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Abstract This paper concentrates on solving fuzzy dynamical differential equations (FDDEs) by

use of unsupervised kernel least mean square (UKLMS). UKLMS is a nonlinear adaptive filter

which works by applying kernel trick to LMS adaptive filter. UKLMS estimates multivariate func-

tion which is embedded to estimate the solution of FDDE. Adaptation mechanism of UKLMS

helps for finding solution of FDDE in a recursive scenario. Without any desired response, UKLMS

finds nonlinear functions. For this purpose, an approximate solution of FDDE is constructed based

on adaptable parameters of UKLMS. An optimization algorithm, optimizes the values of adaptable

parameters of UKLMS. The proposed algorithm is applied for solving Earth energy balance model

(EBM) which is considered as a fuzzy differential equation for the first time. The method in com-

parison with the other existing approaches (such as numerical methods) has some advantages such

as more accurate solution and also that the obtained solution has a functional form, thus the solu-

tion can be obtained at each time in training interval. Low error and applicability of developed

algorithm are examined by applying it for solving several problems. After comparing the numerical

results, with relative previous works, the superiority of the proposed method will be illustrated.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

A lot of real world practical models, can be modeled as a fuzzy
differential equations (FDEs) (e.g. [7,10]). FDEs are an

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2020.06.016&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pakdaman@cri.ac.ir
mailto:ali.ahmadian@ukm.edu.my
mailto:ali.ahmadian@ukm.edu.my
https://doi.org/10.1016/j.aej.2020.06.016
http://www.sciencedirect.com/science/journal/11100168
https://doi.org/10.1016/j.aej.2020.06.016
http://creativecommons.org/licenses/by-nc-nd/4.0/


2804 M. Pakdaman et al.
appropriate tool to construct a dynamical system with fuzzy
uncertainty [54]. The first definition of fuzzy function was pro-
posed by Chang and Zadeh [12]. By employing the extension

principle [53], Dubois and Prade [15] introduced a type of
fuzzy mathematics. Two special types of fuzzy derivative for
fuzzy function were proposed by Puri and Ralescu [37] which

definition of Hukuhara difference was used in the first type
(and later extended by Kaleva [23]). Later, multiple different
definitions were extended for the solution concepts for FDEs

(e. g. [22,30,36,43,14]). Unfortunately, the Hukuhara based
definitions for fuzzy derivative has a drawback that their pro-
posed solutions have an increasing length of support. To over-
come this lack, the authors of [8,9] defined the generalized

differentiability. Based on generalized differentiability, the
length of support of solution of FDE may decreases. However,
there can be found other approaches and definitions for the

solution set of FDE (e. g. [11,30]).
There are several numerical algorithms in literature for

solving a FDE (e.g. [17,21,4]). Most of proposed numerical

algorithms are extended forms of existing related approaches
for ordinary differential equations (For example see
[5,42,31,13,35]). Based on using the extension principle,

Ahmad et.al [1] introduced an analytical and numerical
approach for solving FDEs. Lupulescu and Abbas [29] dis-
cussed about fuzzy delay differential equations. Xu et al. [48]
used a complex number representation for fuzzy system to

analyze the solution of linear fuzzy dynamical systems contain-
ing fuzzy matrices. Khastan and Ivaz [25] analyzed proposed
numerical methods along with their stability analysis for fuzzy

first-order initial value problems. It must also be mentioned
that the use of numerical methods was extended for solving
fuzzy fractional differential equations (see [32,3,38,34]).

Another group of authors tried to use the neural networks as
a powerful tool in approximation theory. Lagaris et al. [26]
proposed a method for the solution of ordinary and partial dif-

ferential equations (ODEs and PDEs), based on perceptron
neural networks. It is proved that multilayer perceptron is uni-
versal approximator [20]. The authors of this paper in [52] used
a new format of unsupervised adaptive network-based fuzzy

inference system (ANFIS) for the solution of ODEs. Widrow
and Hoff [46] introduced the least mean squares (LMS) algo-
rithm which has a wide applications in adaptive learning.

