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Abstract

In this paper we address an unresolved problem in the numerical modeling of cardiac electromechanics, that is the onset
f numerical oscillations due to the dependence of force generation models on the fibers shortening velocity. A way to avoid
umerical oscillations is to use monolithic schemes for the solution of the coupled problem of active–passive mechanics.
owever, staggered strategies, which foresee the sequential solution of the models of force generation and of tissue mechanics,

re preferable, due to their reduced computational cost and low implementation effort. In this paper we propose a cure for
his issue, by introducing, with respect to the standard staggered scheme, a numerically consistent stabilization term. This
erm is derived in virtue of the identification of the cause of instability in the mismatch between macroscopic and microscopic
trains, inconsistently expressed in Lagrangian and Eulerian coordinates, respectively. By considering a model problem of active
echanics we prove that the proposed scheme is unconditionally absolutely stable (i.e. it is stable for any time step size), yet
ithin a fully staggered framework. As such, the new scheme removes the non-physical oscillations, as we prove by applying

t to three force generation models, namely the Niederer–Hunter–Smith model, the model by Land and coworkers, and the
ean-field force generation model that we have recently proposed.

c 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Mathematical modeling; Coupled problems; Cardiac modeling; Multiscale modeling; Active stress; Numerical stability

1. Introduction

The heart can be regarded as a complex physiological system where different phenomena – involving different
ind of physics: electrophysiology, biochemistry, mechanics, fluid-dynamics – interact at the organ, tissue and
ellular scale [1–3]. One of the main challenges towards the construction of a multiphysics numerical model of the
eart consists in coupling together the mathematical and numerical models describing the single physics involved
n the cardiac function [4–8]. As a matter of fact, the construction of strongly coupled cardiac models raises several
hallenges at the numerical level [7–9]. The approaches to numerically couple different submodels can be classified
nto monolithic and staggered schemes [9,10]. Within a monolithic approach, one attempts to solve the entire
oupled system at each time step simultaneously, typically by a Newton iterative scheme. Conversely, in staggered
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schemes – alternatively called partitioned or segregated – the different submodels are sequentially solved at each
time step. In this manner, feedback information is only exchanged at the next time step. For this reason, monolithic
approaches are more stable than the staggered ones [9,11]. However, they feature a much higher computational
cost, a more demanding implementation and do not allow to reuse pre-existing single-physics numerical codes in a
straightforward manner. Alternatively, the submodels can be solved sequentially, but reiterating until a convergence
criterion is satisfied before passing to the next time step [9]. This approach is however computationally demanding,
as it may require several sub-iterations before reaching convergence. A further and significant advantage of staggered
schemes is the possibility of using different spatial and temporal resolutions for the different submodels, in
compliance with the characteristic spatial and temporal scales of each physics. This yields a great advantage from
a computational standpoint with respect to monolithic schemes [8,12,13].

The main disadvantage of staggered schemes is that they may be unstable, especially when the role of the
eedback – neglected at the numerical level during the solution of a single time step – becomes dominant. As a
atter of fact, nonphysical oscillations typically show up when the force generation model and the mechanical
odel are treated sequentially (i.e. in a staggered manner) [10,11,14–16]. These instabilities are mainly linked

o the feedback of the strain rate (i.e. the shortening velocity of the tissue) on the force generation model, as
e will prove later. Due to the presence of these nonphysical oscillations, the force generation and the mechanical

ubmodels are generally coupled in a monolithic way [11,14,15,17]. As an alternative, in [10], the authors proposed
o update only some of the terms of the force generation model after each Newton iteration of the mechanical model.
his method, however, is not straightforward to implement (it is intrusive in the mechanics solver and cannot be
pplied to preexisting black-box solvers) and, most importantly, it is tailored on the model considered in [10] and
annot be easily generalized to different models, besides the ones written within the same formalism (the so-called
ading-memory model).

In this paper, we mathematically analyze the source of these velocity-related instabilities, by considering a model
ith the minimal ingredients necessary to produce such numerical oscillations. Then, we propose a physically-

nspired stabilized numerical scheme, still keeping a staggered approach between the force generation and the
echanical submodels. Our method allows to perform fully-staggered numerical simulations of cardiac active
echanics with force generation models that account for velocity-dependent effects, which is the case for almost

ll models currently in use. Indeed it is well known that the influence of shortening velocity on microscale force
eneration has a great relevance at the organ scale. As a matter of fact, when cardiomyocytes contract, their
hortening velocity may reach the region of the force–velocity curve where the active force is reduced up to half
f its maximum value [16,18,19].

.1. Outline

This paper is structured as follows. First, in Section 2, we introduce the notation used in the paper. Then, in
ection 3, we analyze the source of instabilities linked to the feedback from the tissue strain rate to the force
eneration model. Then, moving from energetic considerations, we derive the stabilized scheme that is proposed in
his paper. In Section 4, we analyze the proposed scheme, by proving its numerical consistency and by providing
physical interpretation as well as an algebraic interpretation (thus proving its unconditional absolute stability). In
ection 5 we show how the proposed scheme can be easily generalized to other force generation models than the
ne used for its derivation, and we test its effectiveness on three popular models available in the literature and on
ifferent test cases. These include a three-dimensional numerical simulation of the left ventricle. Moreover, we carry
ut a convergence analysis with respect to the time step size ∆t . Finally, we draw our conclusions in Section 6.

2. Mathematical models and notation

Mathematical models of active force generation are typically written in the form of a system of ODEs.
Specifically, denoting by t the time variable, we consider force generation models written in the following form:⎧⎪⎨⎪⎩

ṙ(t) = h
(
r(t), [Ca2+]i(t), λ(t), λ̇(t)

)
, t ∈ (0, T ],

Ta(t) = g (r(t)) , t ∈ (0, T ], (1)
r(0) = r0,

2
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where r(t) is a vector collecting the state variables, which typically describe the state of the contractile proteins
several examples are provided in Appendices D–F). The inputs of the model are the intracellular calcium
oncentration [Ca2+]i(t), the tissue strain in the fibers direction λ(t) and its time derivative λ̇(t). The output of
he model is Ta(t), the active tension generated by the muscle tissue. Clearly, the functions h and g depend on the

odel at hand. Where it is necessary for better clarity, we also use the notation d
dt to denote time derivatives.

In the context of multiscale cardiac electromechanics, Eq. (1) is solved virtually in any point x of a computational
domain Ω0, denoting the region occupied by the cardiac muscle tissue at rest. In practice, Eq. (1) is solved at each
discretization node of the computational mesh or at each quadrature node. Then, Eq. (1) is coupled – on one side
– with a model describing cardiac electrophysiology (e.g. the monodomain or bidomain equations [20]), which
provides the input [Ca2+]i(t), and – on the other side – with a model describing cardiac mechanics, written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ
∂2d
∂t2 − ∇0 ·

(
Ppass + Pact

)
= 0, in Ω0 × (0, T ],

boundary conditions, on ∂Ω0 × (0, T ],

d = d0,
∂d
∂t

= 0, in Ω0 × {0},

(2)

where Ω0 denotes the region occupied by the cardiac muscle tissue at rest, d : Ω0 × [0, T ] → R3 denotes its
displacement and ∇0· is the divergence operator in the reference domain Ω0. The Piola–Kirchhoff stress tensor is
given by the sum of a passive term and an active term,

Ppass =
∂W
∂F

, Pact = Ta
Ff0 ⊗ f0

|Ff0|
, (3)

where the strain energy density W : Lin+
→ R determines the passive constitutive behavior of the tissue (Lin+

denotes the vector space of the linear transformations from R3 into itself, having strictly positive determinant),
f0 denotes the direction of cardiac fibers and where F = I + ∇0d denotes the deformation gradient tensor. The
magnitude of active tension Ta is provided by the force generation model (1). In some cases, with a quasistatic
approximation, the inertia term is neglected (i.e. ρ = 0). In other cases, viscous terms are introduced either in the
constitutive law (viscoelastic models) or in the boundary conditions [8,21].

The solution of model (2) allows to compute the strain in the fibers direction, defined as

λ(t) = λ(d(t)) =
√
I4, f (F(t)) − 1, (4)

where I4, f (F) = Ff0 · Ff0. We notice that we have λ(t) = 0 when the tissue is at rest, λ(t) > 0 when it is stretched,
λ(t) < 0 when it is compressed. This provides a feedback to the force generation model (1), whose dynamics
depends on both λ(t) and λ̇(t). We remark that in some papers λ is defined as the fibers stretch (i.e. 1 + λ in the
notation used in this paper). In this paper instead we work in terms of strain, as this choice makes the notation
lighter, as it will be clear later.

When we consider time discretization, we denote by ∆t the time step length and we define a discrete collection
of times as tk = k ∆t , for k = 0, 1, 2, . . . . Then, we denote with a superscript (k) the approximation of a given
variable at time tk . For instance, we have r(k)

≃ r(tk) and T (k)
a ≃ Ta(tk).

Within the staggered approach, at each time step k we first update the solution of the force generation model,
y considering, for instance, the following implicit Euler scheme:⎧⎪⎪⎪⎨⎪⎪⎪⎩

r(k+1)
− r(k)

∆t
= h

(
r(k+1), [Ca2+](k+1)

i , λ(∗), λ̇(∗)
)
, k ≥ 0,

T (k+1)
a = g

(
r(k+1)) , k ≥ 0,

r(0)
= r0,

(5)

where we employ, as an approximation of λ(tk) and λ̇(tk), a first-order extrapolation from the previous time steps
higher-order extrapolations can be considered as well), by setting

λ(∗)
= λ(k), λ̇(∗)

=
λ(k)

− λ(k−1)

∆t
,

where we denote λ(k)
=
√
I4, f (F(k)) − 1. Then, we employ the updated value of the active tension to update the

displacement variable, by means – for instance – of the following BDF (backward differentiation formula) implicit
3
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scheme:⎧⎨⎩ ρ
d(k+1)

− 2d(k)
+ d(k−1)

∆t2 − ∇0 ·

(
Ppass(F(k+1)) + P(k+1)

act

)
= 0, k ≥ 0,

d(0)
= d(−1)

= d0,

(6)

here

P(k+1)
act = T (k+1)

a
F(k+1)f0 ⊗ f0

|F(k+1)f0|
, (7)

and where space discretization is addressed with a suitable method, such as the Finite Element Method (FEM), also
accounting for the boundary conditions.

Conversely, within the monolithic approach, the mechanical problem (6) is solved simultaneously with the force
generation model, by setting in (5)

λ(∗)
= λ(k+1), λ̇(∗)

=
λ(k+1)

− λ(k)

∆t
.

3. Analysis of the source of instabilities

With the aim of gaining physical insight into the source of velocity-dependent instabilities linked to the feedback
of mechanical deformation on the force generation dynamics, we look for a minimal model that contains all the
necessary ingredients to generate such instabilities.

