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Milk is a foodstuff widely consumed around the world

originating from a variety of different species, animal

management and production systems. In recent years,

consumers have placed a much greater emphasis on the

authenticity and origin of some food products often willing to

pay a premium price for such products that is, for example

‘Grass-Fed Dairy’. Therefore, it is important to establish

methods to assess both quality and authentication of milk and

dairy products for increased food security and consumer

protection. Accordingly, NMR-based, GC–MS-based, and LC–

MS-based metabolomics have been established as useful tools

in the analysis of dairy products, such as raw and processed

milk. This short-review provides an updated and critical

overview on the most useful metabolomics-based platforms

and the most useful multivariate statistical tools available for

metabolomic data interpretation.
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Introduction
Milk is a complex and highly variable, nutritious food

item. There are a variety of factors that can affect the

composition, quality, and with that the functionality, of

milk and dairy products, namely cows’ diet, breed, health,

stage of lactation and parity [1]. While much research has

been carried out to examine the impact of animal traits,

farming practises and environmental factors on milk yield

and production of macro nutrients in milk such as protein,

fat and lactose, metabolomics has been gaining
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prominence for the characterisation and in some cases

quantification of low molecular weight compounds, also

referred to as metabolites, in milk [2].

Metabolomics is now an established but yet, ever evolv-

ing method of analysis widely applied to a variety of fields

of study including medicine, environmental science, agri-

culture, crop and life sciences to mention a few. In recent

years the application of metabolomics to the field of dairy

science has grown considerably with important factors

and biomarker compounds related to animal health, pro-

duction, authentication and contributors to milk techno

functional properties being reported. To date over two

thousand metabolites have been identified in milk and a

landmark study by Foroutan et al. [3��], resulted in the

development of the milk composition database (MCDB);

a freely available electronic database containing detailed

information about small molecule metabolites found in

cows’ milk www.mcdb.ca. Similarly to the macro compo-

nents, milk metabolites can be affected by a variety of

factors including, complex matrix effects [4], animal

species (e.g. cow, goat, and sheep) [5], thermal treatment

[6], cow status [7], and farming systems [8]. With a

particular focus on bovine milk, the purpose of this mini

review is to provide an introduction to the field of milk

metabolomics and highlight some insights on its applica-

tion for monitoring herd health, analysis, prediction of

techno-functional properties and authentication of milk

and dairy products.

Tools for metabolomic analysis of milk and
dairy products
The characterization of the milk metabolome is a prom-

ising approach for establishing its overall quality and

authenticity [2]. The metabolomic fingerprint of milk

and dairy products can be obtained using different tools,

namely gas chromatography/mass spectrometry (GC–

MS), NMR spectroscopy, high-resolution magic angle

spinning (HRMAS) NMR spectroscopy, liquid chroma-

tography/mass spectrometry (LC–MS), and liquid chro-

matography-tandem MS (LC–MS/MS) [2,3��,9]. These

approaches are based on different analytical instruments,

varying in terms of both sensitivity and metabolite cov-

erage. In this regard, NMR remains the most commonly

used analytical platform in milk metabolomics research

[9]. It is often chosen for its reliability and utility in
 the peer-review of this article and has no access to information regarding
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absolute quantitation; however, NMR is quite insensitive

and limited to measuring substances in micromolar to

millimolar concentrations [10]. On the other hand, MS-

based platforms (such as LC–MS and LC–MS/MS) can

identify metabolites at nanomolar to picomolar concen-

trations, allowing a much higher number of metabolites to

be detected [10,11]. Also, GC–MS is less sensitive than

LC–MS but is generally more robust and more reproduc-

ible. Therefore, GC–MS can be used to identify/quantify

the milk metabolites with higher precision and reproduc-

ibility than either NMR or LC–MS [10,12]. LC–MS and

GC–MS generate comprehensive metabolomics profiles,

particularly for small metabolites (<1�2 kDa) in complex

matrices. Obviously, each of the different methodologies

has its advantages and disadvantages, and often the

techniques complement each other. An overview on

the most important platforms to carry out milk metabo-

lomics is provided in Figure 1. However, a combined

approach including more than one instrumental approach

is the most advocated for to reach the greatest level of

metabolomic coverage [13].