Moreover, in last decade, kernel methods are extended and
used in machine learning, such as support vector machines
and K-PCA (kernel based principal component analysis)

[40], regularization networks [18] and K-ICA (kernel based
independent component analysis) [6]). The kernel based algo-
rithms are tools for extending linear adaptive filters [6,41,45].
Pokharel et al. [27] proposed a ‘‘kernel trick” [45] to the

LMS algorithm [47,19] to study the nonlinear adaptive filters
in RKHS (reproducing kernel Hilbert spaces). This method
which is a fusion of LMS and kernel tricks is the KLMS algo-

rithm. The author of this paper in [51] applied an unsupervised
form of KLMS algorithm (which there is no desired signal
from user) for the solution of ODEs. They also in [16] pro-

posed a new approach based on neural networks, for solving
FDEs. Continuing our previous works [16,52,51,50,49], in
the current paper, we develop a KLMS approach for estimat-

ing the solution of FDEs. However, there are several impor-
tant applications of fuzzy differential equations and fuzzy
dynamical systems in real world, in this paper we focus on
Earth’s Energy Balance Model [24]. The Earth surface
temperature, which is an important parameter in climatology
and Earth climate, is determined by the global energy balance
between radiative energy coming from the Sun and radiative

energy emitted back to space by the Earth [39]. In his paper
we try to consider Earth’s Energy Balance Model as a fuzzy
differential equation.

The current paper focuses to extend the capability of
KLMS algorithm to solve FDEs. The important preliminaries
of KLMS and FDEs are presented in Section 2 and Section 3

presents the proposed new approach. Numerical examples are
solved in Section 4 which contains an application in circuit
analysis. Finally, Section 5 contains conclusions.

2. Preliminaries

2.1. Kernel least mean square

Consider an unknown system K nð Þ which must adapt the fil-

ter bK nð Þ via LMS algorithm. Suppose that we denote by
O nð Þ the desired output, y nð Þ as the input and e nð Þ as error.
Based on steepest-descent method for LMS algorithm, the

weights can be updated by using the following recursive
algorithm:

v nþ 1ð Þ ¼ v nð Þ þ 2l� e nð Þ � y nð Þ ð1Þ
Here v nð Þ and y nð Þ stand for weight vector and input vector

respectively. l is a step size. For simplicity we denote filterbK nð Þ , by K nð Þ which can be calculated by:

K nð Þ ¼ v� y nð Þ ð2Þ
For more details about LMS algorithm see [46]. In kernel

trick, Kernels approaches are used for mapping the input data
into a high dimensional space (HDS) via U functions (see
Fig. 1). Finally in a HDS to find a linear relation in data, sev-

eral methods can be employed.
The base of KLMS algorithm is using the linear LMS algo-

rithm in kernel space.

w nþ 1ð Þ ¼ w nð Þ þ 2l� e nð Þ � w y nð Þð Þ; ð3Þ
where w nð Þ is a vector containing the weights HDS. The
approximated output K nð Þ can be calculated as follows:

K nð Þ ¼ W nð Þ;w y nð Þð Þh i: ð4Þ
Based on Fig. 1 the input variable y nð Þ is transformed to an

infinite feature vector w y nð Þð Þ, whose elements are a linear
combination of infinite dimensional weight vector. We can
write (3) as the following non-recursive equation:

w nð Þ ¼ w 0ð Þ þ 2l
Xn�1

i¼0

e ið Þw y ið Þð Þ: ð5Þ

Let w 0ð Þ ¼ 0, then:

w nð Þ ¼ 2l
Xn�1

i¼0

e ið Þw y ið Þð Þ: ð6Þ

Considering (4) and (6) we have:

K nð Þ ¼ W nð Þ;w y nð Þð Þh i ¼ 2l
Xn�1

i¼0

e ið Þw y ið Þð Þ;w y nð Þð Þ
* +

¼ 2l
Xn�1

i¼0

e ið Þ w y ið Þð Þ;w y nð Þð Þh i: ð7Þ



Fig. 1 Kernel estimation system.
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Now, to calculate K nð Þ, we can apply kernel tricks as
follows:

K nð Þ ¼ l
Xn�1

i¼0

e ið Þker y ið Þ; y nð Þð Þ ð8Þ

In (8), which is the KLMS algorithm, stands for kernel
function. If we ignore e nð Þ after a number of m samples and
predict new input by using th previous error:

