.40 0.99 1.27* 0.85*

DBHmean[cm] Vallombrosa d10 + AVG_homogeneity + AVG_mean + num_max 4.2 16.07 0.64 0.99 2.10* 0.91*
Rincine I_2q_d5 + I_1q_p2 5.3 19.77 0.71 1.09 −2.23* 0.94*

DBHσ[cm] Vallombrosa z_st_p10 + I_2q_p100 + SD_entropy + AVG_homogeneity 2.8 23.31 0.62 0.93 2.14* 0.89*
Rincine entropy_B + SD_dissimilarity + SD_homogeneity + AVG_dissimilarity 1.7 22.41 0.50 0.87 2.45* 0.91*

Gini[0,1] Vallombrosa I_2q_d10 + AVG_contrast + i_4_p75_p25 + i_3_p75_p25 + i_1_p75_p25 0.09 19.14 0.58 0.92 1.25* 0.94*
Rincine VCI_R + mean_G + SD_homogeneity + d8 0.07 23.36 0.65 0.98 1.34* 0.91*

Hdom[m] Vallombrosa I_2q_d10 + AVG_homogeneity + i_d2 + i_mean 2.4 33.69 0.41 1.05 −1.34* 0.93*
Rincine AAD + mean_R + SD_mean + d7 + d3 1.0 29.00 0.38 0.92 2.24* 0.94*

Hl[m] Vallombrosa I_4q_p95 + num_max + AVG_homogeneity + AVG_dissimilarity 3.3 13.53 0.70 0.95 2.26* 0.93*
Rincine AVG_entropy + SD_entropy + p7 + AVG_contrast 4.0 15.06 0.60 1.04 1.39* 0.89*

Hσ[m] Vallombrosa i2q_d10 + min_B + num_max + AVG_homogeneity 1.13 15.93 0.64 0.94 2.62* 0.87*
Rincine SD_homogeneity + p7 0.52 16.92 0.65 0.95 2.98* 0.86*

V[m3ha−1] Vallombrosa I_quant_1 + i_1q_d5 + num_max + AVG_homogeneity 96.1 15.95 0.79 0.91 3.25* 0.84*
Rincine I_1q_p5 122.2 24.34 0.78 0.92 3.57* 0.87*

a see Annex 1 for a complete description of the variables.

Table 4
Variables selections and models accuracies, in terms of RMSE, RMSE%, Adj.R2, SRR and Hypothesis test for the multiple regression models using the ALS variables as
predictors (α = intercept slope of observed vs predicted regression; β = slope of observed vs prediction regression; level of significance for rejection [*not
significant < 0.001]).

Structural index Study Area ALS variables RMSE RMSE% Adj. R2 SSR HT
α

HT
β

G [m2ha−1] Vallombrosa p10 9.40 16.39 0.54 0.96 1.56* 0.90*
Rincine d7 + d8 + d9 + CV 9.84 20.58 0.69 0.97 1.42* 0.83*

DBHmean [cm] Vallombrosa p99 5.01 18.18 0.39 0.95 2.10* 0.91*
Rincine p9 + all 4.84 17.80 0.72 0.91 2.41* 0.93*

DBHσ [cm] Vallombrosa std + kur + b30 + b80 2.76 22.83 0.61 0.89 2.54* 0.89*
Rincine p9 + d1 + CV + AAD 2.03 26.93 0.42 0.92 2.25* 0.93*

Gini [0,1] Vallombrosa d2 0.11 23.79 0.25 0.95 1.19* 0.95*
Rincine d1 + d6 + CV 0.073 22.55 0.71 0.97 2.21* 0.91*

Hdom [m] Vallombrosa p10 + d6 2.13 29.97 0.56 0.92 1.21* 0.96*
Rincine d3 + d2 + d1 + CV 1.04 28.56 0.33 0.94 1.44* 0.97*

Hl [m] Vallombrosa p75 3.49 14.08 0.71 0.91 2.34* 0.94*
Rincine p95 2.44 9.71 0.87 0.98 1.25* 0.92*

Hσ [m] Vallombrosa p75 1.08 15.34 0.73 0.97 1.34* 0.86*
Rincine p95 0.30 9.90 0.91 0.91 1.26* 0.92*

V [m3ha−1] Vallombrosa p75 100.81 16.72 0.79 0.89 2.46* 0.94*
Rincine p75 122.29 24.66 0.76 0.92 1.69* 0.92*