Metabolomic approaches based on GC-mass and LC-

mass spectrometry

GC–MS represents one of the best platforms for meta-

bolomic analysis (mainly for volatile compounds), which

yields strong sensitivity and highly repeatable fragmen-

tation [14]. The most used spectral libraries, such as

NIST and AMDIS, allow the identification of several

biomarkers and a better understanding of subsequent

biological mechanisms or pathology alterations [15].

However, GC–MS usually requires difficult and tedious
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sample processing and derivatization when focused on

non-volatile constituents [16]. To increase the volatility

and thermal stability of the analytes, various derivatiza-

tions, such as alkylation, acylation, and silylation, can be

employed to ‘protect’ functional groups. Among these

derivatization methods, methoximation and trimethylsi-

lylation are commonly used in large-scale metabolomics

studies with GC–MS [16]. Therefore, basing on the

different efficiency in the derivatization of each metabo-

lite, the reproducibility of the overall analysis may be

affected. Besides, it should be noted that the formation of

byproducts resulting from the derivatization process may

lead to a difficult comparison between the studies avail-

able in literature.

When dealing with metabolomic approaches based on GC–

MS and LC–MS platforms, it is important to mention the

differences existing between targeted and untargeted

approaches. Overall, targeted approaches are able to iden-

tify and quantify a limited number (tens to hundreds) of

known metabolites, such as those common marker com-

pounds involved in clinical and/or technological analyses

[17��]. On the other hand, untargeted approaches focus on

acquiring the greatest amount of information, as annotating

metabolites, and reviewing both known and unknown

metabolic changes [18]. Data can be used for relative

quantification across sample groups and to provide hypoth-

eses that can be further studied and validated with targeted

approaches. There are also two commonly used approaches

fordataacquisitioninuntargetedmetabolomicsstudies; the

first one is based on full scan MS-only acquisitions to

generate accurate mass measurements for individual
ltivariate
ta analysis
d processing
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molecules (i.e. raw mass features), thus allowing multivari-

ate statistical calculations, followed by a data dependent

acquisition to drive identifications. In particular, this latter

approach generates fragmentation patterns for metabolites

exhibiting the highest signal intensity [18–20]. A second

untargetedmetabolomicsapproachisbasedontheso-called

data independent acquisition, based on integrating a full

scan MS-only acquisitionwith MS/MSfragmentationforall

precursor ions either simultaneously or in specific mass

ranges [18,21]. However, these latter methods produce

complicated fragmentation spectra and the link between

precursor and product can be difficult to decipher. In the

following data analysis steps, fragment ions are matched

with precursor ions based on retention time, mass, and drift

time. Data independent acquisitions allow fragmentation

data tobeacquiredregardlessofmetabolitesignal intensity.

For the identification step, precursor ions and correspond-

ing fragment ions (when available) are searched against

databases for metabolite assignments. Looking at avail-

able database, we can assert that Milk Composition

Database (MCDB) [3��] and Bovine Metabolome Data-

base (BMDB) [22��] represent two of the most compre-

hensive databases to work on milk metabolomics and to

provide a better understanding of bovine biology, the

micronutrients found in other bovine tissues and bio-

fluids, as well as improving veterinary care for dairy cattle.

However, it is essential to report the confidence level in

metabolite assignments, and therefore metabolite anno-

tation represents the crucial link between acquired data

and meaningful biological information [23,24]. To date,

five levels of confidence in identification have been

established; in particular, the highest confidence of vali-

dated identification (Level 1) confirms a structure with a

minimum of two independent and orthogonal data from a

pure standard compound analysed under identical ana-

lytical conditions. A lack of reference standard acquisition

but predictive or externally acquired structure evidence,

namely MS/MS data, exhibiting specific fragments or

neutral losses consistent with a specific structure would

be considered a putative identification (Level 2). Prelim-

inary identifications (Level 3) arise when accurate mass

and isotopic profiles produce tentative structures from

database searches. Therefore, it is important to consider

that a single molecular formula typically corresponds to

multiple candidate structures (e.g. isomeric compounds,

such as lipids). Finally, the molecular formula candidates

(Level 4) and de-convoluted experimental m/z features

(Level 5) characterize the less confident annotation

levels.