K nð Þ ¼ l
Xm
i¼0

e ið Þker y ið Þ; y nð Þð Þ ð9Þ

This trick discounts the difficulties of the proposed

approach. For simplicity in notation, if we replace e ið Þ in (9)
by w ið Þ , then K nð Þ can be considered as a function of x and
a vector W which contains the error items w ið Þ. Thus (9) can
be written as follows [51,52]:

K y;Wð Þ ¼ l
Xm
i¼0

w ið Þker y ið Þ; y nð Þð Þ: ð10Þ
2.2. Fuzzy set theory

Now, some requirements from fuzzy mathematics will be men-
tioned here.

Definition 2.1. (See [44])

We can denote a fuzzy number m by m;mð Þ of two
functions m rð Þ;m rð Þ : 0; 1½ � ! R which they must satisfy the

following conditions: a. m rð Þ is a function with three condi-
tions: monotonicity, boundedness, increasing (non-decreasing)
and for all r 2 0; 1ð �Þ it is a left-continuous function while for

r ¼ 0 it is right-continuous. b. m rð Þ is a function with three
conditions: monotonicity, boundedness, decreasing (non-
increasing) and for all r 2 0; 1ð �Þ it is a left-continuous function

while for r ¼ 0 it is right-continuous. c. For all r 2 0; 1½ � we
have m rð Þ 6 m rð Þ.

Also, for any two fuzzy numbers m ¼ m;mð Þ and n ¼ n; nð Þ
addition and multiplication can be defined as follows:

mþ nð Þ rð Þ ¼ m rð Þ þ n rð Þ; mþ nð Þ rð Þ
¼ m rð Þ þ n rð Þ; kmð Þ rð Þ ¼ km rð Þ; km

� �
rð Þ

¼ km rð Þ: ð11Þ
We denote by E1, the set of fuzzy numbers with the multiplica-
tion and also the addition which were defined in (11). For
0 < r � 1 , we introduce the r-cuts of fuzzy number m with

m½ �r ¼ x 2 rjm xð Þ P rf g and for r ¼ 0 the support of m is

defined as m½ �0 ¼ x 2 rjm xð Þ P 0f g .

Definition 2.2. The distance between two given fuzzy numbers

m ¼ m;mð Þ and n ¼ n; nð Þ can be defined as follows:

d m; nð Þ ¼ sup
06r�1

max jm rð Þ � n rð Þj; jm rð Þ � n rð Þj½ �f g ð12Þ

Definition 2.3. The function f : R ! E1 can be called as a fuzzy
function. If for an arbitrary fixed x̂and � > 0 there exists a
d > 0 such that:

jx� x̂j < d ) d f xð Þ; f x̂ð Þð Þ < � ð13Þ
then f is said to be continuous.

Definition 2.4. If there exists a fuzzy number u 2 E1, for

m; n 2 E1, such that m ¼ nþ u then u is said to be the H-
difference of m and n which is denoted by m� n.

Definition 2.5. (see [2]) A fuzzy function G : a; bð Þ ! E1 is
called differentiable at x̂ 2 a; bð Þ if there exist an element

G0 x̂ð Þ 2 E1 such that:

(I) for all h > 0 sufficiently small, the H-differences
G x̂þ hð Þ � G x̂ð Þ , G x̂ð Þ � G x̂� hð Þ exist and:

lim
h!0þ

d
G x̂þ hð Þ � G x̂ð Þ

h
;G0 x̂ð Þ

� �
¼ lim

h!0þ
d

G x̂ð Þ � G x̂� hð Þ
h

;G0 x̂ð Þ
� �

¼ 0: ð14Þ

(II) for all h > 0 sufficiently small, the H-differences
G x̂ð Þ � G x̂þ hð Þ and G x̂� hð Þ � G x̂ð Þ exist and:

lim
h!0þ

d
G x̂ð Þ � G x̂þ hð Þ

h
;G0 x̂ð Þ

� �
¼ lim

h!0þ
d

G x̂� hð Þ � G x̂ð Þ
h

;G0 x̂ð Þ
� �

¼ 0: ð15Þ

In this situation, G0 x̂ð Þ is called the type-I and type-II fuzzy
derivative of G at x̂ respectively.