3.1. The Huxley 1957 model (H57)

When a muscle fiber contracts at a constant length (i.e. isometrically), it generates a larger force than when
its length is decreasing. In other terms, the generated force (Ta) is a decreasing function of the shortening velocity
(−λ̇) [2,18]. The mechanisms underlying this phenomenon have been firstly revealed and explained in the celebrated
Huxley model [22] (denoted henceforth as H57 model).

3.1.1. Derivation of the H57 model
Huxley considered a population of myosin heads and actin binding sites, large enough to assume that the

probability of finding an actin–myosin pair at distance x is constant in an interval sufficiently close to x = 0.
Each actin–myosin pair has two possible states: when detached they do not interact; when attached, they form a
crossbridge (XB) that behaves as a linear spring, generating a force equal to kXB x , where kXB is the spring constant
of the XB. The attachment and detachment rates are strain-dependent and are assigned by the functions f (x) and
g(x), respectively. Clearly, f (x) is large for x close to 0 and it vanishes far from x = 0, while g(x) has an opposite
behavior.

We denote by n(x, t) ∈ [0, 1] the probability that an actin–myosin pair with distance x is attached. Hence, the
total number – in half sarcomere – of attached XBs with elongation between a and b is

∫ b
a ρAM n(x, t) dx , where ρAM

the linear density of actin–myosin pairs. The probability density n(x, t) is convected by the mutual sliding velocity
between the thin and the thick filament, given by vhs(t) = −

d SL(t)/2
dt , where SL(t) denotes the current sarcomere

ength and where the subscript hs stands for half-sarcomere. In conclusion, it can be proved (see e.g. [16]) that the
volution of n(x, t) satisfies the following PDE (H57 model):

∂n(x, t)
∂t

− vhs(t)
∂n(x, t)
∂x

= (1 − n(x, t)) f (x) − n(x, t)g(x), x ∈ R, t ≥ 0, (8)

ndowed with a suitable initial condition. Denoting by σhf the area density of pairs of interacting thin filaments and
hick filaments, the tissue-level active tension Ta(t) can be obtained as the product of σhf times the force generated
y each pair of filaments. Therefore, we have

Ta(t) = σhf ρAM kXB

∫
+∞

−∞

x n(x, t)dx . (9)
4
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3.1.2. Distribution-moments equations
Under suitable hypotheses on the transition rate functions f (x) and g(x), the PDE (8) can be reduced to an

ODE [23–25]. In fact, let us introduce the dimensionless distribution-moments of the density function n(x, t) (for
p = 0, 1, . . . ):

µp(t) :=

∫
+∞

−∞

(
x

SL0/2

)p

n(x, t)
dx
DM

, (10)

where DM is the distance between two consecutive myosin heads) and of the transition rate function f (x):

µ f
p :=

∫
+∞

−∞

(
x

SL0/2

)p

f (x)
dx
DM

.

Under the (physically motivated [25]) hypothesis that f (x) + g(x) = r (a constant) for any x , the PDE (8) reduces
to the following pair of ODEs:⎧⎪⎨⎪⎩

µ̇0(t) = µ
f
0 − r µ0(t), t ≥ 0,

µ̇1(t) = µ
f
1 − r µ1(t) + λ̇(t)µ0(t), t ≥ 0,

µ0(0) = µ0,0, µ1(0) = µ1,0,

(11)

here we have used the fact that SL = SL0(1 + λ), being λ the strain in the fibers direction and SL0 the
lack sarcomere length. The constant µ0,0 and µ1,0 denote the initial values of the two variables. For physical
eaningfulness, we have µ0,0 ∈ [0, µ f

0 /r ], which clearly entails µ0(t) ∈ [0, µ f
0 /r ] for any t ≥ 0. From Eq. (9) it

ollows that

Ta(t) = aXB µ1(t), (12)

here aXB = σhf ρAM DM kXB
SL0

2 represents the XB stiffness upscaled at the tissue level. The zero-order moment
0(t) can be interpreted as the fraction of actin binding sites that are involved in a XB, while µ1(t)/µ0(t) represents

he mean elongation of attached XBs. This allows a better physical understanding of Eq. (12).
The distribution-moments model (11) can be considered as a minimal model for the feedback of shortening

elocity on force generation. In fact, let us suppose to start from the equilibrium configuration µ0(0) = µ
f
0 /r ,

1(0) = µ
f
1 /r (isometric conditions) and let us shorten the tissue with a constant velocity λ̇ < 0. This clearly

ecreases the elongation of attached XB, thus lowering the first-order moment µ1. In fact, the steady-state solution
s given by µ1 = µ

f
1 /r + µ

f
0 /r2λ̇ < µ1(0). In conclusion, Eq. (12) entails that the steady-state active tension

ecreases with the shortening velocity of the muscle fibers, coherently with what observed by A. V. Hill [18].
Moreover, as we will numerically show in Section 4.3, the distribution-moments model (11) produces nonphysical

umerical oscillations when coupled in a staggered manner even with a simple 0D model of tissue mechanics. The
echanism underlying these velocity-related instabilities is rooted in the feedback loop schematically illustrated in
ig. 1. Suppose that at the iteration k = 0 the tissue is at rest, with strain λ(0) and active tension T (0)

a . Suppose then
hat a small perturbation (due e.g. to the excitation of the tissue) makes the active tension increase (T (1)

a > T (0)
a )

nd, as a consequence, the fibers shorten (λ(1) < λ(0)). In the next time step, the negative strain rate ( λ
(1)

−λ(0)

∆t < 0)
causes a drop of active force (T (2)

a < T (1)
a ) and, consequently, of the shortening of the fiber (λ(2) > λ(1)). In the

following time step, because of the positive strain rate, the active force raises again (T (3)
a > T (2)

a ) and the cycle is
repeated.

3.2. Energetic analysis of the staggered scheme

In this section, we examine the source of the above mentioned velocity-related instabilities for the model (11),
based on energetic considerations.

3.2.1. Deriving the active Piola–Kirchhoff stress tensor from microscale energetics
Going back to the microscopic derivation of the model (11), we recall that each attached XB generates a force

equal to kXB x (see Section 3.1). Hence, we can associate to each attached XB the following elastic energy:

WXB(x) =
1

kXBx2.

2

5
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Fig. 1. Visual representation of the feedback loop that generates nonphysical oscillations when a force generation model and a passive
mechanics model are coupled in a staggered manner. Denoting by Tp(λ) the passive tension, the equilibrium configuration is obtained for
Ta(t) = −Tp(λ(t)) (the latter curve is represented by the blue dashed line). Within the staggered approach, at each time step one first updates
the force generation model (by moving along the vertical axis) and then updates the mechanical model (by moving along the horizontal
axis). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Therefore, the total elastic energy associated with a pair of interacting thin and thick filaments is given by

Whf(t) =
1
2
ρAM kXB

∫
+∞

−∞

x2 n(x, t) dx .

Due to the additive nature of energy, the total tissue-level energy density of attached XBs (i.e. energy per unit
volume) is given by the product of Whf(t) times the volume density of interacting filaments, given by ρhf =

σhf/(SL0/2):

Wact(t) =
1

SL0
σhf ρAM kXB

∫
+∞

−∞

x2 n(x, t) dx

=
1
4
σhf ρAM kXB SL0 DM

∫
+∞

−∞

(
x

SL0/2

)2

n(x, t)
dx
DM

=
1
2

aXB µ2(t),

where we have used Eq. (10) and the definition of Eq. (12).
We recall from Eq. (3) that the Piola–Kirchhoff stress tensor of a deformed elastic body is obtained by

differentiating the elastic energy with respect to the deformation gradient tensor F. Similarly, since we model
attached XBs as elastic elements, we can compute the active stress generated by them by differentiating Wact(t)
with respect to F. However, for this operation to be meaningful, it must be carried out in a strictly Lagrangian
formalism (i.e. referred to the reference configuration). Nonetheless, the variable x (used to define the moments
µp) is an Eulerian variable (i.e. it is referred to the current configuration). Hence, we consider its pullback in the
reference configuration:

x̂ = x −
SL − SL0

2
= x −

SL0

2
λ,

and we define the probability density function in Lagrangian coordinates as

n̂(x̂, t) = n
(

x̂ +
SL0

λ, t
)
.

2
6
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Moreover, we define the moments of the displacement in Lagrangian coordinates, for p ∈ N as

µ̂p(t) =

∫
+∞

−∞

(
x̂

SL0/2

)p

n̂(x̂, t)
dx̂
DM

=

∫
+∞

−∞

(
x

SL0/2
− λ

)p

n(x, t)
dx
DM

=

∫
+∞

−∞

[ p∑
k=0

(
p
k

)
(−λ)p−k

(
x

SL0/2

)k
]

n(x, t)
dx
DM

=

p∑
k=0

(
p
k

)
(−λ)p−kµk(t)

= µp(t) − p λµp−1(t) + · · · + p (−λ)p−1 µ1(t) + (−λ)p µ0(t),

here we have employed the Newton binomial identity2 and the definition of Eq. (10). It follows that the moments
ˆ p and µp are linked by the following relationships:

µ0 = µ̂0, µ1 = λµ̂0 + µ̂1, µ2 = λ2µ̂0 + 2λµ̂1 + µ̂2. (13)

his entails

Wact =
1
2

aXB
(
µ̂0λ

2
+ 2µ̂1λ+ µ̂2

)
. (14)

Eq. (14) provides an expression for the energy associated with attached XBs in a fully Lagrangian frame of reference,
in which the only term depending on F is λ = λ(F). Therefore, the active part of the Piola–Kirchhoff stress tensor
an be obtained by the chain rule as:

Pact =
∂Wact

∂F
=
∂Wact

∂λ

∂λ

∂F
,

where:
∂Wact

∂λ
= aXB

(
µ̂0λ+ µ̂1

)
,

∂λ

∂F
=

Ff0 ⊗ f0

1 + λ
.

Finally, we obtain:

Pact = aXB
(
µ̂0λ+ µ̂1

) Ff0 ⊗ f0

|Ff0|
. (15)

By comparing Eq. (15) with Eq. (3), we obtain Ta = aXB(µ̂0λ + µ̂1) and thus (by Eq. (13)) Ta = aXBµ1,
oherently with Eq. (12). We have thus obtained an equivalent derivation of Eq. (12), uniquely based on energetic
onsiderations.

In conclusion, we have two equivalent formulations for the active part of the Piola–Kirchhoff stress tensor:

(F1) Pact = aXB µ1
Ff0 ⊗ f0

|Ff0|
;

(F2) Pact = aXB
(
µ̂1 + µ̂0λ

) Ff0 ⊗ f0

|Ff0|
.

The difference between the two formulations is in the coordinate system (Lagrangian vs Eulerian, see e.g. [26]),
used to describe the microscopic elongation of the myosin arms. Indeed, (F1) refers to a hybrid Lagrangian–Eulerian
formalism: while the macroscale strain F is written in Lagrangian coordinates, the variable µ1 is defined as the first-
order distribution-moment of the microscopic Eulerian coordinate x . On the other hand, (F2) is a fully Lagrangian
formalism (i.e. both the macroscopic strain F and the microscopic strain variable x̂ are referred to the reference
configuration).