Metabolomic approaches based on NMR spectroscopy

Regarding non MS-based metabolomic studies, it is

important to cite the role of 1H NMR in dairy research.
1H NMR requires minimal sample preparation and

enables the detection of mobile hydrogen-containing

molecules [9,25]. Compared with LC–MS and GC–MS,
Current Opinion in Food Science 2021, 40:168–178 
one of the principal advantages of NMR spectroscopy is

the direct and quantitative relationship between molar

concentration and the intensity of the NMR resonances.

Moreover, it is a non-destructive technique; conse-

quently, the sample can be analyzed in multiple conse-

cutive experiments, or additionally be analyzed by other

analytical techniques after the NMR experiments are

performed. Besides the initial high capital costs (an

NMR spectrometer is a quite expensive instrument),

the running costs are lower compared with other techni-

ques when considering the minimal sample preparation

required [26]. Besides, in the case of milk metabolomic

applications, difficulties associated with sample size (typ-

ical of NMR applications) are rarely a problem. There-

fore, high-field 1H-NMR spectroscopy allows detection

with great efficiency of several compounds in milk,

including sugars, small organic acids, vitamins, nucleo-

tides, and aromatic compounds, thus representing one of

the best tools for milk metabolomics research [9].

Data interpretation and multivariate statistics
It is important to cite the importance of data processing

when dealing with milk metabolomics data [27]. To date,

there are various open access and commercial softwares

available for MS data processing and analysis. These tools

involve peak alignment, peak extraction, metabolite

identification, data normalization and scaling, and meta-

bolic pathway analysis by searching metabolomic data-

bases. However, there is no currently available standard-

ized software/website for MS and NMR data processing

and analysis on milk metabolomic data. In fact, as is

reviewed in literature [14], using different software, the

results can be very different, thus revealing that these

tools have a great influence on data processing and final

outcomes.

Furthermore, the already described diversity of instru-

mental approaches makes multivariate analysis techni-

ques as an essential element to analyze the collected data

and to reduce their complexity [28]. In multivariate

statistics, a data matrix X, containing n observation row

vectors of k variables each, is quite common and very few

mathematical constraints can be found to its application.

Therefore, the spectral data collected from NMR, MS, or

any other source can be used as input into the data matrix

X. The data matrix X can be immediately decomposed

using unsupervised dimensionality reduction methods,

such as principal component analysis (PCA), or it can be

paired with a matrix Y of n corresponding m-dimensional

outputs to be used in supervised dimensionality reduc-

tion, in the case of partial least squares (PLS) and orthog-

onal projections to latent structures (OPLS) regressions

[28].

Therefore, one should choose the workflow to statistically

process and analyze data according to the matrix of interest

(i.e. milk or cheese), to maximize the biological significance.
www.sciencedirect.com



New insights in milk metabolomics Rocchetti and O’Callaghan 171
To date, there are three notable softwares and websites

allowingcomprehensivemetabolomicsdataanalysis,namely

Mass Profiler Professional (from Agilent Technologies),

MetaboAnalyst (https://www.metaboanalyst.ca/) [29�], and

Maven (https://maven.princeton.edu) [30]. Accordingly,

these tools accept all data file formats from different instru-

ments (such as. d or. raw), allowing users to perform multi-

variate statistical analyses (such as unsupervised and super-

vised), togetherwithpathwayanalysisanddatavisualization.

Selection of the best multivariate statistical workflow

The selection of the best multivariate statistical workflow

is usually driven by the experimental goal and the quality

of the collected data. The initial application of unbiased

unsupervised statistics, such as hierarchical cluster analy-

sis or PCA, provides a first look of the similarities and

differences between the observation groups. Therefore,

the results of unsupervised statistical data analyses are

useful to formulate an initial biological conclusion, which

PLS or OPLS can then verify and validate in more detail,

by maximising the so-called within-group variability

[27,28].

However, before producing a reliable dataset to be further

statistically elaborated, some data pre-processing is

required, including binning, alignment, data normaliza-

tion, data scaling, and noise removal. The binning pro-

cedure is particularly useful to elaborate 1H NMR data,

considering that chemical shifts are particularly sensitive

on temperature, pH, ionic strength, and other factors

influencing their electronic environment [28]. The impre-

cisions in chemical shifts measurements might affect the

X variables of the further statistical model, thus deter-

mining a scarce separation into the PCA or PLS/OPLS

score plot. One mitigation strategy is to divide each

spectrum into bins having a lower spectral width (e.g.