Theorem 2.1. (see [2]) Let G : a; bð Þ ! E1 and suppose that

G xð Þ½ �r ¼ G x; rð Þ;G x; rð Þ� �
for r 2 0; 1½ �.
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(i) If G is (I)-differentiable at all x 2 a; b½ � then GL x; rð Þ and
GR x; rð Þ are differentiable functions and we have G0 xð Þ½ �r ¼
G0 x; rð Þ;G0 x; rð Þ� �

.

(ii) If G is (II)-differentiable at all x 2 a; b½ � then GL x; rð Þ
and GR x; rð Þ are differentiable functions and we have

G0 tð Þ½ �r ¼ G0 x; rð Þ;G0 x; rð Þ� �
.

2.3. Fuzzy differential equations

After introducing a first order FDE, to show the importance

and applicability of FDEs we will discuss about some applica-
tions in this section. A first order FDE can be denoted as fol-
lows (see [33]):

x0 tð Þ ¼ G t; xð Þ; t 2 t0;T½ �
x t0ð Þ ¼ x0;

�
ð16Þ

where x0 is a fuzzy number, x is a fuzzy function of crisp vari-
able t and also, G t; xð Þ can be considered as a fuzzy function.
Here x0 denotes fuzzy derivative (based on Definition 2.5) of x.

For more details about the sufficient conditions for the exis-
tence and uniqueness of solution to Eq. (16), see [23]. These
conditions can be expressed as follows:

� G is continuous
� G should satisfy the Lipschitz condition d G t; xð Þ;G t; yð Þð Þ 6
Md x; yð Þ for some M > 0 (x; y 2 E1).

If we suppose that G is (I)-differentiable, then system (16) can
be replaced by the following equations:

x0 t; rð Þ ¼ G t; xð Þ ¼ L t; x; xð Þ; x t0; rð Þ ¼ x0 rð Þ
x0 t; rð Þ ¼ G t; xð Þ ¼ U t; x; xð Þ; x t0; rð Þ ¼ x0 rð Þ

�
ð17Þ

where

G t; xð Þ ¼ min G t; uð Þju 2 x rð Þ; x rð Þ½ �f g
G t; xð Þ ¼ max G t; uð Þju 2 x rð Þ; x rð Þ½ �f g

�
ð18Þ

Thus, the parametric form of (17) is as follows:

x0 t; rð Þ ¼ L t; x t; rð Þ; x t; rð Þð Þ; x t0; rð Þ ¼ x0 rð Þ
x0 t; rð Þ ¼ U t; x t; rð Þ; x t; rð Þð Þ; x t0; rð Þ ¼ x0 rð Þ

�
ð19Þ

where t 2 t0;T½ � and r 2 0; 1½ �. Now we select some points
ti; i ¼ 1; 2; . . . ;m from the interval t0;T½ �. Thus for any

ti 2 t0;T½ �, Eq. (19) must satisfied as follows:

x0 ti; rð Þ � L ti; x ti; rð Þ; x ti; rð Þð Þ ¼ 0;

x0 ti; rð Þ �U ti; x ti; rð Þ; x ti; rð Þð Þ ¼ 0;

�
ð20Þ

along with the initial conditions:

x t0; rð Þ ¼ x0 rð Þ
x t0; rð Þ ¼ x0 rð Þ

�
ð21Þ

for 0 6 r � 1. In next section, we try to solve (20) with a
method based on KLMS approach. Note that type(II) differ-
entiability similarly can be considered.

