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Abstract
Purpose  Life-threatening ventricular arrhythmias (VA) are a major cause of death in patients with congestive heart failure 
(HF). Among various factors, the sympathetic nervous system may give rise to VA in several pathophysiological pathways 
due to an impaired function of presynaptic sympathetic nerve terminals. Positron emission tomography (PET) with labeled 
catecholamine analogues represents a reliable tool to assess the sympathetic innervation activity. This review aims at sum-
marising the most relevant and recent literature findings on the current role of PET in the evaluation of cardiac sympathetic 
activity in patients with heart failure.
Methods and Results  A comprehensive literature search strategy using PubMed databases was carried out looking for articles 
on the role of Positron emission tomography/Computed Tomography (PET/CT) in the assessment of myocardial sympathetic 
innervation in patients with heart failure. The literature search limited to the last 5 years retrieved 40 papers. Most of the 
papers dealt with PET studies with 11C-HED. 19 pre-clinical, first-in-human and clinical studies highlighting the current 
role of PET and future perspectives resulted eligible for inclusion in the present review.
Conclusion  The assessment of myocardial sympathetic activity in patients with heart failure with PET will play a pivotal role 
in clinical practice. Its capability to predict the occurrence of life-threatening VA and the effectiveness of resynchronization 
therapy makes this technique ideal in the era of personalized medicine.

Keywords  Positron emission tomography · Myocardial sympathetic innervation · Heart failure

Introduction

Life-threatening ventricular arrhythmias (VA) are a major 
cause of death in patients with congestive heart failure (HF). 
Although impaired left ventricular ejection fraction (LVEF) 
remains the primary criterion for implantable cardioverter-
defibrillator therapy to prevent sudden cardiac death, it still 
has low sensitivity and specificity for the population at risk 
[1].

As such, it is mandatory to identify other variables with 
prognostic value to predict the occurrence of VA.

The sympathetic nervous system may give rise to VA 
through  several pathophysiological pathways including 
increased global sympathetic activity and regional cardiac 
sympathetic denervation resulting from ischemia, hiber-
nation, or infarction [2]. In fact, an impaired function of 
presynaptic sympathetic nerve terminals is considered to 
reflect impaired reuptake and thus impaired removal of the 
neurotransmitter from the synaptic cleft [3], resulting in 
overexposure of the myocardium to catecholamines and in 
a pre/post-synaptic signaling imbalance [4].

Radionuclide imaging techniques, with Single-Photon 
Emission Computed Tomography (SPECT) and Positron 
Emission Tomography (PET) imaging, using radiolabeled 
catecholamines, have been successfully used to identify 
global and regional impairments of sympathetic nerve ter-
minals in the myocardium and their contribution to disease 
development and progression.
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The most widely available tracer to assess cardiac sym-
pathetic innervation using SPECT imaging is currently 
Iodine-123-labeled metaiodobenzylguanidine (123I-MIBG) 
[5–7]. Many studies have demonstrated that cardiac uptake 
of 123I-MIBG is reduced in individuals with heart failure 
and indicate that 123I-MIBG can be used as an independent 
predictor of heart failure progression and cardiac mortality 
[7–9]. Unfortunately, 123I-MIBG imaging suffers from evi-
dent limitations, mainly due to the fact that its main prog-
nostic parameters, i.e., the heart-to-mediastinum ratio and 
the cardiac washout rate, are generally derived from planar 
scans of the chest, thus allowing only a semiquantitative 
evaluation of the global activity of sympathetic innerva-
tion [10]. Hence, PET may be a preferred technique, able 
to provide also a regional evaluation of the cardiac sym-
pathetic innervation activity, which is considered to have 
a higher impact on clinical practice [11].

We present here the most relevant and recent literature 
findings, highlighting the current role of PET in the evalu-
ation of cardiac sympathetic activity in patients with heart 
failure.