0.04 ppm), then integrating signal intensities within each

bin to produce a smaller set of variables. On the other

hand, this method can hide potentially significant

changes of low-intensity peaks nearby strong signals, thus

loosing possible relevant information [28]. Therefore, in

the recent years, several alternative binning strategies

have been developed, as widely reviewed in literature

[28]. Also, full-resolution spectral signals may be compu-

tationally aligned within a dataset to remove chemical

shift variability. It has been demonstrated that OPLS-DA

more effectively copes with chemical shift variation in

full-resolution 1H NMR datasets without requiring bin-

ning or alignment steps [28]. Similar problems can be

found for GC–MS and LC–MS data, when considering

retention time and accurate mass alignments to extrapo-

late those mass features to be retained for multivariate

data analysis. However, to date, several algorithms per-

forming alignments have been introduced, thus reducing

the amount of operator intervention required for large

metabolomic datasets [31].
www.sciencedirect.com 
Data normalization and data scaling are two other impor-

tant operations to produce reliable metabolomic datasets.

Data normalization ensures that all observations are

directly comparable. It can be internally realised by using

internal standards (e.g. trimethylsilylpropanoic acid in

NMR) or using a constant-sum normalization, where each

spectrum is normalized such that its integral is 1 [28,32].

Another important approach is represented by data scal-

ing options; the standard approach is usually based on

autoscaling, which positions all variables on a comparable

scale to achieve separation of two or more groups. Accord-

ing to literature, the most commonly used data scaling

methods in metabolomics research are UV, Range, Par-

eto, Vast, and Level scaling options [28]. On the other

hand, some previous works demonstrated that data pre-

treatment is context-dependent and that no single super-

ior method actually exists, although Vast-scaling showed

the highest robustness and stability when considering

NMR and GC–MS data [33].

Finally, regarding the multivariate statistical tools com-

monly used in metabolomics research, it is important to

mention three major techniques, namely unsupervised

methods, supervised methods, and pathway analysis

[31,34]. Unsupervised methods help to discover the most

important data trends, considering that the data are not

labelled under any class, with no or little information/

assumption about the data. Being the first step in the

analysis process, unsupervised statistical approaches

assist in visualizing the data. The most common unsu-

pervised tools are represented by PCA, clustering anal-

yses, and self-organizing maps (SOM) [34]. PCA algo-

rithm can help to visualize the total variation in the

original dataset, and it is particularly useful in dimension

reduction. Most information about the dataset is retained

by the principal components (usually the first two com-

ponents) that actually replace all the correlated variables.

A score plot is used to find the groups, while a loading plot

indicates those variables that separate the groups from

each other. Similarly, clustering methods help to group

data that are similar, so that the data in one cluster are

relatable when compared with the data in another cluster.

The two most widely used clustering techniques in

metabolomics research are k-means clustering and hier-

archical clustering. In k-means clustering, the data are

divided into k-clusters that do not overlap. Unlike k-

means clustering, hierarchical clustering continues to

split all the data until a hierarchy of clusters is formed.

It is often combined with a heat map for data matrix

visualization where the different colours represent the

fold-change of each metabolite across the sample groups.

Finally, self-organizing map (SOM) is a visualization tool

that assists in visual discovery of the clusters present in

data [35].

Regarding supervised tools, these are widely used for

biomarker discovery, categorization, and prediction.
Current Opinion in Food Science 2021, 40:168–178
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These methods deal with datasets having response vari-

ables that are either continuous or discrete, finding

associations between covariates and response variables,

and providing accurate degree of predictions [31,34]. In

particular, PLS-DA and OPLS-DA are widely used in

metabolomics research for identifying biomarkers by

extrapolating the so-called variables of importance in

projection (VIP), that is, those compounds maximizing

group separations.

Finally, pathway analysis helps to find the biological

mechanisms hidden within the dataset. The two most

common methods are represented by overrepresentation

analysis (ORA) and functional class scoring (FCS) [36].