2 (a + b)p
=
∑p ( p ) k p−k
k=0 k a b .

7
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3.2.2. A fully Lagrangian active mechanics scheme
In the previous section we have shown that the active Piola–Kirchhoff stress tensor of (F2) can be interpreted

s the differential, with respect to the deformation gradient tensor, of the elastic energy associated with attached
Bs. Formulation (F2) is clearly equivalent to formulation (F1), which is typically used in the literature. In the

atter, however, the dependence of the active tension (Ta = aXB µ1) on the strain λ is somehow hidden, whereas in
ormulation (F2) it is made explicit (Ta = aXB(µ̂1 + µ̂0λ)).

From Eq. (13), it follows that the Lagrangian moments can be derived from the Eulerian ones as

µ̂0(λ) = µ0, µ̂1(λ) = µ1 − λµ0. (16)

ithin a staggered scheme, the values of µ(k+1)
0 and µ(k+1)

1 are obtained by employing the value of λ at the iteration
. Hence, based on (16), we define the corresponding Lagrangian variables as

µ̂
(k+1)
0 = µ̂0(λ(k)) = µ

(k+1)
0 , µ̂

(k+1)
1 = µ̂1(λ(k)) = µ

(k+1)
1 − λ(k)µ

(k+1)
0 . (17)

t follows that the standard staggered scheme of Eq. (7), in a fully Lagrangian frame of reference, reads as follows:

P(k+1)
act = aXB

(
µ̂

(k+1)
1 + µ̂

(k+1)
0 λ(k)

) F(k+1)f0 ⊗ f0

|F(k+1)f0|
. (18)

Hence, despite Eq. (7) is formally written as a fully-implicit scheme (that is typically unconditionally stable for
problems of this kind [27]), it actually hides an implicit–explicit scheme, where the strain λ is treated explicitly (in
fact we have λ(k) rather than λ(k+1)). Therefore, we consider the following discrete-in-time Piola–Kirchhoff stress
tensor written in a fully Lagrangian formalism (i.e. based on formulation (F2)):

P(k+1)
act = aXB

(
µ̂

(k+1)
1 + µ̂

(k+1)
0 λ(k+1)

) F(k+1)f0 ⊗ f0

|F(k+1)f0|

= aXB

[
µ

(k+1)
1 + µ

(k+1)
0

(
λ(k+1)

− λ(k))] F(k+1)f0 ⊗ f0

|F(k+1)f0|
,

that is

P(k+1)
act =

[
T (k+1)

a + K (k+1)
a

(
λ(k+1)

− λ(k))] F(k+1)f0 ⊗ f0

|F(k+1)f0|
, (19)

here K (k+1)
a = aXBµ

(k+1)
0 is the active stiffness of the tissue. Indeed, since µ0(t) represents the fraction of actin

inding sites involved in a XB, the term Ka(t) = aXBµ0(t) represents the total stiffness (at the tissue level) of
ttached XBs.

In what follows, we will refer to the numerical scheme consisting of (5), (6) and (19) (in substitution of (7)) as
he stabilized-staggered scheme, for reasons that will be clear later.

. Analysis of the proposed stabilized scheme

In this section we analyze the stabilized-staggered scheme.

.1. Numerical consistency of the stabilized-staggered scheme

The stabilized-staggered scheme is numerically consistent (in the sense of [28]) with the problem (1)–(2). Indeed,
y setting the discretized variables equal to the exact solution (i.e. d(k)

h = d(tk), T (k)
a = Ta(tk) and K (k)

a = Ka(tk))
nd by letting ∆t → 0, we get[

T (k)
a + K (k)

a

(
λ(k+1)

− λ(k))] ∆t→0
−−−→ Ta(tk).

s a matter of fact, we have
(
λ(k+1)

− λ(k)
)

= (
√
I4, f (F(k+1)) −

√
I4, f (F(k))) = O(∆t). The newly introduced term

can thus be interpreted as a consistent stabilization term (of first order with respect to ∆t).
8
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4.2. Physical interpretation of the stabilized-staggered scheme

The stabilized-staggered scheme that we propose consists in replacing, in the momentum equation, the term
T (k+1)

a by the term [T (k+1)
a + K (k+1)

a (λ(k+1)
− λ(k))]. This means that in the stabilized-staggered scheme the active

tension is not seen – at the numerical level – as a constant force. Rather, it is regarded as an elastic force, whose
value depends on the tissue strain in the fibers direction. This is more coherent with the microscopical basis of the
force generation model, in which each attached XB behaves as a linear spring (see Section 3.1.1).

We remark that formulation (19) does not introduce a new model with respect to (7). As a matter of fact, the
difference is only at the numerical level (see Section 4.1), that is we are using a different, but still consistent,
numerical scheme. Nonetheless, the stabilized-staggered scheme better reflects the physics underlying the model,
thus featuring better numerical stability properties, as we prove later.

4.3. Algebraic interpretation of the stabilized-staggered scheme

In order to provide an algebraic interpretation of the newly introduces term, we couple the minimal model of
force generation of Eq. (11) with a minimal model of tissue mechanics, in replacement of Eq. (2). Specifically, we
consider the following zero-dimensional model for the tissue strain λ:

M λ̈(t) + σ λ̇(t) + K pλ(t) + Ta(t) = p(t), t ≥ 0, (20)

with suitable initial conditions on λ(0) and λ̇(0) and where M represents a normalized mass, σ a normalized viscous
modulus, K p the passive stiffness of the tissue and p(t) an externally applied load. In what follows, we will consider
also the quasistatic approximation of Eq. (20) (i.e. by neglecting inertia and viscous damping):

K pλ(t) + Ta(t) = p(t), t ≥ 0. (21)

In conclusion, the minimal model of active mechanics that we will consider is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µ̇0(t) = µ

f
0 − r µ0(t) t ≥ 0,

µ̇1(t) = µ
f
1 − r µ1(t) + λ̇(t)µ0(t) t ≥ 0,

M λ̈(t) + σ λ̇(t) + K pλ(t) = p(t) − aXB µ1(t) t ≥ 0,

µ0(0) = µ0,0, µ1(0) = µ1,0, λ(0) = λ0, λ̇(0) = 0,

(22)

here we set, in the quasistatic case, M = σ = 0.

.3.1. Quasistatic elasticity case
Let us first consider the quasistatic case (i.e. by setting M = σ = 0). We consider and compare the following

hree strategies for the time-discretization of Eq. (22) and for the coupling between the two submodels.

onolithic scheme. Within the monolithic strategy, we simultaneously solve for the activation variables (µ0 and
1) and for λ:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ
(k+1)
0 − µ

(k)
0

∆t
= µ

f
0 − r µ(k+1)

0 k = 0, 1, . . .

µ
(k+1)
1 − µ

(k)
1

∆t
= µ

f
1 − r µ(k+1)

1 +
λ(k+1)

− λ(k)

∆t
µ

(k+1)
0 k = 0, 1, . . .

K pλ
(k+1)

= p(tk+1) − aXB µ
(k+1)
1 k = 0, 1, . . .

µ
(0)
0 = µ0,0, µ

(0)
1 = µ1,0, λ(0)

= λ0.

(23)

taggered scheme. In the staggered scheme, we initialize the variables as µ(0)
0 = µ0,0, µ(0)

1 = µ1,0 and λ(−1)
=

λ(0)
= λ0. At each time step, we first approximate the solution of the force generation model by employing the

values of λ obtained at the previous time step:⎧⎪⎪⎨⎪⎪⎩
µ

(k+1)
0 − µ

(k)
0

∆t
= µ

f
0 − r µ(k+1)

0 k = 0, 1, . . .

µ
(k+1)
1 − µ

(k)
1

= µ
f
− r µ(k+1)

+
λ(k)

− λ(k−1)

µ
(k+1) k = 0, 1, . . .

(24)
∆t 1 1 ∆t 0

9
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Then, we update the value of λ by approximating the mechanics model:

K pλ
(k+1)

= p(tk+1) − aXB µ
(k+1)
1 k = 0, 1, . . . (25)

tabilized-staggered scheme. The initialization and the first step of the proposed stabilized scheme coincides with
hat of the staggered scheme (see Eq. (24)). However, the second step is modified as follows:

K pλ
(k+1)

= p(tk+1) − aXB

[
µ

(k+1)
1 + µ

(k+1)
0

(
λ(k+1)

− λ(k))] k = 0, 1, . . . (26)

et us analyze the temporal stability of the three schemes. We notice that each of these schemes can be written in
he following form:{

ψ (k)
= Φ(ψ (k−1), tk,∆t) k = 1, 2, . . .

ψ (0)
= ψ0,

(27)

where we have defined the state vector ψ (k)
= (µ(k)

0 , µ
(k)
1 , λ

(k), λ(k−1))T , with initial value ψ0 = (µ0,0, µ1,0, λ0, λ0)T ,
nd where Φ : Rn

×R+
×R+

→ Rn denotes an iteration function across the time steps. It should not be surprising
hat the state ψ (k) contains two consecutive values of λ(k), as the dynamics of µ1 depends on the time derivative of
, approximated by an incremental quotient.

The following result (whose proof is provided in Appendix A) links the stability properties of the numerical
chemes written in the form (27) with the spectral radius (i.e. the modulus of the largest eigenvalue, denoted by
(·)) of the Jacobian matrix of the iteration function Φ. More precisely, it provides sufficient conditions for the
cheme to be either zero-stable or absolutely stable. We recall that the former notion concerns the ability of the
ethod of keeping under control the unavoidable round-off errors in a finite time interval, while the latter notion

eals with the behavior of the method in the limit tk → +∞. Precise definitions of both concepts are reported in
ppendix A.

roposition 1. Let us consider the numerical scheme (27) and assume that Φ : Rn
×R+

×R+
→ Rn is differentiable

with respect to its first argument. If the condition

∃∆t0 > 0, ∃α ∈ R : ρ
(
∇ψΦ(ψ, t,∆t)

)
≤ 1 + α∆t ∀ψ ∈ Rn, t ≥ 0, ∆t ∈ (0,∆t0] (28)

holds true, then the scheme (27) is zero-stable. Moreover, if for a given ∆t the condition

∃ ρ0 < 1 : ρ
(
∇ψΦ(ψ, t,∆t)

)
≤ ρ0 ∀ψ ∈ Rn, t ≥ 0, (29)

holds true, then the scheme is absolutely stable in correspondence to ∆t .

We remark that Proposition 1 can be used to study the stability of the monolithic, staggered and stabilized-
staggered schemes for virtually any force generation model (not only for the minimal model (11)). However,
focusing on the minimal model (11), we notice that in this case the considered schemes (i.e. (23), (24)–(25) and
(24)–(26)) can be written in the following form, by writing ψ (k)

= (µ(k)
0 , (y(k))T )T , with y(k)

= (µ(k)
1 , λ

(k), λ(k−1))T :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µ

(k+1)
0 =

µ
(k)
0 + µ

f
0 ∆t

1 + r ∆t
k = 0, 1, . . .