Materials and methods

Search strategy

A comprehensive literature search strategy using Pub-
Med databases was carried out looking for articles on 
the role of Positron emission tomography/Computed 
Tomography (PET/CT) in the assessment of myocardial 
sympathetic innervation in patients with heart failure. The 
string used for the search included a combination of the 
terms: ‘myocardial sympathetic innervation’, ‘heart fail-
ure’, ‘myocardial PET imaging’, ‘radiolabeled catechola-
mines’, ‘11C-hydroxyephedrine’, ‘sudden cardiac death’, 
‘regional denervation’, ‘myocardial infarction’. The search 
was extended to all radiopharmaceuticals tracing myocar-
dial sympathetic innervation. The search was updated until 
October 2017 and was limited to the previous 5 years, tak-
ing into consideration only original papers published in 
English. The reason for this choice is that the large amount 
of references suggested limiting the search to the most 
recent findings, which were nevertheless reported in rela-
tion to previously published material. The references of 
the retrieved articles were also checked so as not to miss 
important clinical studies.

Review articles, articles not in the field of interest, sin-
gle/double case reports, and commentaries were excluded. 
Papers on future perspectives in the field and experimental 
data were also considered eligible.

Study selection

Only original articles were selected in the systematic review 
according to the following inclusion criteria: a) evaluation 
of the role of PET in the assessment of cardiac sympathetic 
innervation in patients with heart failure and b) a minimum 
sample size of ten patients (in order to minimize the publica-
tion bias). Two researchers (C.E.P. and F.C.) independently 
reviewed the titles and the abstracts of the retrieved litera-
ture, selecting relevant articles according to the inclusion 
criteria mentioned above. Disagreements were resolved in 
a consensus meeting.

Results

The initial literature search revealed 142 papers published 
in the past 25 years. From a first check, considering only the 
articles of the previous 5 years, 40 out of 142 articles were 
selected. Applying the selection criteria, 21 of the 40 papers 
were excluded (11 reviews, 5 commentaries and letters, 5 
papers not relevant for the aim of the study). Finally, 19 
articles resulted eligible for the inclusion in this review. Spe-
cifically, 15 papers described clinical studies, while 4 were 
preclinical/experimental. The characteristics of all included 
articles are shown in Table 1.

PET: radiolabeled tracers in the assessment 
of myocardial sympathetic innervation

The assessment of sympathetic innervation using PET may 
have incremental value in evaluating the arrhythmic sub-
strate [12]. The superior spatial resolution of PET allows for 
a more detailed assessment of regional sympathetic inner-
vation and innervation/perfusion mismatch areas. Also, 
dynamic imaging protocols enable absolute quantification 
of sympathetic nerve retention of tracers [13]. In addition, 
dependent on specific characteristics of the tracer used, sev-
eral biological aspects of the cardiac neuronal function can 
be visualized [14].

11C‑hydroxyephedrine (HED)

To date, the most commonly used and studied tracers 
for PET imaging is the norepinephrine (NE) analogue 
11C-hydroxyephedrine (HED). Similarly to 123I-MIBG, 
11C-HED shows high affinity for presynaptic NE uptake-1 
allowing the visualization of presynaptic sympathetic 
nerve function [15, 16]. 11C-HED uptake is commonly 
quantified via a retention index, which is defined as the 
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ratio of the activity in the myocardium in the final image 
of a 40- or 60-min dynamic sequence to the integral of 
the image-derived arterial blood-time activity curve [17]. 
Recent studies found a close correlation between 11C-HED 
retention index and late 123I-MIBG heart-to-mediastinum 
rate [15, 18]. In addition, by calculating the influx rate 
(K1) from blood to myocardium of 11C-HED scan, Harms 
et al. [19] recently demonstrated, in a study including 17 
patients with known ischemic cardiomyopathy, the fea-
sibility of assessing perfusion and innervation defects to 
evaluate mismatch areas using a single dynamic 11C-HED 
PET scan. Moreover, in patients with ischemic or dilated 
cardiomyopathy, absolute quantification of 11C-HED kinet-
ics can be performed noninvasively, enabling a more com-
prehensive analysis of sympathetic innervation without 
arterial cannulation [20].

Animal studies suggest that non neuronal uptake can 
vary between 123I-MIBG and 11C-HED [21]. Specifically, 
11C-HED appears to have significantly less extraneuronal 
uptake and higher resistance to degradation by metabolic 
enzymes. These features make the detection of regional 
variations in myocardial sympathetic innervation more 
robust using 11C-HED. The potential impact of this tracer 
in translational cardiovascular imaging has been elegantly 
shown in a recent paper, wherein higher susceptibility of 
sympathetic neurons compared to myocytes was confirmed 
in a rat model of myocardial transient ischemia (Fig. 1). 
Specifically, the authors reported a denervated zone larger 
than the perfusion defect, thus identifying a peri-infarct 
susceptibility area at increased risk to trigger VA. Inter-
estingly, partial reinnervation was observed in the chronic 
phase as shown by recovery of subepicardial 11C-HED 
uptake, thus highlighting a crucial role of the therapy [22].