ORA is performed when the pathways differ considerably

among the two study groups. However, the limitations of

ORA are addressed by the FCS method. In particular,

single metabolite statistics are obtained first and these are

aggregated to evaluate a pathway-level statistic, either

univariate or multivariate. Most often enrichment score,

mean, and median are used for univariate pathway-level

statistics, while Hotelling’s T2 statistics is widely used for

multivariate statistics [36].

Milk metabolites for prediction of herd health
In recent years there has been an increased emphasis on

the development of methods to quickly and non-inva-

sively predict animals’ health and welfare status, which

can have important implications for production and qual-

ity of milk and dairy products. A variety of approaches

have been suggested in the past such as rapid mid-infra-

red spectrometry analysis of milk samples for prediction

of energy balance [37] and the rapid detection of somatic

cell counts (SCC) in milk has been widely used for many

years as a predictor of the presence of mastitis in the cow’s

udder. Sundekilde et al. [38] reported a significant corre-

lation between the SCC of milk and its metabolite profile,

whereby levels of lactate, butyrate, isoleucine, acetate

and ß-hydroxybutyrate increased and levels of hippurate

and fumarate decreased with increasing SCC in milk. A

number of studies have also identified a series of milk

metabolites that could potentially be used as biomarkers

of animal’s health. For example, the ratio of metabolites

glycerophosphocholine and phosphocholine detected in

milk by NMR has been highlighted as a biomarker for risk

of ketosis [39]. Furthermore, links between the milk

metabolome and energy metabolism of cows was investi-

gated by Klein et al. [40]. The authors reported biomark-

ers such as acetone and ß-hydroxybutyrate were highly

correlated with metabolic status of cows in early lactation.

Xu et al. [41] examined the milk metabolome of cows in a

status of negative energy balance and found that the

animals’ energy balance was highly corelated to several

milk metabolites including glycine, choline and carnitine.

Tian et al. [42] also highlighted a number of milk metab-

olites that could act as biomarkers of cows suffering from

heat stress, with significant differences in the milk
Current Opinion in Food Science 2021, 40:168–178 
metabolome of heat stressed cows through changes in

animal metabolism. Such studies would suggest milk

metabolomics could be a useful tool for the continuous

monitoring of herd health.

Milk metabolites for prediction of techno-
functionality
Milk metabolomics can be very useful to assess not only

milk quality, but also to predict the response of milk to

different processing strategies. An overview of the most

comprehensive works dealing with milk metabolomics for

both authenticity and quality assessment can be found in

Table 1.

The technological properties of milk are an important and

constant consideration for dairy manufacturers, in partic-

ular with seasonal milking systems, where the composi-

tion, and with that the functionality of milk, can change as

cows progress through early, mid and late stages of

lactation. These properties will impact how milk reacts

during the different stages of processing and with that

ultimately affect the efficiency of the process and quality

of the final product. Such properties can include, but are

not limited to, the heat stability of milk, acid coagulation,

and rennet coagulation properties. Sundekilde et al. [44]

on examination of the impact of the milk metabolome on

the technological properties of milk from two dairy herds,

demonstrated that the acquired metabolite profiles could

be correlated with the coagulation properties of the milks,

in particular with variation in the concentrations of citrate,

choline, carnitine and lactose. In another study, several

milk metabolites detected using NMR were correlated

with the protein content of milk and the rennet-induced

coagulation properties [49]. Namely, lactate, acetate,

glutamate, creatinine, choline, carnitine, galactose 1-

phosphate, and glycerophosphocolines were highlighted

to be different between non coagulating and well coagu-

lating milks, and these, according to the authors, could act

as quality markers for cheese milk. Similarly, Harzia et al.
[50] found that levels of the metabolites lactate, acetate,

glutamate, creatinine, choline, carnitine, and glyceropho-

sphocolines were found to be associated with non-coagu-

lating milk properties and were significantly different

between non coagulating and well coagulating milks.