A
(
µ

(k+1)
0 ,∆t

)
y(k+1)

= B
(
µ

(k+1)
0 ,∆t

)
y(k)

+ h(k+1) k = 0, 1, . . .

µ
(0)
0 = µ0,0, y(0)

= y0,

(30)

where h(k+1)
= (∆t µ f

1 , p(tk+1), 0)T and where the matrices A and B define the different schemes. Specifically, we
have

Amon(µ0,∆t) =

⎛⎝1 + r∆t −µ0 0
aXB K p 0

0 0 1

⎞⎠ , Bmon(µ0,∆t) =

⎛⎝1 −µ0 0
0 0 0
0 1 0

⎞⎠ . (31)

or the monolithic scheme (23). Then, for the staggered scheme (24)–(25), we have:

Astag(µ0,∆t) =

⎛⎝1 + r∆t 0 −µ0
aXB K p 0

⎞⎠ , Bstag(µ0,∆t) =

⎛⎝1 0 −µ0
0 0 0

⎞⎠ . (32)

0 0 1 0 1 0

10
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Finally, the stabilized-staggered scheme (24)–(26) is obtained by modifying the matrices of the staggered scheme
as follows:

Astab-stag(µ0,∆t) = Astag(µ0,∆t) +

⎛⎝0 0 0
0 aXBµ0 −aXBµ0
0 0 0

⎞⎠ ,
Bstab-stag(µ0,∆t) = Bstag(µ0,∆t).

(33)

Expression (27) is more general than (30): indeed the schemes that can be written in the form (30) represent a subset
of those of (27). Hence, also Proposition 1 applies to the schemes written in the form (30), taking the following
special form (see Appendix A for the proof):

Proposition 2. Let us consider a numerical scheme written in the form (30). Let us suppose that, for any
µ0 ∈ [0, µ f

0 /r ] and for any ∆t > 0

(H1) the matrix A(µ0,∆t) is invertible;
(H2) the matrices A(µ0,∆t) and B(µ0,∆t) are differentiable with respect to µ0.

Let us denote C(µ0,∆t) := A(µ0,∆t)−1 B(µ0,∆t). The scheme (30) is zero-stable, if

∃∆t0 > 0, ∃α ∈ R : ρ(C(µ0,∆t)) ≤ 1 + α∆t ∀∆t ∈ (0,∆t0], µ0 ∈ [0, µ f
0 /r ]. (34)

Moreover, it is absolutely stable in correspondence to ∆t if

∃ ρ0 < 1 : ρ(C(µ0,∆t)) < ρ0 ∀µ0 ∈ [0, µ f
0 /r ]. (35)

Conversely, it is easy to see that if ρ(C(µ0,∆t)) > 1 for some µ0 and ∆t , the solution might blow up. Hence,
the numerical stability of the method is determined by the spectral radius of the matrix A−1 B. Indeed, hypotheses
(H1) and (H2) are easy to verify for each of the considered schemes. Let us then study the spectrum of this matrices
A−1 B.

Monolithic scheme. The spectrum of the matrix A−1
mon Bmon contains the following eigenvalues:

σ1 = σ2 = 0, σ3 =
K p + aXB µ0

K p + aXB µ0 + ∆t K p r
.

learly, for physically meaningful values of the parameters (i.e. when they all take positive values), we have
3 ∈ (0, 1). This entails that the monolithic scheme is zero-stable and unconditionally absolutely stable (i.e. without
ny restriction on ∆t).

taggered scheme. The spectrum of the matrix A−1
stag Bstag is given by:

σ1 = 0, σ2,3 = σ± =
K p − aXB µ0 ±

√
(K p − aXB µ0)2 + 4aXB µ0 K p(1 + r ∆t)

2K p(1 + r ∆t)
.

t is easy to see that, for ∆t → +∞ (this is simply a mathematical speculation, of course), we have σ± → 0, while,
for ∆t → 0, we have σ+ → 1 and σ− → −

aXB µ0
K p

. Therefore, if Ka = aXB µ0 > K p (i.e. when the stiffness of the
active components is larger than the stiffness of the passive component), we have σ− < −1 when ∆t is small, thus
leading to nonphysical oscillations in the numerical solution. Therefore, whenever Ka > K p, the staggered scheme
cannot be absolutely stable when ∆t is lower than a given threshold. Moreover it is not even zero-stable, as for
∆t → 0 the spectral radius tends to a constant strictly lower than −1. Hence, since a consistent numerical scheme
is convergent if and only if it is stable, the staggered scheme is never convergent when Ka > K p. As a matter
of fact, with the staggered scheme one cannot decrease the time step size ∆t aiming at achieving a prescribed
accuracy in the numerical approximation, because this would compromise the stability of the method. This makes
the staggered scheme somehow pointless, as a consistent numerical scheme is typically devised in such a way that,
by progressively refining the discretization, the numerical solution converges to the exact one.

We notice that this result is in accordance with the results of [10], where it is shown that a necessary condition
for stability of the staggered scheme is that the active stiffness should not be larger than the passive one. Similarly,
in [11] the authors show that the staggered scheme may lose stability when the stiffness associated with the active
stress is large, compared to the passive one, even if a sharp threshold is not derived.
11
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Fig. 2. Quasistatic mechanics: eigenvalues associated with the three numerical schemes as a function of ∆t , in the two cases aXB µ0 =

Ka > K p and aXB µ0 = Ka ≤ K p .

tabilized-staggered scheme. Finally, let us consider the stabilized-staggered scheme. The spectrum of the matrix
A−1

stab-stag Bstab-stag contains the following eigenvalues:

σ1 = σ2 = 0, σ3 =
K p + aXB µ0 + ∆t aXB µ0 r

K p + aXB µ0 + ∆t aXB µ0 r + ∆t K p r
.

Clearly, we have σ3 ∈ (0, 1) for all ∆t > 0. Therefore, the stabilized-staggered scheme, like the monolithic
scheme, is zero-stable and absolutely unconditionally stable. In other words, the stabilization term has the effect
of bringing the eigenvalue responsible for the lack of stability of the staggered scheme back into the unit interval,
while preserving consistency.

In conclusion, we have the following result.

Proposition 3. The monolithic scheme (23) and the stabilized-staggered scheme (24)–(26) are zero-stable and
nconditionally absolutely stable.

In Fig. 2 we show the dependence on ∆t of the eigenvalues σ1,2,3 associated with the three schemes, for realistic
alues of the parameters of the model (see Appendix C), where we employ the steady state value of the variable
0, given by µ0 = µ

f
0 /r . In Fig. 2a we take K p = 4 MPa, so that K p > Ka. In this case, the eigenvalues are always

ontained in (−1, 1), which means that each of the three schemes is unconditionally absolutely stable. Conversely,
n Fig. 2b, we take K p = 1 MPa, so that K p < Ka. In this case, as we expected, the staggered scheme features an
igenvalue below −1 for ∆t not sufficiently small, while the others schemes are absolutely stable for any value of
t .
In order to numerically validate the theoretical results derived above, we perform the following test. We employ

he three schemes to approximate the solution of problem (22) in the quasistatic case (for simplicity we consider
he case of no external load, by setting p(t) ≡ 0). In Fig. 3a we show the results obtained in the case K p = 4 MPa
i.e. with a passive stiffness larger than the largest attained active stiffness). As expected, none of the three methods
ield numerical oscillations. In Fig. 3b, instead, we consider K p = 1 MPa. In this case, after a while the active

stiffness Ka(t) = aXB µ0(t) exceeds the passive one K p, represented by a dashed black line. In the solution of
the staggered scheme this leads, as expected, to nonphysical oscillations, that are successfully removed by the
stabilization term introduced in the stabilized-staggered scheme.

4.3.2. Elastodynamics case
Consider now the case when the quasistatic approximation considered before is no longer assumed: inertia and

viscosity will be restored in our mechanical model (see Eq. (22)). The previously considered numerical schemes can
be easily generalized by approximating the additional terms with BDF formulas. More precisely, the term K pλ

(k+1)

in the left-hand sides of Eqs. (23), (25) and (26) is replaced by

M
λ(k+1)

− 2λ(k)
+ λ(k−1)

+ σ
λ(k+1)

− λ(k)

+ K pλ
(k+1). (36)
∆t2 ∆t
12
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Fig. 3. Quasistatic mechanics: results of simulations obtained with two different values of K p (represented by the dashed black line).

Fig. 4. Non quasistatic mechanics: eigenvalues associated with the three numerical schemes as a function of ∆t , in the case σ = 10 Pa s
and M = 0, with aXB µ0 = Ka > K p .

By introducing the following matrices

Amass = Bmass =
M

∆t2

⎛⎝0 0 0
0 1 −1
0 0 0

⎞⎠ , Adamp = Bdamp =
σ

∆t

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠ ,
the algebraic interpretation of the three schemes can be still written in the matrix form (30); however, the matrices
reported in (31), (32) and (33) becomes, respectively:

Atotal
mon = Amon + Amass + Adamp, B total

mon = Bmon + Bmass + Bdamp,

Atotal
stag = Astag + Amass + Adamp, B total

stag = Bstag + Bmass + Bdamp,

Atotal
stab-stag = Astab-stag + Amass + Adamp, B total

stab-stag = Bstab-stag + Bmass + Bdamp.

n Fig. 4 we report the eigenvalues (that corresponds to those displayed in Fig. 2b for the quasistatic case) when
non-null viscosity is added to the model (i.e. with σ ̸= 0 and M = 0). The results show that the viscosity has a

tabilizing effect on the staggered scheme for small values of ∆t ; however, there is still an interval of values of ∆t
or which the staggered scheme is not absolutely stable. Conversely, both the monolithic and the stabilized-staggered

chemes are unconditionally absolutely stable. Moreover, we notice that, for ∆t → 0 the eigenvalues associated

13
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Fig. 5. Non quasistatic mechanics: eigenvalues associated with the three numerical schemes as a function of ∆t , in the case σ = 10 Pa s
and M = 0.1 Pa s2, with aXB µ0 = Ka > K p . The three figures show respectively the real part, the imaginary part and the modulus of the
eigenvalues.

with the stabilized-staggered scheme show a better adherence with those of the monolithic scheme than those of
the staggered scheme.

Finally, we introduce also the inertia term (see Fig. 5). In this case, all the schemes feature a real eigenvalue
and a pair of conjugate complex ones. Similarly to the previous case, the staggered scheme is absolutely unstable
within an interval of values of ∆t , while both the monolithic and the stabilized-staggered schemes are absolutely
stable for any value of ∆t . We remark that when only inertia is considered (i.e. when σ = 0 and M ̸= 0), the
results are qualitatively equivalent to those of Fig. 5.

To sum up, the following conclusions can be drawn.

• The monolithic scheme is always unconditionally absolutely stable.
• When Ka > K p, the staggered scheme may feature an eigenvalue outside the unit circle. In the quasistatic

case, this happens for small values of ∆t , whereas, when mass and/or viscosity are added to the mechanical
model, it happens within an interval of values of ∆t .