Other tracers

11C-epinephrine (EPI), A tracer that also evaluates cardiac 
sympathetic innervation [23], was mainly been employed in 
pre-clinical research [24, 25], but may be considered supe-
rior to HED, since it traces the entire pathway of catecho-
lamine uptake, metabolism, and vesicular storage. Münch 
et al. directly compared EPI to HED in a study performed 
in healthy volunteers and patients after heart transplantation 
[26]. Interestingly, retention of EPI was higher than that of 
HED in normal hearts, but retention of EPI was lower than 
that of HED in transplanted (denervated) hearts, presumably 
reflecting lower non-specific uptake. Thus, EPI might have 
inherently higher sensitivity to detect changes in sympathetic 
innervation of the heart. Sasano et al. [27] also showed that 
the extent of viable but denervated myocardium quantified 
with 11C-EPI and 13NH3 PET was associated with inducible 
ventricular tachicardias (VTs) in a porcine model. Impor-
tantly, the area of denervated but viable myocardium was 
related to the site of initiation of the induced VTs as well as 
decreased endocardial voltage obtained by voltage mapping.

In addition, the uptake of multiple presynaptic tracers was 
explored in viable but denervated myocardium in a simi-
lar porcine myocardial infarction model [28]. In the viable 
infarct border zone, neuronal vesicular catecholamine stor-
age and protection from metabolic degradation are more 
severely altered than catecholamine uptake. This alteration 
may reflect an intermediate state between normal innerva-
tion and complete denervation in advanced disease [28].

11C-phenylephrine (PHEN) is a substrate for monoamine 
oxidase (MAO) and is thought to be useful in the assessment 
of vesicular leakage [29]. In a validation study of PHEN, 
which was compared to HED in healthy humans, the two 

Fig. 1   In vivo serial PET scan using 11C-HED and 18F-FDG in a 
rat model of myocardial transient ischemia. 11C-HED uptake defect 
(arrows) was observed only after ischemia. Myocardial viability per-
formed with 18F-FDG was preserved at the 11C-HED defect zone. 

The 11C-HED uptake at 1 week demonstrated reduction at month 2. 
Reprinted with permission of Springer from Werner et al. Eur J Nucl 
Med Mol Imaging. 2016;43:312-8 [22]
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tracers gave initial uptake images of similar quality and uni-
formity, although PHEN showed much faster washout. This 
property of PHEN allows the calculation of storage half-life, 
which can provide additional useful information about the 
functional integrity of the cardiac sympathetic innervation 
[30].

To overcome the limitations related to the use of radio-
nuclides with a short half-life, tracers labeled with Fluo-
rine-18 have been studied. Due to the longer half-life of 
Fluorine-18 (110 min), they can be distributed to centers 
that do not have an on-site cyclotron. Moreover, clinical 
imaging with 18F labeled tracers present more flexibility in 
the study design for the assessment of regional myocardial 
sympathetic activity.

The development of Fluorine-18–labeled radiopharma-
ceuticals is essential for a broader dissemination of sympa-
thetic innervation imaging by PET in clinical practice. In this 
regard, 18F-LMI1195 has been developed to overcome the 
limitations of conventional tracers and presents similarities 
with 123I-MIBG based on its benzylguanidine structure [31]. 
Preliminary studies suggest that 18F-LMI1195 is stored and 
released similarly to norepinephrine in the nerve terminals 
[31, 32]. The relationship between myocardial denervation 
and sudden cardiac death (SCD), along with the potential for 
an effective Fluorine-18-labeled tracer suggest the potential 
for 18F-LMI1195 to help identifying high-risk patients for 
SCD and guide resynchronisation therapy [33]. In the first-
in-human preliminary description of 18F-LMI1195, Sinusas 
et al. suggest that the tracer is well tolerated and yields a 
radiation dose comparable to that of other commonly used 
PET radiopharmaceuticals. The kinetics of myocardial and 
adjacent organ activity suggests that cardiac imaging should 
be possible with acceptable patient radiation dose [34].