3. New method

In the current section, we use (10) as the main part of the trial

solutions for FDE. We employ (10) as an approximator for the
solution of FDE (20). To solve ((19)) it is enough to find the
solution x t; rð Þ ¼ x t; rð Þ; x t; rð Þð Þ of system (20). For this pur-
pose first we introduce the trial solutions xT t; r;wð Þ and
xT t; r;wð Þ for x t; rð Þ and x t; rð Þ respectively. These trial solu-

tions have this property that satisfy the initial conditions and
have parameters which can be adjusted so as they also satisfy
the FDE (20). Indeed we use the terms w ið Þ in (10) as the adjus-

table parameters of the trial solutions. Now to solve (20) by
using KLMS, we propose the following trial solutions:

xT t; r;wð Þ ¼ x t0; rð Þ þ t� t0ð ÞK t; r;wð Þ;
xT t; r;wð Þ ¼ x t0; rð Þ þ t� t0ð ÞK t; r;wð Þ;

�
ð22Þ

where xT t; r;wð Þ and xT t; r;wð Þ are the trial solutions for x t; rð Þ
and x t; rð Þ respectively. K and K are KLMS parts in the follow-
ing forms:

K t; r;wð Þ ¼ l
Xn�1

i¼0

w ið Þker ti; tð Þ

K t; r;wð Þ ¼ l
Xn�1

i¼0

w ið Þker ti; tð Þ:

8>>>><>>>>: ð23Þ

As we can see, the KLMS parts K and K, contain appropri-

ate kernel functions ker and ker which can be different. Here
w ¼ w0;w1; . . . ;wn�1ð Þ and w ¼ w0;w1; . . . ;wn�1ð Þ are error vec-
tor as in (10). Based on this approach, each trial solution
xT t; r;wð Þ and xT t; r;wð Þ in (22), is contained of two parts.
The first term is for satisfaction in the initial conditions and
has no adaptable parameters. The second part, contains of

KLMS functions which the errors vector w;wð Þ must be
adapted such that the trial solutions satisfy (22). By this
approach, the error vector W ¼ w;wð Þ must be adapted such

that xT t; r;Wð Þ ¼ xT t; r;wð Þ; xT t; r;wð Þð Þ satisfies the FDE in
(16) with related initial values. Based on (22) we have:

x0
T t; r;wð Þ ¼ K t; r;wð Þ þ t� t0ð Þ @

@t
K t; r;wð Þ;

x0
T t; r;wð Þ ¼ K t; r;wð Þ þ t� t0ð Þ @

@t
K t; r;wð Þ;

(
ð24Þ

where

@
@t
K t; r;wð Þ ¼ l

Xn�1

i¼0

w ið Þ @
@t
ker ti; tð Þ;

@
@t
K t; r;wð Þ ¼ l

Xn�1

i¼0

w ið Þ @
@t
ker ti; tð Þ;

8>>>>><>>>>>:
ð25Þ

Now to solve (15) first, we discretize interval t0;T½ � into m
equal parts and propose the following optimization problem:

min
W

w Wð Þ ¼
Xm
i¼1

x0
T ti; r;wð Þ � F ti; x ti; r;wð Þ; x ti; r;wð Þ½ �� �2n

þ x0
T ti; r;wð Þ � G ti; x ti; r;wð Þ; x ti; r;wð Þ½ �� �2o ð26Þ

Substituting (24) and (25) in (26), it can be rewritten in the

following form:

min
W

w Wð Þ ¼
Xm
i¼1

K ti; r;wð Þ þ ti � t0ð Þ @
@t

K ti; r;wð Þ
��

� F ti; x ti; r;wð Þ; x ti; r;wð Þ½ �
�2

þ K ti; r;wð Þ þ ti � t0ð Þ @
@t

K ti; r;wð Þ
�

� G ti; x ti; r;wð Þ; x ti; r;wð Þ½ �
�2	

ð27Þ



Fig. 2 Exact and approximated solution of Example 4.1 at

x ¼ 1.
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The optimization problem (27) is unconstrained. Thus to solve

it, we can employ any optimization algorithm such as conju-
gate gradient, steepest descent method or quasi Newton meth-
ods. Also, we can employ any heuristic algorithm such as

Genetic Algorithm or Particle Swarm Optimization algorithm.
Here, we used a Quasi-Newton method (BFGS algorithm)
which is quadratically convergent (see [28]). After termination
of the optimization section, we can replace the optimal value of

vector in (22). Finally, the trial solution (22) is the approxi-
mated solution of (16). In the following remark, we discuss
about the motivation and the advantages of using KLMS as

a tool for solving FDEs.