• Both in the quasistatic case and when mass and/or viscosity are considered, the effect of the stabilization term
is that of bringing the eigenvalues responsible for the instability of the staggered scheme back into the unit
circle, making the scheme absolutely stable for any value of ∆t .

To conclude the analysis of our stabilized-staggered scheme we remark that this scheme can be interpreted as a
fractional step method, where the differential operator associated with the force generation model is split into a
velocity-independent and a velocity-dependent part, which is then associated with the operator of the mechanics
model. A detailed analysis of this equivalence is reported in Appendix B.

5. Stabilized-staggered scheme for a generic force generation model

In the previous sections, we have derived, based on energetic considerations, a fully staggered but stable
numerical scheme to couple active mechanics models with the distribution-moments force generation model of
Eq. (11). Despite we derived this scheme for a specific force generation model, it can be easily generalized to other
models.

5.1. Generalization to different models

In our stabilized-staggered scheme, the extra term K (k+1)
a

(
λ(k+1)

− λ(k)
)

was added to T (k+1)
a in the mechanical

model. This suggests the way to generalize this scheme to other force generation models, provided we suitably
define a value for the active stiffness Ka.

A formula for Ka can be based upon physical considerations, similarly to what done in Section 3.2. Alternatively,
we can formally proceed as follows. In abstract terms, the active stiffness is defined as

Ka =
∂ Ṫa

. (37)

∂λ̇

14
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Table 1
List of the force generation models used in this paper.

Abbreviation # variables Family (velocity-dependence) Ref.

NHS06 5 Fading-memory models [29]
L17 6 Distortion–decay models [30]
RDQ20-MF 20 Physics-based models (Huxley formalism) [31]

Let us start from the generic expression of Eq. (1). Then,

Ṫa = ∇rg · h, (38)

hich entails

Ka =
∂ Ṫa

∂λ̇
= ∇rg ·

∂h
∂λ̇
. (39)

n conclusion, we can use Eq. (39) to obtain the active stiffness corresponding to any activation model written in
he form of Eq. (1).

In the next sections we test the proposed method on some of the force generation models available in the literature
nd currently used in multiscale cardiac electromechanical simulations. We consider three among the most popular
amilies of models, classified according to the formalism used to describe the velocity-dependent feedback on the
orce generating machinery. Specifically, we consider two phenomenological families (fading-memory models and
istortion–decay models) and the class of physics-based models. For each family we consider a representative
odel, namely the Niederer–Hunter–Smith model [29] (henceforth denoted as NHS06 model), the model proposed

y Land and coworkers in [30] (denoted as L17 model) and the mean-field model that we proposed in [31] (RDQ20-
F model). The list of the considered models and of the corresponding families is summarized in Table 1. In
ppendices D–F we recall the equations of these models and for each of them we provide the expression of the

ctive stiffness Ka.

emark 1. Not all the models available in the literature fall in the class of Eq. (1). For some of them, for instance,
he right-hand side h depends on Ta itself. However, this modification does not affect the definition of Eq. (39). In
ome other models, instead, the active tension explicitly depends on λ in the following manner:

Ta(t) = g(r(t), λ(t)). (40)

n this case, by proceeding formally, one gets:

Ka =
∂ Ṫa

∂λ̇
= ∇rg ·

∂h
∂λ̇

+
∂g
∂λ
. (41)

or all the models considered in this paper, we have tested both options Eqs. (39) and (41), without obtaining
ignificantly different results. As a matter of fact, typically the additional term ∂g

∂λ
is negligible compared to the

other term. For this reason, Eq. (39) should be preferred to Eq. (41) because of its simplest implementation.

5.2. Numerical results

In this section, we show the results obtained by applying the proposed stabilized numerical scheme to the three
models listed in Table 1, with the goal of showing its effectiveness.

Similarly to Section 4.3, we consider a zero-dimensional model for the tissue strain in the myofibers direction.
Specifically, we consider the following model:

M λ̈(t) + σ λ̇(t) +
∂W
∂λ

(λ(t)) + Ta(t) = p(t), t ≥ 0, (42)

with σ = 10 Pa s and M = 0.1 Pa s2 and where W(λ) denotes an elastic potential. In place of the quadratic
otential W(λ) =

1
2 K p λ

2 considered in Section 4.3, in this section we consider the nonlinear elastic potential
W(λ) =

1 K λ log(1 + λ), with K = 1 MPa.
2 p p
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Hence, the coupled model of active mechanics reads as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṙ(t) = h
(
r(t), [Ca2+]i(t), λ(t), λ̇(t)

)
, t ≥ 0,

Ta(t) = g (r(t), λ(t)) , t ≥ 0,
Ka(t) = q (r(t), λ(t)) , t ≥ 0,

M λ̈(t) + σ λ̇(t) +
∂W
∂λ

(λ(t)) = p(t) − Ta(t), t ≥ 0,

r(0) = r0, λ(0) = λ0, λ̇(0) = 0,

(43)

here, for the sake of generality, we consider the case when the active tension explicitly depends on λ(t). We
onsider the following numerical scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(k+1)
− r(k)

∆t
= ĥ

(
r(k), r(k+1), [Ca2+](k+1)

i , λ(∗), λ̇(∗)
)
, k ≥ 0,

T (k+1)
a = g

(
r(k+1), λ(∗)) , k ≥ 0,

K (k+1)
a = q

(
r(k+1), λ(∗)) , k ≥ 0,

M
λ(k+1)

− 2λ(k)
+ λ(k−1)

∆t2 + σ
λ(k+1)

− λ(k)

∆t
+
∂W
∂λ

(λ(k+1)) = p(k+1)
− T (∗)

a , k ≥ 0,

r(0)
= r0, λ(−1)

= λ(0)
= λ0.

(44)

he numerical scheme used to treat the core block of force generation is defined through the function ĥ, that
ust satisfy, for consistency: ĥ (r, r, c, λ, v) = h (r, c, λ, v). In particular, for ĥ (r1, r2, c, λ, v) = h (r1, c, λ, v) we

ave a fully-explicit scheme while for ĥ (r1, r2, c, λ, v) = h (r2, c, λ, v) we have a fully-implicit scheme. More
n general, the function ĥ defines a semimplicit (or implicit–explicit, IMEX) scheme. Semimplicit schemes allow
o explicitly treat some nonlinearities, making the scheme linear, while keeping implicit those dependencies that
ould otherwise lead to instabilities. The numerical schemes used to treat the core models of force generation are
escribed in Appendices D–F.

Concerning the coupling between the models of force generation and of tissue mechanics, the three schemes
onsidered in what follows are:

• monolithic scheme, defined as:

λ(∗)
= λ(k+1), λ̇(∗)

=
λ(k+1)

− λ(k)

∆t
, T (∗)

a = T (k+1)
a ;

• staggered scheme, defined as:

λ(∗)
= λ(k), λ̇(∗)

=
λ(k)

− λ(k−1)

∆t
, T (∗)

a = T (k+1)
a ;

• stabilized-staggered scheme, defined as:

λ(∗)
= λ(k), λ̇(∗)

=
λ(k)

− λ(k−1)

∆t
, T (∗)

a = T (k+1)
a + K (k+1)

a

(
λ(k+1)

− λ(k)) .
5.2.1. Test case 1: isotonic twitch

The first test case that we consider is a fiber contracting under isotonic conditions, that is against a constant load
p(t) ≡ 0 Pa. To trigger the contraction of the fiber, we consider the following idealized calcium transient [32]:

[Ca2+]i(t) = c0 +
cmax − c0

β

[
e−

t−t0
τ1 − e−

t−t0
τ2

]
1t≥t0 , (45)

here

β =

(
τ1

τ2

)−

(
τ1
τ2

−1
)−1

−

(
τ1

τ2

)−

(
1−

τ2
τ1

)−1

,

with c = 1.6 µM, c = 0.1 µM, t = 0.1 s, τ = 0.02 s, τ = 0.05 s.
max 0 0 1 2
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Fig. 6. Test Case 1: Comparison of the results (Ta, left and λ, right, versus time) obtained with the monolithic, staggered and
tabilized-staggered schemes for three different force generation models.

In Fig. 6 we compare the results obtained for each model with the three numerical schemes. While the monolithic
cheme is stable for each model, the staggered scheme yields to numerical oscillations during the phase of maximal
ctivation. This is coherent with our theoretical analysis of Section 4.3, that shows that such numerical instabilities
rise when the active stiffness overcomes the passive one, i.e. when the muscle tissue is activated beyond a given
hreshold. Finally, the stabilized-staggered scheme successfully removes these numerical artifacts, for each of the
hree models.

.2.2. Test case 2: pressure ramp
In this second test case, we start from an equilibrium configuration where the muscle fiber is activated with a

onstant calcium concentration, against a constant external load p. Then, we progressively decrease the external
load, to simulate what happens during the ejection phase of a cardiac ventricle, yielding the shortening of the muscle
fiber.

Specifically, we consider a constant calcium concentration of [Ca2+]i = 0.6 µM for the NHS06 and L17 model
nd of [Ca2+]i = 0.3 µM for the RDQ20-MF model. We consider an initial load p = 50 kPa for the NHS06 model

and p = 100 kPa for the L17 and RDQ20-MF models. Starting at time t = 0.1 s, we linearly decrease p(t) to reach
zero in 0.5 s.

As expected, the numerical results (see Fig. 7) show that the shortening of the tissue leads to a decrease of active
tension (due to the above mentioned force–velocity relationship). Similarly to Test Case 1, the stabilized-staggered
scheme is successful in eliminating the nonphysical oscillations associated with the non-stabilized staggered scheme,
thus giving a result consistent with that of the monolithic scheme.
17
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Fig. 7. Test Case 2: Comparison of the results obtained with the monolithic, staggered and stabilized-staggered schemes for three different
orce generation models.

.2.3. Convergence analysis
In order to verify the numerical consistency of the proposed stabilized-staggered scheme and to quantify the

ntroduced error, we carry out a convergence analysis with respect to the time step length ∆t . We consider again
Test Case 1 and, for each of the three force generation models of Table 1, we compute the numerical solution
obtained with the monolithic and stabilized-staggered schemes for different values of ∆t . Then, we compare the

btained time-evolution of the displacement with a reference solution. The latter, called λref, in fact is obtained with
he monolithic scheme for a very fine time step (∆t = 10−4 s). To quantify the numerical error, we compute the
L∞ and the mean L2 distance from the reference solution λref, interpolated on the finest time discretization:

e2 =

√ 1
Nt

∑
k=0,...,Nt

⏐⏐⏐λ(k) − λ
(k)
ref

⏐⏐⏐2, e∞ = max
k=0,...,Nt

⏐⏐⏐λ(k)
− λ

(k)
ref

⏐⏐⏐ , (46)

where Nt denotes the number of time steps. In Fig. 8 we plot the errors for the three models, where we use, for
the time-discretization of the force generation core models, either a semimplicit scheme, or an implicit scheme, or
both of them.