Two additional  radiopharmaceuticals, i.e., 18F–4F-
MHPG and 18F–3F-PHPG, were proven in animal models 
to yield accurate quantitative measures of regional nerve 
density along with a favorable heart-to-liver ratio. Initial 
biological studies demonstrated a slow uptake and longer 
retention time in sympathetic neurons, suggesting that these 
radiotracers may have the potential to show slight cardiac 
innervation impairment. A major advantage of these two 
tracers is the intrinsic potential for a robust absolute quanti-
fication of the myocardial uptake, as highlighted by a recent 
first-in-human study [35].

PET with 11C-CGP12177 has been employed to image the 
postsynaptic side of the adrenergic system [15, 32]. Reduc-
tion of myocardial β-adrenoreceptor density, as measured 
by 11C-CGP12177, has been shown in patients with dilated 
cardiomyopathy and it has been related to the severity of HF 
[36]. Furthermore, myocardial β-adrenergic receptor den-
sity predicted improvement of cardiac function by carvedilol 
treatment, whereas cardiac contractile reserve as assessed by 
dobutamine stress echocardiography did not [37].

PET in clinical studies

The occurrence of inhomogeneity in myocardial sympa-
thetic denervation can be related to myocardial infarction 
and may create a myocardial substrate particularly vulner-
able to arrhythmic death [38, 39].

In addition, also reversible ischemia (from angina or 
silent ischemia) can cause an inhomogeneity in myocardial 
sympathetic innervation, occurring in both stunned and 
hibernating myocardium [40]. In pre-clinical models of 
hibernating myocardium, there is evidence of an increased 
risk of arrhythmic death from spontaneous ventricular tach-
ycardia (VT)/ventricular fibrillation (VF), which is often 
unrelated to infarction and heart failure [38, 41, 42]. In this 
regard, PET imaging with 11C-HED accurately demonstrates 
extensive sympathetic denervation [43, 44].

Fujita et al. [45] demonstrated in a retrospective analy-
sis of observational study that low global 11C-HED reten-
tion is a marker of poor overall survival in patients with LV 
dysfunction.

Recently, PET with 11C-HED was employed to quan-
tify the extent of regional sympathetic denervation and 
predict the risk of SCD in candidates for a primary pre-
vention implantable cardioverter defibrillator (ICD) with 
ischemic cardiomyopathy [40, 43, 46]. In the prospective 
PAREPET observational cohort study, including 204 sub-
jects with ischemic heart failure (LVEF ≤ 35%), 11C-HED 
PET was used in combination with perfusion imaging with 
13N-ammonia and viability with insulin-stimulated 18F-FDG. 
The primary end-point was a life-threatening arrhythmia, 
defined as arrhythmic death or ICD discharge for VT/
VF > 240 bpm [40]. A higher rate of SCD was reported in 
patients with perfusion/innervation mismatch, consistent 
with the presence of viable but denervated myocardium. 
Of note, the PAREPET study also showed that the extent 
of the denervated myocardium is significantly correlated to 
the risk of SCD. Specifically, a denervated area greater than 
37.6% of the LV predicts a higher risk. Interestingly, this 
holds true independently of LVEF and infarct size. Also a 
subsequent study confirmed the important prognostic role 
of the mismatch between myocardial innervation and perfu-
sion, capitalizing on innervation and perfusion imaging with 
11C-HED and [15O]H2O PET [47].

Hirofumi et al. [48] investigated the relationship between 
sympathetic innervation (assessed by 11C-HED PET), con-
tractile function (measured by echocardiography), and the 
oxidative metabolism (using 11 C-acetate PET) of the non-
infarcted myocardium in 19 patients with prior myocardial 
infarction. They showed that the remodeled LV presents with 
impaired sympathetic innervation and function even in the 
non-infarcted myocardial tissue (r = 0.566). Of note, the oxi-
dative metabolism in the non-infarcted myocardium seems 
to be independent from pre-synaptic sympathetic neuronal 
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function and rather linked to normal regulatory mechanisms 
(r = 0.649). This mismatch zone originates from residual via-
ble myocardium that has sustained ischemic nerve injury and 
is related to the heterogenic scar zone as assessed with late 
gadolinium-enhanced (LGE) cardiac magnetic resonance 
imaging (CMR).