Recently, Salzano et al. [58] established the utility of

GC–MS-based metabolomics coupled with mass spectral

libraries as a powerful technology platform to determine

the authenticity, thus creating a market protection, for

Mozzarella di Bufala Campana (i.e. a Protected Designa-

tion of Origin, PDO, Italian cheese). In particular, the

authors reported that both PDO milk and mozzarella

cheese were characterized by exclusive metabolites

(when compared with non-PDO products), namely talo-

pyranose, panthothenic acid, mannobiose, and 2,3-dihy-

droxypropyl icosanoate, highlighting also the impact of

PDO on the final quality of the product. Rocchetti et al.
[46��] demonstrated that the feeding system could
www.sciencedirect.com
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Table 1

Studies summarising the application of metabolomics for both authenticity and quality assessment of milk and cheese

Food matrix Metabolomic platform Statistical analysis Main findings Reference

Bovine milk 1H-NMR PLS-DA Discrimination of Friesian and autochthonous cow

milks. The discriminant metabolites were correlated to

technological property parameters.

[43]

Bovine milk LC–QQQ–MS and 1H NMR Pearson’s correlations between NMR

and LC–MS data.

Cows in negative energy balance produced more milk

with increased milk fat yield but lower concentrations

of choline, ethanolamine, fucose, N-acetyl-neuraminic

acid, i-acetyl-glucosamine, and N-acetyl-

galactosamine.

[13]

Bovine milk 1H-NMR PCA The milk metabolite profiles obtained could be

correlated to breed and also with the coagulation

profile.

[44]

Bovine milk 1H-NMR PCA Biologically fed buffaloes were characterized by larger

content of unsaturated lipids and

phosphatidylcholines.

[45�]

Bovine milk 1H-NMR PCA, PLS-DA, and OPLS-DA Strong association between milk metabolites and

somatic cell count in bovine milk.

[38]

Bovine milk UHPLC-QTOF-MS Hierarchical clustering and OPLS-DA. Untargeted metabolomics followed by multivariate

statistics discriminated bulk milk from dairy cows

following different feeding regimens.

[46��]

Raw milk from commercial dairy

plant

UHPLC-QTOF-MS PCA Metabolomics allowed to classify the oxylipids as

adequatemarkers for distinguishing UHTmilk from raw

and pasteurized milk samples.

[47�]

Ovine milk GC–MS PCA and OPLS-DA Different grazing system significantly affected the

ovine milk metabolome.

[48]

Bovine milk Ultra-fast LC-Triple TOF-MS

and 1H-NMR

Hierarchical clustering, PCA, and

OPLS-DA

A total of 53 discriminating metabolites were

significantly upregulated or downregulated in the heat

stress (HS) dairy cow group compared with the HS-

free group.

[42]

Bovine milk 1H-NMR PCA and OPLS-DA Novel correlations of milk metabolites with protein

content and rennet-induced coagulation properties

were demonstrated.

[49]

Bovine milk LC-QTRAP-MS/MS PCA and Volcano plots Milk metabolome and its coagulation potential are

affected by the lactation period of dairy cows.

[50]

Bovine milk GC-TOF-MS OPLS-DA and pathway analysis Understanding of the metabolic mechanisms affecting

milk production as resulted by forage quality.

[51]

Bovine milk 1H-NMR Hierarchical clustering and PLS-DA Discrimination of milk derived from cows following

different feeding systems, specifically between indoor

total mixed ration and pasture-based diets.

[52��]

Bovine milk 1H-NMR PLS-DA Evaluation of the bovine colostrum and milk

metabolome at the onset of lactation.

[53]

Bovine milk LC-QTRAP-MS/MS Hierarchical clustering and PLS-DA The type of bovine feeding system is able to affect the

amino acid composition and metabolome of skim milk

and whey powders and may aid in the selection of raw

materials for a better product manufacturing.

[54]
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Table 1 (Continued )

Food matrix Metabolomic platform Statistical analysis Main findings Reference

Bovine milk 1H-NMR PCA and PLS-Canonical Analysis Seasonal variations in milk composition and

correlations with cows’ nutritional patterns were

observed, showing underlining relationships between

feeding and metabolites.

[55��]

Bovine milk UHPLC-QTOF-MS PCA and OPLS-DA The metagenomic profile of milk was found to be

significantly correlated to some lysophospholipids,

with Staphylococcaceae, Pseudomonadaceae, and

Dermabacteraceae establishing the highest number of

correlations.