First of all, we notice that, in all the considered cases, the numerical solutions obtained with the stabilized-
staggered scheme converge to the exact solution as ∆t → 0. Indeed, the stabilized scheme that we propose
introduces a perturbation of the staggered scheme by an infinitesimal term of order O(∆t) for ∆t → 0 (i.e. the
scheme remains numerically consistent).

In all the cases, we numerically obtain, for the solution of the stabilized-staggered scheme, an order of
convergence equal to one. Hence, the introduction of the stabilization term does not affect the overall first-order
convergence of the coupled scheme of Eq. (44), due to the first-order finite difference schemes used to approximate
18
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Fig. 8. Convergence analysis with respect to the time step length ∆t for the three force generation models of Table 1.

ime derivatives. In practice, for a given ∆t , the errors obtained with the stabilized-staggered scheme are only
lightly larger than the errors obtained with a monolithic scheme, for the same ∆t .

We remark that in case higher order schemes are used for the time discretization of the core models, the proposed
tabilization term should be generalized to be of the same order as the time stepping scheme, in order to preserve
he overall order of convergence. However, one should check that this high-order generalization shares the stability
roperties of the first-order stabilized scheme proposed in this paper. This will be the object of a future work.

.2.4. Three-dimensional left ventricle electromechanics
In this section we show the numerical results obtained by applying the proposed stabilized-staggered scheme

n the context of the electromechanical modeling of a three-dimensional left ventricle. Specifically, we consider a
omputational domain derived from the Zygote heart model [33], which represents that of an average 21 years old
ealthy man. We generate the fibers and sheets direction within this domain by employing the rule-based algorithm
roposed in [34]. The computational mesh and the fiber and sheets normal directions (f0 and s0, respectively) are
epresented in Fig. 9.

To model cardiac electrophysiology, we employ the monodomain equation [35,36] and the ten Tusscher–Panfilov
onic model [37]. We describe the force generation phenomenon through the RDQ20-MF model (see Appendix F).

e model the passive behavior of the myocardium by means of the quasi-incompressible exponential constitutive
aw of [38]. At the epicardium (Γ epi

0 , see Fig. 9) we impose the generalized Robin boundary conditions of [39,40],
odeling the visco-elastic interaction of the cardiac walls with the pericardium. At the ventricular base (Γ base

0 , see
ig. 9), we set the energy-consistent boundary condition that we proposed in [41], which accounts for the effect of

he cardiac muscle beyond the artificial boundary of the ventricular base. Finally, we couple the three-dimensional
lectromechanical ventricular model with a zero-dimensional Windkessel model of blood circulation [42]. The
entricular blood pressure of the zero-dimensional model provides the boundary condition at the endocardium to the
hree-dimensional model (Γ endo

0 , see Fig. 9). Further details on this electromechanical model can be found in [16].
Concerning the numerical solution of this model, we consider a tetrahedral computational mesh with 354 · 103

ells and 65 · 103 degrees of freedom. We use piece-wise linear Finite Elements to discretize in space the variables
f the electromechanical model, while we employ first-order finite differences to discretize time derivatives, within
he IMEX scheme described in [16]. The different core models are coupled following a fully staggered strategy [13],
y orderly updating the solution of the monodomain equation, of the ionic model, of the force generation model
nd finally of the mechanical model. Moreover, to highlight the versatility of the proposed stabilized scheme, we
19
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Fig. 9. Computational mesh used for the three-dimensional electromechanical simulation of Section 5.2.4 (center) and reconstructed fibers
(f0, left) and sheets (s0, right) fields.

Fig. 10. Results of multiscale cardiac electromechanics simulations obtained with the staggered scheme (blue lines) and the stabilized-
staggered scheme ((red lines). In (a)-(b)-(c) the three lines refer to the minimum, average and maximum value over the computational
domain. The insets show the moment when the non-physical oscillations begin to occur. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

consider a time-splitting scheme, by updating the solution of the mechanical subproblem every two iterations of the
remaining physics. In other words, we employ a time step ∆t = 4 · 10−4 s for the mechanical model and a time
step ∆t = 2 · 10−4 s for the other models.

The blue lines in Fig. 10 show the results obtained with this staggered scheme, without stabilization. We observe

the presence of spurious oscillations, due to the feedback of the tissue strain rate on the force generation dynamics.

20
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Moreover, we remark that, for larger time step lengths, the oscillations quickly lead to failure of the Newton solver.
Conversely, the (red lines show the results obtained by adding the stabilization term proposed in this paper (see
Eq. (19)). These results show that the proposed scheme successfully achieves the stabilization of the observed
spurious oscillations.

6. Conclusions

In this paper we proposed a new staggered strategy to couple velocity-dependent force generation models with
odels describing tissue mechanics in cardiac electromechanics. The new method is free of numerical oscillations,

n issue that typically affects existing staggered schemes and that is due to the feedback of the tissue strain rate on
he force generation dynamics. With respect to standard staggered coupling schemes, this scheme features an extra
tabilization term (of the order of O(∆t)), that is derived based on energetic considerations about the generation of

the active stress at the microscale. In the new theoretical development, all the variables are framed in a coherent
fully Lagrangian reference system. Consequently, the active tension is not expressed as a constant anymore, rather it
depends on the tissue strain in the fibers direction, more coherently with the microscopic phenomenon that generates
the macroscopic force.

Our stability analysis focuses on the eigenvalues of the transition matrices between two consecutive time steps.
We thus showed that the monolithic scheme is unconditionally absolutely stable. Conversely, when the active
stiffness is larger than the passive stiffness in the fibers direction (Ka > K p), the standard staggered scheme is only
conditionally stable (i.e. stable for small enough ∆t) and even unconditionally unstable in the case of quasistatic
mechanics. Consequently, in the case of quasistatic mechanics the staggered scheme cannot be convergent when the
active stiffness is larger than the passive stiffness in the fibers direction — as it happens during systole for realistic
values of the parameters. We showed that the stabilization term proposed in this paper brings all the eigenvalues
of the transition matrix associated with the staggered scheme back into the unit circle, thus ensuring numerical
stability.

The new method has been generalized to other force generation models available in the literature, namely the
Niederer–Hunter–Smith model [29], the model of Land and coworkers [30] and the mean-field model that we
proposed in [31]. This has been verified in two different test cases, namely an isotonic twitch and a test case where
a contracted fiber shortens as a consequence of a gradual decrease of the external load, similarly to what happens
in the ejection phase of the heart cycle.

We have proved, both theoretically and numerically, that the new scheme preserves the first order convergence
with respect to ∆t of the non-stabilized staggered scheme. The numerical error is only slightly larger than the error
obtained with the monolithic scheme and it tends to zero with the same rate.

Our last test case is a three-dimensional electromechanical simulation of the left ventricle, where we provide a
comparative analysis between our new scheme and the non-stabilized staggered scheme.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 740132, iHEART — An Integrated Heart
Model for the simulation of the cardiac function, P.I. Prof. A. Quarteroni).
21



F. Regazzoni and A. Quarteroni Computer Methods in Applied Mechanics and Engineering 373 (2021) 113506

w

D
t

w

D
t

|

a

P
f

f
∆
∥

Appendix A. Stability results

In order to study the stability of the schemes written in the form (27), we introduce the perturbed problem{
ψ̃

(k)
= Φ(ψ̃

(k−1)
, tk,∆t) + ∆t η(k) k = 1, 2, . . .

ψ̃
(0)

= ψ0 + η(0),
(A.1)

here η(k) denotes a suitable perturbation. We recall the following definitions [28]:

efinition 1 (Zero-stability). Let us consider a finite time T > 0, and let us consider a uniform subdivision of the
ime interval (0, T ) into N subintervals, i.e. ∆t = T/N . The numerical scheme (27) is zero-stable if

∃∆t0 > 0, ∃ C > 0 : sup
k=0,...,N

|ψ̃
(k)

− ψ (k)
| ≤ C sup

k=0,...,N
|η(k)

| ∀∆t ∈ (0,∆t0],

here ψ (k) and ψ̃
(k)

are solutions to problems (27) and (A.1), respectively.

efinition 2 (Absolute Stability). Let us consider a given time step size ∆t > 0, and let us consider the solution of
he numerical problem for tk → +∞. The numerical scheme (27) is absolutely stable in correspondence to ∆t if

∃ C > 0 : lim
k→+∞

|ψ̃
(k)

− ψ (k)
| ≤ C sup

k=0,...
|η(k)

|,

where ψ (k) and ψ̃
(k)

are solutions to problems (27) and (A.1), respectively. Moreover, we say that the method is
unconditionally absolutely stable if it is absolutely stable for any ∆t > 0.

On the one hand, the zero-stability deals with the behavior of the numerical scheme on a given temporal interval
for ∆t → 0 (whence the name of zero-stability). This request arises from the need of keeping under control
the unavoidable round-off errors due to the finite arithmetic of computers (represented in this context by the
perturbations η(k)). On the other hand, the absolute stability deals with the behavior of the method for a given
∆t in the limit tk → +∞. This property guarantees that the effect of perturbations is kept under control and does
not lead to a blow-up of the solution. For a dissipative (Lyapunov asymptotically stable) dynamical system, absolute
stability guarantees that the numerical solution will tend to zero as tk → +∞ if the only perturbation concerns the
initial datum [28].

We recall the following result (see e.g. [28, Property 1.13]):

Proposition 4. Let M ∈ Cn×n and ε > 0. There exists a norm ∥ · ∥M,ε that is compatible with the vector norm
· |, i.e.

|Ax| ≤ ∥A∥M,ε|x| ∀ A ∈ Cn×n, x ∈ Cn,

nd satisfying

∥M∥M,ε ≤ ρ(M) + ε.

We report below the proof of Propositions 1 and 2.

roof of Proposition 1. We denote η := supk=0,... |η
(k)

|. Let us define the error e(k)
= ψ̃

(k)
−ψ (k). Subtracting (27)

rom (A.1), we get e(0)
= η(0) and, for k = 1, 2, . . . :

e(k)
= Φ(ψ̃

(k−1)
, tk,∆t) − Φ(ψ (k−1), tk,∆t) + ∆t η(k)

= ∇ψΦ(ξ (k), tk,∆t) e(k−1)
+ ∆t η(k),

(A.2)

or some ξ (k) belonging to the line connecting ψ (k−1) and ψ̃
(k−1)

. Let us consider a finite time T and let us set
t = T/N . By Proposition 4, for any N > 0 and k = 1, . . . , N there exists a compatible norm ∥ · ∥N ,k such that
∇ψΦ(ξ (k), tk,∆t)∥N ,k ≤ 1 + 2α∆t . It follows, for k = 1, . . . , N :

(k) (k) (k−1) (k) (k−1) (k)

|e | ≤ ∥∇ψΦ(ξ , tk,∆t)∥N ,k |e | + ∆t |η | ≤ (1 + 2α∆t)|e | + ∆t |η |. (A.3)
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Summing over k, we get, for k = 1, . . . , N :

|e(k)
| ≤ |η(0)

| +

k−1∑
s=0

2α∆t |e(k)
| +

k−1∑
s=0

∆t |η(k)
| (A.4)

From the Gronwall Lemma (see e.g. [28, Lemma 11.2]), it follows, for k = 1, . . . , N :

|e(k)
| ≤

(
|η(0)

| +

k−1∑
s=0

∆t |η(k)
|

)
e2αk∆t

≤ (1 + k∆t)e2αk∆tη

≤ (1 + N∆t)e2αN∆tη = (1 + T )e2αTη.