Fig. 2. Bar plots of RMSE% for the two different study areas, for each of the
forest structure indices, and the different sets of variables.
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metrics and spectral variables derived by UAV hyperspectral photo-
grammetry data. Among the two types of forests, DTM-independent
models produced more accurate results in terms of RMSE% and Adj. R2

for G, DBHmean, Gini, and Hdom in Vallombrosa and for σdbh in Rincine
compared to the ones obtained by ALS. Moreover, the accuracy ob-
tained in the current study using DTM-independent models, in both
study areas, was larger or comparable for G, DBHmean DBHσ, Hσ, and
Hdom with those obtained with ALS variables by Bottalico et al. (2017)
in a Mediterranean forest and those obtained by Mura et al. (2015) in a
temperate forest. For Gini structure indices, the accuracy of DTM-in-
dependent models in terms of RMSE% (Table 3) is consistent with the
ones obtained by Valbuena et al. (2016), with ALS variables (Table 4),
in two boreal forests: one unmanaged for conservation purposes (i.e.
RMSE% = 20.24%) and one used for maximizing commercial economic
returns (i.e. RMSE% = 18.78%). However, we found lower RMSE% in
unmanaged forest (i.e. Vallombrosa) respect to the one that we ob-
tained in managed forest (i.e. Rincine) while Valbuena et al. (2016)
reported the opposite. Moreover, we found that the Gini DTM-in-
dependent model in Vallombrosa produced an RMSE% that is 4.65%
points lower than those obtained by the ALS model, while comparable
results between DTM-independent and ALS models were observed in

Rincine. For the indices related to tree height (i.e. Hdom, Hl, and σh),
ALS produced always better results compared to those obtained by
DTM-independent models. These results were expected because nor-
malized ALS metrics are directly related with the canopy height.

Concerning the uncertainty of the estimates, the use of remotely
sensed data consistently increased the precision of the design-based
estimates meaning that the DTM-independent approach can reduce the
costs of field surveys while providing detailed spatially explicit in-
formation of forest biodiversity (Saarinen et al., 2018). We found that
even though ALS-based estimates were, on average, more efficient
(average RE ALS = 3.7) than the ones from DTM-independent variables
(average RE DTM-independent = 3.3), the latter resulted consistently
in larger RE than ALS for G, DBHmean, DBHσ, and V. These findings were
in contrast with what previously shown by Puliti et al. (2020), who
within a model-based framework and using DTM-independent vari-
ables, found relative efficiencies limited to 1 and 1.1 when estimating G
and V. Since Puliti et al. (2020) adopted different inferential framework
(i.e., model-based), a further explanation of such discrepancy could be
that in our experiment the study areas were larger (115 and 290 ha)
and more diverse than the 40 ha monospecific stand in Puliti et al.
(2020). These two were limiting factors in Puliti et al. (2020), which

Fig. 3. Scatterplot of measured versus predicted values for the models using UAV DTM-independent variables (dark gray background) and ALS variables (light grey
background). Black dots represent Vallombrosa while blue dots are for Rincine.
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affected the spatial autocorrelation in their models, which can be
considered negligible for large areas (McRoberts et al., 2018). Based on
the RE for the DTM-independent predictors, it is possible to calculate
the number of field plots required to obtain the same level of precision
as for the model-assisted DTM-independent predictors but using only
field plot data. On average, for Vallombrosa and for Rincine two and six
times (see Table 5) the number of plots would have been required to
obtain the same level of precision as for DTM-independent model-as-
sisted estimates. This highlights the potential of DTM-independent
variables, which not only can be used virtually on any forests (i.e., no

need of a DTM) but also can produce as precise estimates as ALS data
for key forest structural variables and substantially improve the effi-
ciency of forest inventories.

We found that the DTM-independent models produced consistent
results in monitoring forest structure variables across two different
types of management systems also if the variations in forest manage-
ment lead to some differences in the structural properties of forests
(Lilja and Kuuluvainen, 2005; Uuttera et al., 1998).

Consistently with the findings by Giannetti et al. (2018a) and Puliti
et al. (2019) this study confirmed that DTM-independent variables are

Fig. 4. Maps and histograms of the eight structure indices obtained by applying the models based on UAV DTM-independent variables for the two study areas.

Table 5
Estimators of mean and variance according to the GREG estimator for the mean value of the forest structural indices, the standard error (SE) of the two areas obtained
using the model-assisted regression (Särndal et al. 2003) using DTM-independent models and ALS models. The relative efficiency (RE) was calculated as the ratio
between the variance of design-based estimates and the variance of model-assisted regression of DTM-independent models and of ALS models.