[56��]

Ovine milk and ‘Fiore Sardo’

cheese

GC–MS PLS-DA and OPLS-DA The metabolites that mostly changed due to the

thermization process belonged to the classes of free

amino acids and saccharides.

[57]

Buffalo milk and mozzarella

cheese

GC–MS Hierarchical clustering, PCA, and PLS-

DA

Development of a powerful technology platform to

determine the authenticity and create market

protection for ‘Mozzarella di Bufala Campana’.

[58]

Mozzarella cheese 1H-HRMAS-NMR Hierarchical clustering, PCA, and

Discriminant Analysis

This work shows that 1H HRMAS-NMR spectroscopy

can rapidly characterise the metabolic profile of intact

‘Mozzarella di Bufala Campana’ samples and

statistically distinguish the geographical origin of

buffalo milk mozzarella and its freshness.

[59]

PDO-Grana Padano cheese UHPLC-QTOF-MS Hierarchical clustering, PCA, and

OPLS-DA

The untargeted metabolomic profiles of PDO and non-

PDO Grana Padano were successfully discriminated.

[60]

Milk and yogurt samples UHPLC-QTOF-MS Hierarchical clustering and Principal

Coordinates Analysis (PCoA).

Untargeted metabolomics was successfully used to

track the molecular changes in milk and yogurt

samples, as resulting by processing technology.

[61]

Traditional and commercial dairy

products

UHPLC-QTOF-MS PCA, PLS-DA and Pathway Analysis The greatest difference between commercially

available and traditional cheese was in the short

peptide composition.

[62]

Milk and mozzarella cheese 1H-NMR PCA and PLS-DA Pasture-based dairying may be differentiated in terms

of the provenance of milk produced along with the

accrual of additional benefits during ripening of the

resulting mozzarella cheeses.

[63]

Milk and mozzarella cheese GC–MS PCA, PLS-DA, and OPLS-DA Evaluation of the metabolomic differences between

buffalo and cow mozzarella cheese. Possible

correlations between orotic acid and animal origin of

milk.

[64]
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represent one of the main factors driving raw milk com-

position, thus determining differences in both its nutri-

tional value and technological properties. In particular,

using an untargeted metabolomic approach based on

UHPLC-QTOF mass spectrometry coupled with both

unsupervised and supervised multivariate statistics, the

authors discriminated the chemical profile of bulk milk

for the production of hard cheese, collected from 103 dairy

cows following different feeding regimens, including corn

silage, hay, and a mixed ration based on fresh forage and

hay. This comprehensive approach highlighted the

importance of both feed-derived (such as phenolic metab-

olites likely related to forage) and animal-derived com-

pounds (such as fatty acids) for discrimination purposes.

In a recent work, Bellassi et al. [56��] observed intriguing

correlations between some lysophospholipids (such as

lysophosphatidylethanolamines), discriminating raw milk

from cows following a fresh forage/hay-based versus a

hay-based feeding system, and its metagenomic profile

(mainly when considering Staphylococcaceae, Pseudomona-
daceae, and Dermabacteraceae). The potential and positive

correlations observed could affect milk in the subsequent

processing stages; therefore, future research is advisable

in this field in order to better understand the chemical

behaviour of cheese during the long ripening stage.

Milk metabolites for product authentication
Metabolomics has been applied to milk to examine its

suitability for authentication of origin of source, milk

species and farming methods. O’Callaghan et al. [52��]
demonstrated the ability of 1H-NMR metabolomics cou-

pled with PLS-DA to distinguish milks from pasture and

indoor total mixed ration (TMR) based diets. A series of

metabolites were correlated with pasture derived milk as

opposed to TMR milk, including dimethyl sulfone and

hippuric acid. The authors concluded that NMR meta-

bolomics could be a useful tool in the future for verifica-

tion purposes of ‘Grass-Fed’ milk. For the purpose of

preventing food fraud, Scano et al. [12] examined the

ability of GC–MS based metabolomics to distinguish

between caprine and bovine milk. The authors reported

significant difference between the species’ milk metabo-

lomes, whereby in particular valine and glycine concen-

trations were more correlated with caprine milk, while

talose and malic acid were associated with bovine milk.