(A.5)

his proves the zero-stability of the method, with C = (1 + T )e2αT (actually, the proof can be improved up to
= (1 + T )eαT ). In order to prove the absolute stability, we notice that (A.2) entails

e(k)
=

[
k∏

s=1

∇ψΦ(ξ (s), ts,∆t)

]
η(0)

+ ∆t
k∑

s=1

⎡⎣ k∏
q=s+1

∇ψΦ(ξ (q), tq ,∆t)

⎤⎦ η(k). (A.6)

et us consider a fixed ∆t . By Proposition 4, for any k there exists a compatible norm ∥ · ∥k such that
∇ψΦ(ξ (k), tk,∆t)∥k ≤ ρ1, for some ρ1 such that ρ0 < ρ1 < 1. It follows

|e(k)
| ≤ ρk

1η + ∆t(1 + ρ1 + ρ2
1 + · · · + ρk−1

1 )η

= ρk
1η + ∆t

1 − ρk
1

1 − ρ1
η −−−−→

k→+∞

∆t
η

1 − ρ1
.

(A.7)

Hence, the method is absolutely stable with constant C = ∆t/(1 − ρ1). □

roof of Proposition 2. It is easily verified that, if µ0,0 ∈ [0, µ f
0 /r ], then the solution of (30) satisfies µ(k)

0 ∈

0, µ f
0 /r ] for any k. Then, we can restrict our analysis to the values of ψ = (µ0, yT )T such that µ0 ∈ [0, µ f

0 /r ].
The transition map associated with the scheme (30) reads

Φ((µ0, yT )T , tk,∆t) =

⎛⎜⎜⎝
µ0+µ

f
0 ∆t

1+r ∆t

C
(
µ0+µ

f
0 ∆t

1+r ∆t ,∆t
)

y + A
(
µ0+µ

f
0 ∆t

1+r ∆t ,∆t
)−1

h(k)

⎞⎟⎟⎠ (A.8)

By (H1), the determinant of A(µ0,∆t) never vanishes. Hence, by the Cramer formula and by (H2), the map Φ is
ifferentiable in its first argument. Its Jacobian matrix reads

∇ψΦ((µ0, yT )T , tk,∆t) =

⎛⎝(1 + r ∆t)−1 0T

ζ (µ0, y,∆t) C
(
µ0+µ

f
0 ∆t

1+r ∆t ,∆t
)⎞⎠ (A.9)

for a suitable function ζ (µ0, y,∆t). Hence, the spectrum of ∇ψΦ coincides with that of the matrix C , with the
addition of the eigenvalue (1 + r ∆t)−1

∈ (0, 1). Therefore, the spectral conditions (28) and (29) are equivalent to
34) and (35). Then the thesis follows from Proposition 1. □

ppendix B. Interpretation as a fractional step scheme

In this appendix we show that the stabilized-staggered scheme can be interpreted as a fractional step scheme
see e.g. [27]), where the differential operator associated with the force generation model (11) is split into the sum
f a term independent of the strain rate λ̇(t) and a velocity-dependent term; the latter is then associated with the
perator of the mechanics model.
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T

For simplicity, let us consider a constant µ0, thus focusing on the dynamics of µ1 and λ only (i.e. on (22)2–(22)3).

he stabilized-staggered scheme then reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ
(k+1)
1 − µ

(k)
1

∆t
= µ

f
1 − r µ(k+1)

1 +
λ(k)

− λ(k−1)

∆t
µ0 k = 0, 1, . . .

M
λ(k+1)

− 2λ(k)
+ λ(k−1)

∆t2 + σ
λ(k+1)

− λ(k)

∆t
+ K pλ

(k+1)

= p(tk+1) − aXB

[
µ

(k+1)
1 + µ0

(
λ(k+1)

− λ(k))] k = 0, 1, . . .

µ̃
(0)
1 = µ1,0, λ(−1)

= λ(0)
= λ0

(B.1)

We now write the differential equation for the variable µ1 as (see (22)2)

µ̇1(t) = µ
f
1 − r µ1(t) + λ̇(t)µ0 =: L(µ1(t), λ̇(t)).

Then, we split the operator L as L = L1 + L2, where

L1(µ1) = µ
f
1 − r µ1, L2(λ̇) = λ̇ µ0.

Let us consider the following fractional-step scheme for the solution of (22)2–(22)3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ̃
(k+1,∗)
1 − µ̃

(k)
1

∆t
= L1(µ̃(k+1,∗)

1 ) = µ
f
1 − r µ̃(k+1,∗)

1 k = 0, 1, . . .

µ̃
(k+1)
1 − µ̃

(k+1,∗)
1

∆t
= L2

(
λ(k+1)

− λ(k)

∆t

)
=
λ(k+1)

− λ(k)

∆t
µ0 k = 0, 1, . . .

M
λ(k+1)

− 2λ(k)
+ λ(k−1)

∆t2 + σ
λ(k+1)

− λ(k)

∆t
+ K pλ

(k+1)

= p(tk+1) − aXB µ̃
(k+1)
1 k = 0, 1, . . .

µ̃
(0)
1 = µ1,0, λ(−1)

= λ(0)
= λ0

(B.2)

In this scheme we first advance the state µ̃(k)
1 to an intermediate state µ̃(k+1,∗)

1 , through the operator L1. Then, we
advance from µ̃

(k+1,∗)
1 to µ̃(k+1)

1 , through the operator L2. The latter step is coupled in a monolithic manner with
the mechanics equation. We have the following result.

Proposition 5. The stabilized-staggered scheme (B.1) is equivalent to the fractional-step scheme (B.2) for the
solution of (22)2–(22)3. More precisely, the two schemes produce the same sequence λ(k), for k ≥ 0, while, for what
concerns the discretization of the variable µ1, we have µ(k)

1 = µ̃
(k,∗)
1 , for k ≥ 1.

Proof. The thesis follows from the equalities µ̃(k)
1 = µ

(k)
1 + [λ(k)

− λ(k−1)]µ0 and µ̃(k,∗)
1 = µ

(k)
1 . □

This equivalence provides a new interpretation of the stabilized-staggered scheme. Indeed, we notice that also
the standard staggered scheme (24)–(25) can be interpreted as a fractional step method, where the first step is
associated with the full operator L and the second step is associated with the operator of the mechanical problem
only. Hence, the stabilized-staggered scheme can be interpreted as a modification of the standard staggered scheme,
where the velocity-dependent part of the operator L – associated with the velocity-related feedback loop and thus
responsible for the lack of stability of the staggered scheme – is solved simultaneously with the mechanics model,
thus eliminating such instabilities. We remark that this is just an interpretation of the stabilized-staggered scheme,
in light of the equivalence shown above. In practice, one does not have to actually couple the two models in a
monolithic way: the stabilized-staggered scheme preserves its staggered feature.

Appendix C. Parameters of the distribution-moments model

In this appendix we list the values of the parameters of the distribution-moments model of Eq. (11) used in this
paper. In order to derive realistic values for these parameters, we follow the calibration pipeline that we proposed
in [43] for a generalized version of model (11).
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Indeed, we have shown that the five parameters of the model considered in [43] can be chosen so to fit five
xperimentally measurable quantities, namely the isometric force, the fraction of attached binding sites in isometric
onditions, the maximum shortening velocity, the curvature of the force–velocity relationship and the slope of the
orce–length response to fast transients.

We remark that the model considered in [43] has an additional parameter with respect to Eq. (11), that rules the
urvature of the force–velocity relationship. With the model of Eq. (11), instead, the force–velocity relationship is
lways a straight line. Hence, we calibrate the four parameters of the model of Eq. (11) by fitting the experimentally
easurable quantities listed above, except for the curvature of the force–velocity relationship. In this manner,

y employing the same data reported in [43], we obtain the following values: µ f
0 = 114.4 s−1, µ f

1 = 1.76 s−1,
= 520 s−1 and aXB = 17.727 MPa.

Appendix D. Fading-memory models

Fading-memory models [29,44–47] are based on a phenomenological description of the velocity-related effects
on the generated force. In these models, a nonlinear function of the ratio between the active tension and the isometric
tension T iso

a is set equal to an integral convolution of the past history of the strain rate λ̇ with a nonlinear kernel ϕ:

Q(Ta/T iso
a ) =

∫ t

−∞

ϕ(t − τ )λ̇(τ )dτ. (D.1)

The nonlinear kernel ϕ is set equal to a finite sum of negative exponentials:

ϕ(t) =

N∑
i=1

Ai e−αi t ,

o that the current tension is more influenced by the most recent length changes than by the earlier ones. Then, the
unction Q is defined so that the constant-velocity solution fits the Hill curve [18].

As a representative model of this family, we consider the NHS06 [29] model, which envisages five state variables:

r(t) =
(
[Ca2+]TRPN(t), z(t), Q1(t), Q2(t), Q3(t)

)T
,

here [Ca2+]TRPN denotes the concentration of [Ca2+] bound to troponin, z is fraction of available actin sites and
Q1, Q2, Q3 are the variables of the so-called fading memory model. The calcium-binding kinetics is ruled by the
ollowing ODE:

d[Ca2+]TRPN

dt
= kon

(
[Ca2+]max

TRPN − [Ca2+]TRPN
)
− koff

(
1 −

Ta

γtrpn Tref

)
[Ca2+]TRPN,

here kon and koff are the association and dissociation rates of calcium, Tref is the reference tension and γtrpn rules
he tension dependence. The fraction of available binding sites evolves according to

ż = α0

(
[Ca2+]TRPN

[Ca2+]50
TRPN(λ)

)nH

(1 − z) − αr1z − αr2
znrel

znrel + K nrel
z
,

here [Ca2+]50
TRPN, namely the calcium concentration corresponding to half-activation, is defined through

[Ca2+]50
TRPN(λ) = [Ca2+]max

TRPN
Ca50(λ)

Ca50(λ) −
koff
kon

(
1 −

1+β0λ
2 γtrpn

) ,
Ca50(λ) = Caref

50 (1 + β1λ),

(D.2)

and where α0, αr1 and αr2 are the rates of activation and relaxation (divided into slow and fast), nH and nrel are
he nonlinear activation and relaxation coefficients and β1 is a coefficient ruling the length-dependence.