Impaired innervation was also demonstrated in non-
infarcted myocardium in ischemic and dilated cardiomyopa-
thy (ICMP and DCMP). Factors affecting sympathetic nerve 
integrity in remote myocardium are still unknown. However, 
perfusion abnormalities such as microvascular dysfunction, 
even in the absence of detectable coronary artery disease 
(CAD), may underline a sympathetic dysfunction. In this 
regard, a recent study aimed to investigate the interrelations 
between myocardial perfusion, contractile function, and 
sympathetic innervation in non-infarcted myocardium in 70 
patients with ICMP and DCMP and LVEF ≤ 35% [49].11C-
HED- and [15O]H2O PET were performed to quantify MBF 
at rest and under stress conditions as well as sympathetic 
innervation. The authors found that the hyperaemic MBF 
is independently associated with sympathetic innervation 
in non-infarcted and non-ischemic remote myocardium in 
patients with ICMP and DCMP. This confirms that micro-
vascular dysfunction plays an important role to determine 
sympathetic nerve integrity. Nevertheless, it remains unclear 
whether the impaired hyperaemic MBF is the primary cause 
of this relation.

Obstructive sleep apnea (OSA) and heart failure (HF) 
with reduced ejection fraction (HFrEF) are two states of 
increased metabolic demand and sympathetic nervous sys-
tem activation that often coexist. In a randomized trial with 
45 patients with HFrEF and OSA undergoing 11 C-acetate 
and 11C-HED PET, Hall et al. [50] demonstrated a signifi-
cant increase in hydroxyephedrine retention in the group of 
patients allocated to CPAP, indicating reduced myocardial 
sympathetic dysregulation. Unfortunately, the authors failed 
to demonstrate significant favorable alterations in myocar-
dial function or energetics overall in the treated group and 
further outcome-based investigation of the consequences of 
CPAP is warranted.

A few papers have evaluated the value of 11C-HED PET 
to identify predictors of regional sympathetic denervation 
in patients with heart failure with preserved left ventricular 
ejection fraction (HFpEF). HFpEF is functionally charac-
terized by diastolic dysfunction accompanying myocardial 
fibrosis [51, 52]. Aikawa et al. [53] demonstrated that myo-
cardial sympathetic denervation, as assessed by 11C-HED 
PET, was impaired in HFpEF patients and was associated 
with the presence of advanced diastolic dysfunction inde-
pendently of LV ejection fraction.

More recently, the same authors [54] evaluated 34 
patients with HFpEF (LVEF ≥ 40%) and 11 age-matched 
control volunteers without HF. All subjects underwent 

cardiac magnetic resonance imaging to measure LV size 
and function, and the extent of myocardial late gadolinium 
enhancement (LGE) and 11C-HED PET to identify predic-
tors of regional sympathetic denervation. These were quanti-
fied by means of 11C-HED retention index (RI, %/min). They 
found that global 11C-HED RI was significantly lower and 
more heterogeneous in HFpEF patients than in volunteers. 
Moreover, regional 11C-HED RI was positively correlated 
with systolic wall thickening (r = 0.42) and negatively with 
the extent of LGE (r = − 0.43). Segments with a large extent 
of LGE in HFpEF patients had the lowest regional 11C-HED 
RI among all segments. Multivariate analysis demonstrated 
that systolic wall thickening and the extent of LGE were 
significant predictors of regional 11C-HED RI in HFpEF 
patients. In conclusion, the authors suggested that regional 
sympathetic denervation is associated with contractile dys-
function and fibrotic burden in HFpEF patients, thus provid-
ing an integrated measure of myocardial damage in HFpEF.

In a recent paper featuring young subjects with type 1 
diabetes (IDDM) without evidence of cardiovascular dis-
ease, Duvernoy et al. [55] found no significant differences in 
LV function, innervation, or oxidative metabolism between 
IDDM and controls. Furthermore, T1DM women presented 
with greater myocardial oxidative metabolism requirements 
than men.

Finally, a few papers analyzed the role of 11C-labeled cat-
echolamines PET to identify imaging parameters that could 
predict the response to therapy.