The authors also reported the method was capable of

distinguishing caprine milk which had been mixed with

different proportions of bovine milk, however, the high

levels of variability in the composition of milk from both

species present challenges to the robustness of the meth-

ods. Therefore, the high variability of milk composition

from both species need to be still elucidated to better

develop a more robust method of verification. 1H-NMR

has also be used to distinguish between sheep and cows’

milk, and mixtures of each at different levels [65]. The

authors concluded that this method, when combined with

multilinear regression and a trained artificial neural
www.sciencedirect.com 
network, could be a potential tool for the evaluation of

the composition of milk mixtures from different species.

Yang et al. [66] using an untargeted metabolomics

approach with NMR and LC–MS, demonstrated the

differences in metabolite profiles of Chinese Holstein,

jersey, yak, buffalo, goat camel and horse milk. The

authors reported that some traits were shared across some

ruminant animals such as glycerophospholipid metabo-

lism and valine, leucine and isoleucine biosynthesis,

while biosynthesis of unsaturated fatty acids was compa-

rable across the non-ruminant animals. Cross contamina-

tion of milk with colostrum has previously been reported

to cause issues with the processability of milks, as such,

O’Callaghan et al. [53] demonstrated the ability of NMR

metabolomics to distinguish between colostrum and milk

from subsequent days at the onset of lactation.

On examination of other forms of metabolites, the fatty

acid profile and levels of the pigment beta-carotene in

milk and dairy samples has been utilised for the authen-

tication of ‘Grass-Fed’ milk and dairy products. Fatty acid

profiling coupled with multivariate analysis was demon-

strated to clearly distinguish between products from

pasture and TMR feeding systems in milk [67,68], butter

[68] and cheese [69]. Magan et al. [54] used LC–MS based

metabolomics to examine the impact of cows’ diet on

skim milk and whey protein ingredients. The authors

reported significantly higher concentrations of some

metabolites, such as glutamine, valine, and phosphocrea-

tine in each ingredient type derived from TMR than

those from pasture.

The available data would suggest that metabolomics has

the potential to be used as a tool for dairy product

authentication and verification. The high variability of

milk composition resulting from a variety of factors as

previously mentioned, makes it challenging to produce a

universal authentication method. However, an increased

understanding of the factors affecting the milk metabo-

lome, namely the variability of certain metabolites

throughout early, mid and late lactation periods, should

enhance our ability to create robust testing methods and

data analysis models.

Conclusions and future perspectives
The field of metabolomic research and its application to

the agri-food sector is continuously evolving, yielding

important insights into traits of animal and food produc-

tion such as health, welfare, quality and authenticity. This

article provides an overview of the application of meta-

bolomic technologies to the field of dairy science with

important discoveries and implications for animal health,

milk quality, and authentication. A major challenge for

dairy processors today is understanding the performance

of milk throughout the processing stages and supply chain

over the production season. To date, several studies have

highlighted the presence of important biomarker
Current Opinion in Food Science 2021, 40:168–178
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compounds of milk techno-functionality. Therefore, fur-

ther research could offer prediction tools for decision

making around suitability of milks for certain processing

conditions, increasing its processability and efficiency,

and sustaining the quality of the final product. Further-

more, metabolomics has been demonstrated as a poten-

tially powerful tool for authentication of milk and dairy

products for a variety of traits including species, PDO and

‘Grass-Fed’. As more and more commodities like dairy

products appear on the market demanding a premium

price, the development of robust methods to authenticate

and validate product source and claims will be important

for the future.

Finally, herein we have provided an overview of the most

widely applied technologies for investigation of milk

metabolomics ranging from LC–MS, GC–MS and

NMR based systems. While each has their specific advan-

tages and disadvantages in terms of coverage, sensitivity

and sample preparation, a combined approach has been

advised to offer the greatest coverage and with that, more

comprehensive overview of a sample’s metabolome. The

field of milk metabolomics is still at an early stage with

important steps already taken to characterise the different

metabolites present in milk. Future research is now

required to understand the factors that affect their rela-

tive concentrations in milk and understand what implica-

tions certain metabolites can have on the processability

and nutritional value of milk and quality of final products.

Furthermore the validation of functional biomarker com-

pounds in milk and tools and programs for their rapid and

accurate detection and measurement will be important for

the future.
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