The strain-dependence of the force generation mechanism is described through the following fading-memory
ormalism:

˙ ˙
Qi = Ai λ− αi Qi , i = 1, 2, 3, (D.3)
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where αi are the exponential rate constants and Ai the associated weighting coefficients (for i = 1, 2, 3). Finally,
he active tension predicted by this model is given by

Ta = Tref (1 + β0 λ)
z

zmax(λ)
K

(
3∑

i=1

Qi

)
,

where β0 is a parameter ruling the length-dependence and where we have defined the maximum activation level
associated with the strain λ as

zmax(λ) =

α0

(
[Ca2+]max

TRPN

[Ca2+]50
TRPN(λ)

)nH

− K2

α0

(
[Ca2+]max

TRPN

[Ca2+]50
TRPN(λ)

)nH

+ αr1 + K1

, (D.4)

K1 and K2 being suitable constants. The dependence of the generated force on the phenomenological variables of
the fading-memory model is defined through the following function:

K (Q) =

⎧⎪⎪⎨⎪⎪⎩
aQ + 1
1 − Q

, if Q ≤ 0,

(2 + a)Q + 1
1 + Q

, if Q > 0,
(D.5)

where the constant a controls the curvature of the force–velocity relationship and corresponds to the homonym
parameter of the Hill model (see [18]).

Hence, by formally applying Eq. (39) to the NHS06 model, we obtain the following definition for the active
stiffness:

Ka = Tref (1 + β0 λ)
z

zmax(λ)
K ′

(
3∑

i=1

Qi

)
3∑

i=1

Ai , (D.6)

where K ′ denotes the derivative of K :

K ′(Q) =
1 + a

(1 + |Q|)2 .

For the numerical discretization of the NHS06 model we consider a fully implicit scheme.

Appendix E. Distortion–decay models

In distortion–decay models [48–50], the population of attached XBs is split into a number of groups. A variable
describing the average distortion of the XBs is associated with each group, so that the generated force can be
computed as the product of the XB stiffness and the XB distortion variables, respectively weighted by the size of
each group.

For instance, in the L17 model [30], XBs are split into weakly-bound (i.e. in the pre-powerstroke configuration)
and strongly-bound (i.e. in the post-powerstroke configuration). The calcium-driven activation is described through
the variable CaTRPN(t), denoting the fraction of troponin units with calcium bound, whose evolution is described

y

dCaTRPN

dt
= kTRPN

((
[Ca2+]i

[Ca2+]50
i (λ)

)nTRPN

(1 − CaTRPN) − CaTRPN

)
, (E.1)

here kTRPN is the kinetic constant and nTRPN is the cooperativity coefficient. The half-activating calcium
oncentration depends on the strain λ through the following relationship:

[Ca2+]50
i (λ) = [Ca2+]50,ref

i + β1 min(λ, 0.2), (E.2)
where β1 is a coefficient ruling the length-dependent calcium sensitivity.
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The binding sites are split into four groups: blocked, unblocked (but without any XB attached), with weakly-
ound XB (i.e. in pre-powerstroke configuration) and with strongly-bound XB (i.e. in post-powerstroke configura-
ion). The fractions of sites in each of these groups are respectively denoted by the variables B(t), U (t), W (t) and
S(t). Their evolution is described by the following system of ODEs:⎧⎪⎨⎪⎩

Ḃ = kb (CaTRPN)−nTm/2 U − ku (CaTRPN)nTm/2 B

Ẇ = kuwU − (kwu + γwu(ζw) + kws)W

Ṡ = kws W − (ksu + γsu(ζs))S,

(E.3)

hile U (t) can be obtained as U (t) = 1 − B(t) − S(t) − W (t). In the above equations, kb and ku are the
inding/unbinding rates, nTm represents a cooperativity coefficient and kαβ (with α, β ∈ {u, w, s}) are the transition
ates among the XB configurations. Moreover, γsu and γwu represent distortion-dependent unbinding rates, that
epend on the variables ζw and ζs , denoting the average distortion of XBs in the W and S groups, respectively. The
ime evolution of these variables is described by the following distortion–decay model:{

ζ̇w = Awλ̇− cw ζw,

ζ̇s = As λ̇− cs ζs,
(E.4)

here Aw and As are the magnitude of the instantaneous response to distortion, while cw and cs are the decay rates
of distortion. The distortion-dependent unbinding rate are defined as

γwu(ζw) = γw|ζw|, γsu(ζs) =

⎧⎪⎨⎪⎩
−γs(1 + ζs), if 1 + ζs < 0
γsζs, if 1 + ζs > 1
0, otherwise.

ence, the state vector contains the following six variables:

r(t) = (CaTRPN(t), B(t),W (t), S(t), ζw(t), ζs(t))T .

inally, the generated active force is given by

Ta = h(λ)
Tref

rs
[(1 + ζs) S + ζw W ] , (E.5)

aving defined the following functions:

h(λ) = max(0, h1(min(1 + λ, 1.2))),
h1(ψ) = 1 + β0(ψ + min(ψ, 0.87) − 1.87),

nd where β0 represents a length-dependence coefficient. From Eq. (39), it follows that the active stiffness for the
17 model reads

Ka = h(λ)
Tref

rs
[As S + Aw W ] . (E.6)

For the numerical discretization of the L17 model we consider two schemes. The first one is a fully implicit scheme.
The second one is a semimplicit scheme, where we implicitly treat all the dependences, except for the variables
CaTRPN, ζw and ζs in Eq. (E.3), that are explicitly treated.

ppendix F. Physics-based models: RDQ20-MF

When we consider physics-based models of active force generations, the active stiffness Ka may be derived by
means of physics-driven considerations, similarly to what done in Section 3.2 for the distribution-moments model.
Alternatively, a formal derivation based on Eq. (39) can be employed as well.

Let us consider as an example the RDQ20-MF model, a physics-based model where the calcium-driven activation
is described within the formalism of [51], simplified by a mean-field approximation, while XB cycling is described
within the distribution-moments formalism. Specifically, the thin filament activation is modeled by considering a
triplet of consecutive regulatory units. Each regulatory unit is composed by troponin, that can be either unbound
(U) or bound (B) to calcium, and by tropomyosin, that can be either in non-permissive (N ) or in permissive (P)

αβδ,η
state. We denote by π , where α, β, δ ∈ {N ,P} and η ∈ {U ,B} the probability that the tropomyosin units of
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the triplet are in α, β and δ state, respectively, and that the central troponin unit is in state η. The time evolution
of these variables is described by the following ODE:

d
dt
παβδ,η = k̃αα|◦ ·β,◦

T παβδ,η − k̃αα|◦ ·β,◦

T παβδ,η

+ kββ|α · δ,η

T παβδ,η − kββ|α · δ,η

T παβδ,η

+ k̃δδ|β · ◦,◦

T παβδ,η − k̃δδ|β · ◦,◦

T παβδ,η

+ kηη|βC παβδ,η − kηη|βC παβδ,η,

(F.1)

where we use the notation N = P , P = N , U = B and B = U to denote opposite states, and where we set

k̃αα|◦ ·β,◦

T =

∑
ξ,ζ kαα|ξ ·β,ζ

T π ξαβ,ζ∑
ξ,ζ π

ξαβ,ζ
, k̃δδ|β · ◦,◦

T =

∑
ξ,ζ kδδ|β · ξ,ζ

T πβδξ,ζ∑
ξ,ζ π

βδξ,ζ
.

In the above equations, we denote by kηη|βC the troponin transition rate from state η ∈ {U ,B} to η, when the
corresponding tropomyosin unit is in state β ∈ {N ,P}. Similarly, we denote by kββ|α · δ,η

T the tropomyosin transition
rate from the state β ∈ {N ,P} to β, when the adjacent tropomyosin units are in state α and δ and the corresponding
roponin unit is in state η ∈ {U ,B}.

The XB cycling dynamics is described within the formalism of the H57 model, under the assumption that the total
ttachment–detachment rate is independent of the myosin distortion, so that the distribution-moments reduction can
e carried out. The population of binding sites is split into two groups, according to the state of the corresponding
ropomyosin units. Hence, we denote by µp

N and by µp
P the pth order moments of the population associated,

espectively, with non-permissive and permissive tropomyosin units. The time evolution of these moments is ruled
y the following system of ODEs:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µ̇0
P = −

(
r0 + α|λ̇| + k̃PN

T

)
µ0
P + k̃NP

T µ0
N + P µ0

fP

µ̇0
N = −

(
r0 + α|λ̇| + k̃NP

T

)
µ0
N + k̃PN

T µ0
P

µ̇1
P = −

(
r0 + α|λ̇| + k̃PN

T

)
µ1
P + k̃NP

T µ1
N + P µ1

fP
+

dλ
dt
µ0
P

µ̇1
N = −

(
r0 + α|λ̇| + k̃NP

T

)
µ1
N + k̃PN

T µ1
P +

dλ
dt
µ0
N ,

(F.2)

where we have defined the permissivity P (i.e. the fraction of units in state P) as

P =

∑
α,δ∈{N ,P}

∑
η∈{U ,B}

παPδ,η,

nd where the following terms model the fluxes among the two populations:

k̃NP
T =

∑
α,δ,η kNP|α · δ,η

T παN δ,η

1 − P
, k̃PN

T =

∑
α,δ,η kPN |α · δ,η

T παPδ,η

P
.

In the above equations, r0 denotes the total attachment/detachment rate in isometric conditions and α denotes the
velocity-dependent detachment rate coefficient. Hence, the state of this model contains 20 variables (16 variables
of the type of παβδ,η and the four distribution-moments):

r(t) =
(
πNNN ,U , πPNN ,U , . . . , πPPP,B, µ0

N , µ
0
P , µ

1
N , µ

1
P
)T
.

Finally, the active tension predicted by the model is given by

Ta = aXB χso(λ)
[
µ1
P + µ1

N
]
, (F.3)

where the single-overlap ratio χso denotes the fraction of the AF filament in the single-overlap zone (the definition
of the function χso can be found in [31]).

By formally applying Eq. (39), we get that the active stiffness is given by

Ka = aXB χso(λ)
[
µ0
P + µ0

N
]
. (F.4)
A thorough physics-based derivation, yielding the same result, can be found in [16].
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We remark that an implementation of the RDQ20-MF model is freely available in the following online repository:
ttps://github.com/FrancescoRegazzoni/cardiac-activation
or the numerical discretization of the RDQ20-MF model we consider a semimplicit scheme, as described in [31].
n this scheme, we employ an explicit treatment for the variables describing the thin-filament activation (i.e. the
ariables in the form of παβδ,η), while we implicitly treat the four moments µ0

N , µ0
P , µ1

N and µ1
P .

Similarly, the active stiffness of models belonging to the H57 family in its original form (i.e. without the
distribution-moments reduction) can be computed as

Ka =
aXB

DM

∫
+∞

−∞

n(x, t)dx . (F.5)

Another family of physics-based models is that of Markov Chain models [52–54]. In these models, a large number
of realizations of a stochastic process describing the dynamics of regulatory and contractile proteins is simulated in
parallel, and the obtained results are averaged. For these models the active stiffness can be obtained on a physical
basis, computing the total stiffness of attached XBs as the average of the realizations of the stochastic processes.
This is equivalent to computing the integral of Eq. (F.5) by Monte Carlo sampling.
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