DTM-independent ̂μGREG DTM-independent ̂SE μ( )GREG RE DTM-independent ALS ̂μGREG ALS ̂SE μ( )GREG RE ALS

Vallombrosa
G [m2ha−1] 58.28 3.21 1.6 58.76 3.32 1.6
DBHmean [cm] 30.7 0.013 2.2 30.7 0.014 1.93
DBHσ [cm] 12.03 0.51 2.3 12.2 0.52 2.1
Gini [0,1] 0.39 0.02 1.07 0.38 0.02 1.07
Hdom [m] 28.13 0.93 2.8 28.34 0.89 3.12
Hl [m] 23.94 0.79 3.68 24.3 0.70 4.7
Hσ [m] 5.70 0.53 2.3 5.6 0.48 2.8
V [m3ha−1] 683.22 18.73 5.1 693.4 19.21 4.85

Rincine
G [m2ha−1] 42.31 1.27 3.44 43.24 1.45 2.64
DBHmean [cm] 25.62 0.65 4.2 26.2 0.46 3.92
DBHσ [cm] 7.54 0.28 2.02 7.45 0.32 1.55
Gini [0,1] 0.37 0.0.1 4.21 0.36 0.01 4.54
Hdom [m] 23.62 0.41 6.02 23.7 0.35 8.1
Hl [m] 19.91 0.41 6.43 19.82 0.30 11.7
Hσ [m] 3.62 0.17 1.3 3.66 0.14 1.8
V [m3ha−1] 483.22 17.65 4.2 485.22 18.9 3.7
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viable predictors for forest structure indices. The DTM-independent
models were also useful to create maps of forest structure indices that
can be used for forest management purposes and to estimate area po-
pulation means using GREG estimators (Baffetta et al., 2009; Bottalico
et al., 2017; Chirici et al., 2020; McRoberts et al., 2013; Mura et al.,
2015) that can be used independently of the modelling approach used
for estimated bias resulting from systematic deviations between ob-
servations and predictions. Several authors underlined the importance
of forest structure indices for forest biodiversity monitoring (Valbuena
et al. 2016, Corona et al. 2017; Mura et al., 2015). Wall-to-wall maps of
forest structural indices are useful to make better decisions in support
sustainable forest management, and forest certification. It is important
to remember that while at the pixel level, these maps may be affected
by a substantial bias, when aggregating several pixels values to areas of
increasing size (e.g., forest stand, forest property) the average value
tends to equal real value if we assume the residuals to be independent
and with zero mean (McRoberts and Tomppo, 2007). Moreover, these
maps can be used to support planning for small area monitoring and
management interventions that would not be feasible using ground data
only and could be the basis for decision support systems as proposed by
Puletti et al. (2017). Decision Support Systems can be useful to assess,
for example, wood production, harvesting activities, and to quantify
ecosystems services usefyl to support and to develop forest manage-
ment plans (Bottalico et al., 2016; Vizzarri et al., 2017). Moreover, the
wall-to-wall maps of structural diversity can be used not only for
planning management strategies addressing biodiversity (Winter et al.,
2018), but also for timber production purposes, as tree diameters and
heights are basic information for assessing the commercial value of tree
logs (Arvola et al., 2019; Vacchiano et al., 2018).

Our results show that these maps can be useful in comparing dif-
ferent forests and thus to provide suitable data to support more adap-
tive management strategies. When comparing the maps of DBHσ, and
Hσ indices across the two study areas (Fig. 4), it is possible to note that
the variability in the vertical and horizontal stratum is larger in Val-
lombrosa than in Rincine. These results were somewhat expected be-
cause of the different forest management regimes adopted in the two
study areas with the Vallombrosa characterized by a more diverse forest
structure than Rincine, which is actively managed for timber produc-
tion. As reported by Lexerød and Eid, (2006) if tree size diversity is
small, almost all trees became mature for productive purposes at the
same time, while large tree size diversity ensures a wide range of ha-
bitats providing a high level of biodiversity. Future investigations
should focus on the transferability of the approach we developed over
larger areas and in the framework of the activities routinely carried out
in National Forest Inventories, for example, to understand if specific
models need to be developed to take into account different species
composition and management regimes.

5. Conclusion

This research denibstrated that UAV 3D photogrammetric data
alone (i.e., without the need of a digital terrain model) are suitable for
modeling, mapping, and estimating forest structure indices in mixed
temperate forests with similar or better accuracy than those obtained
with ALS data. In this study, in addition to assessing the model’s per-
formances (e.g., model fit and predictive accuracy), we adopted a sta-
tistically rigorous approach to estimating the mean values for each
variable of interest and its uncertainty within a model-assisted in-
ferential framework (i.e., GREG estimator). We found a substantial
boost in the precision of the estimates based on DTM-independent
variables over the use of field data alone in a design-based framework.
Future research efforts should focus on extending the results for esti-
mating different forest biodiversity-related variables (e.g., deadwood)
and to test the proposed methodology in different forest types (e.g.,
tropical, alpine, Mediterranean, boreal) in order to evaluate if DTM-
independent approach can potentially increase the area of application

of UAV photogrammetry over different parts of the globe. Moreover,
future studies should address the transferability of the model to new
areas where no field plots are available.
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