Remark 3.1. Comparing the obtained results in KLMS
approach in Section 4, with existing numerical algorithms,
illustrates the accuracy of the method. One important property

of obtained solution in KLMS approach is that the proposed
solution is a smooth function. If we need to calculate the
derivatives or integral of the final solution of FDE, we can

calculate them directly without using numerical methods. In
comparison with neural network methodology [16], we must
mention that in KLMS approach we just use one type of

weights (vectorW ¼ w;wð Þ) and the number of weights are less
than the weights of neural networks (which have at least three
types of weights: input and output layers weights and bias
weights). Finally the method has a flexibility that can be

adopted to solve several types of the FDE (e.g. we can change
the number of points for training, as well as the number of
adjustable parameters wi, or we can change the kernel

function). Also we can use several optimization algorithms
to obtain more accurate results or the number of iterations of
the optimization step can be increased.

Remark 3.2. In (23) we can use any well-known kernel func-
tion. In this article we used the Gaussian kernel function with
the following formula:

ker a; bð Þ ¼ exp
jja� bjj2
�2r2

 !
ð28Þ

We can use other kernel functions.

Remark 3.3.

The proposed method is capable for applying other types
and definitions of fuzzy derivatives. In this case we may change
system (20) for other definitions of fuzzy derivative.
Table 1 Numerical results for different values of r for

Example 4.1 at x ¼ 1.

r KLMS Output NN Output [16]

Lower Upper Lower Upper

0 9.044042e�07 3.379464e�07 8.895270e�5 6.003329e�5

0.2 3.914999e�06 1.457328e�05 4.693243e�5 2.582699e�5

0.4 1.147732e�05 1.508659e�05 4.739291e�6 3.384699e�5

0.6 1.219494e�05 1.423798e�05 2.827934e�5 4.194040e�5

0.8 1.444412e�06 1.450936e�05 9.712388e�5 3.025500e�5

1 2.620011e�06 1.498573e�05 5.574679e�5 2.787937e�5
4. Numerical simulations

For the sake of illustrate, four problems will be discussed
and solved here. For all problems the training intervals
are discretized to 20 identical sections. For minimizing the

performance function in (25), we used MATLAB8 opti-
mization toolbox by using BFGS algorithm. For each
example we compared the numerical results with other

existing algorithms and illustrated the advantages. Note
that to attain a more exact solution we can use more grid
points or a greater number of weights and change the opti-

mization algorithm.
Example 4.1. Consider the following FDE:

y0 xð Þ ¼ y xð Þ; x 2 0; 1½ �
y 0ð Þ ¼ 0:75þ 0:25r; 1:125� 0:125rð Þ

�
ð29Þ

Exact solution for x ¼ 1 is y 1; rð Þ ¼ 0:75þ 0:25rð Þe;ð
1:125� 0:125rð Þe, where r 2 0; 1½ �. According to (22) the con-
structed trial solutions are as follows:

yT x; r;wð Þ ¼ 0:75þ 0:25rþ xK x; r;wð Þ;
yT x; r;wð Þ ¼ 1:125� 0:125rþ xK x; r;wð Þ;

(
ð30Þ

The approximated solution of Example 1, for x ¼ 1 and
several values for r, is depicted in Fig. 2. Error for x ¼ 1 is
shown in Table 1. In Table 1, The KLMS numerical results

are compared with neural network method [16]. Note that in
neural network algorithm, the number of weights are more
that KLMS algorithm, thus the optimization step is longer
that KLMS optimization step.

Example 4.2. Consider the following fuzzy initial value
problem:

x0 tð Þ ¼ 3t2x tð Þ; t 2 0; 1½ �
x 0ð Þ ¼ 0:5

ffiffi
r

p
; 0:5þ 0:2

ffiffiffiffiffiffiffiffiffiffiffi
1� r

p� �(
ð31Þ

For t ¼ 1, Fig. 3 depicts the final approximated solution. Also
the details of numerical computations are illustrated in Table 2.

(see Fig. 4)



Table 3 Comparison of our numerical results with the results

in [1] for Example 4.3, at t ¼ 4.

r KLMS Output Error of numerical

method [1]

Lower Upper Lower Upper

0 4.902254e�04 5.374543e�03 0.0140 0.3029

0.2 1.537021e�03 9.638080e�03 0.0429 0.2740

0.4 2.144774e�03 4.556884e�03 0.0718 0.2451

0.6 5.627119e�03 8.982244e�03 0.1007 0.2162

0.8 3.991684e�03 6.074451e�03 0.1296 0.1873

1 3.529961e�03 4.498548e�03 0.1584 0.1584

Fig. 5 Approximated solution of Example 4.4 at t ¼ 1.

Fig. 3 Exact and approximated solution of Example 4.2 at t ¼ 1.

Fig. 4 Exact and approximated solution of Example 4.3 at t ¼ 4.

Table 2 Numerical results for different values of r for

Example 4.2 at t ¼ 1.

r KLMS Output NN Output [16]

Lower Upper Lower Upper

0 5.841994e�12 3.316067e�06 3.787978e�7 3.798493e�4

0.2 8.063511e�06 1.3979e�06 1.213900e�4 1.427181e�3

0.4 8.802233e�06 1.1875e�06 7.511922e�4 2.649743e�4

0.6 4.796803e�06 1.0540e�06 6.748295e�5 2.935789e�5

0.8 6.757338e�06 9.025472e�06 1.773549e�5 4.297191e�4

1 4.467423e�06 7.162632e�06 2.244555e�6 3.295712e�4
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Example 4.3. Consider the following FDE:

x0 tð Þ ¼ 0:5x tð Þ þ 2sin tð Þ; t 2 0; 4½ �
x 0ð Þ ¼ �1þ r; 1� rð Þ

�
ð32Þ

Final solution for t ¼ 4 is calculated in [1]] for several values of

r via a numerical algorithm. Our results and the numerical
results from [1] are compared in Table 3.

Example 4.4. The classical energy balance model (EBM) can

be expressed as follows [24]:

C
dT

dt
¼ Ein � Eout; ð33Þ
where, Ein is the average amount of solar energy reaching one
square meter of the Earth’s surface per unit time and similarly,
Eout is the average amount of energy reflected by one square

meter of the Earth’s surface and released into the stratosphere
per unit time [24]. C ¼ 2:912 is the averaged heat capacity of
the Earth/atmosphere system. The basic form of the EBM

(33) is in the following form [24]:

C
dT

dt
¼ 1� að ÞQ� rT4; ð34Þ

where T is the earth surface temperature, r is the Stefan’s

constant, r ¼ 5:67� 10�8 W m�2 K�4. Time (t) is in year

and Q ¼ 342 W=m2 is the annual global mean incoming solar
radiation per square meter of the Earth’s surface and finally,

a is albedo which is a dimensionless parameter. Based on sev-
eral physical reasons such as global warming, greenhouse
gases and imprecise initial values, the earth surface tempera-

ture T is not a crisp function and has uncertainty. In this
case, if we consider the earth surface temperature T as a
fuzzy function of time, then Eq. (34) can be rewritten as

follows:

C
dT

�

dt
¼ 1� að ÞQ� rT

�
4;T

�
0ð Þ ¼ T

�
0: ð35Þ

which is a fuzzy initial value problem and can be solved by
proposed algorithm. For a ¼ 0:7 the final fuzzy solution

T
�
1ð Þ, which is a fuzzy number, is depicted in Fig. 5.
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5. Concluding remarks

This paper developed a new method with a kernel least mean
square structure, to approximate the solution of fuzzy differen-

tial equations. Here we used an optimization technique to
adjust the parameters of KLMS. The proposed algorithm
was evaluated by solving four problems and the final results

compared with the other algorithms. Numerical results show
that the method in comparison with the other numerical meth-
ods has more accuracy ([41,44]). Also in comparison with our
previous paper (which was based on neural networks [36]), the

structure of the trial solution is more simple, for example, here
we don’t need the vector of bias weight or a weight vector for
output and input data (which they are used in neural networks

models). As future works, this method can be applied to solve
higher order FDEs and fuzzy integral equations. To attain
more accurate solutions, we can use more points in the pro-

posed interval, change the kernel functions or employ other
existing optimization algorithms. Work is in progress to apply
the method for solving n-order FDEs as well as for partial

FDEs.
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