In patient with end-stage HF, cardiac resynchronization 
therapy (CRT) may be the treatment option of choice. Capi-
tanio et al. [56] evaluated the variation of cardiac adrenergic 
activity in patients with idiopathic heart failure (IHF, NYHA 
III-IV) after CRT using 11C-HED PET/CT. They found that 
the improvement in homogeneity of myocardial neuronal 
function reflected a selective increase of tracer uptake in 
regions with more severe neuronal damage. These finding 
supported the presence of a myocardial regional variability 
in response of cardiac sympathetic system to CRT and a 
systemic response involving remote tissues with rich adren-
ergic innervation.

Post-transplant reinnervation is a unique model to study 
sympathetic neuronal regeneration in vivo but the differen-
tial role of subcellular mechanisms of catecholamine han-
dling in nerve terminals is still unclear. Bravo et al. [57] 
speculated that there may be subtle differences in the regen-
erative capacity of subcellular mechanisms of nerve termi-
nal function. Ten heart transplant recipients were included 
at > 1 year post transplantation. Three different 11C-labeled 
catecholamine analogues were used to evaluate catechola-
mine transport (11C-HED), vesicular storage (11C-EPI), and 
metabolic degradation (11C-1phenylephrine). Quantifica-
tion of myocardial blood flow was performed with 13N-NH3 
PET. The results of this paper suggest that the regeneration 
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of subcellular components of sympathetic nerve terminal 
function does not occur simultaneously. In the reinnervat-
ing transplanted heart, a region with normal catecholamine 
transport and vesicular storage is surrounded by a border-
zone, where transport is already restored but vesicular stor-
age remains inefficient, suggesting that vesicular storage 
is a more delicate mechanism. This observation may have 
implications for other pathologies involving cardiac auto-
nomic innervation such as myocardial ischemia, infarction, 
heart failure, metabolic, and neurodegenerative diseases, 
where impaired innervation has been identified and where 
the presence and contribution of nerve regeneration is less 
well defined [43, 58–60]. Of note, vesicular storage may 

not only require more time for restoration but it may also 
be damaged at an earlier stage in disease, as suggested by 
preclinical work in myocardial infarction [27]. Whether this 
has implications for adverse outcome, or whether it may 
emerge as a target for regenerative therapies, should be a 
subject of future studies.

Fig. 2   Representative image showing the potential arrhythmic sub-
strate in two patients with ischemic cardiomyopathy candidates for 
ICD implantation for primary prevention of sudden cardiac death 
who underwent 15O-H2O PET, 11C-HED PET, and LGE-CMR. 
Patient 1 a–c shows a basal inferior wall myocardial infarction with 
contrast enhancement in this region (a) and a corresponding perfu-
sion defect (c) with an extensive innervation defect (b) that exceeded 
the infarct size, resulting in a significant innervation-perfusion mis-
match. Patient 2 d–f shows a large inferior wall myocardial infarc-

tion with transmural contrast enhancement as well as subendocardial 
contrast enhancement at the anterolateral wall (d). 15O-H2O PET 
and 11C-HED PET indicate corresponding perfusion and innervation 
defects with only limited innervation-perfusion mismatch. CMR car-
diovascular magnetic resonance, LGE late gadolinium enhancement, 
PET positron emission tomography. Reprinted under the terms of the 
Creative Commons Attribution 4.0 International License (http://creat​
iveco​mmons​.org/licen​ses/by/4.0/) from J Nucl Cardiol. 2016;23:218-
34 [12]. No changes were made

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Conclusion

It is undoubtedly clear that the assessment of myocardial 
sympathetic activity in patients with heart failure will play 
a pivotal role in clinical practice. Its capability to predict the 
occurrence of life-threatening ventricular arrhythmias (VA) 
in the presence of still viable but denervated myocardium 
(Fig. 2) [12, 40] and the effectiveness of resynchronization 
therapy [56] makes this technique ideal in the era of person-
alized medicine.

An important advantage of PET imaging over other tech-
niques is  the potential for a full quantitative analysis of 
myocardial denervation. A quantitative analysis bears great 
importance to overcome limitations due to global down-
regulation of myocardial catecholamine storage, which is 
frequently reported in patients with heart failure [61, 62].

Furthermore, PET allows also to evaluate the myocardial 
sympathetic innervation activity along with other molecu-
lar-targets, capitalizing on different half-lives of different 
radiopharmaceuticals used in multi-radioisotope investiga-
tions. This represents a unique approach to provide useful 
prognostic information in patients with heart failure. Very 
specific insights may be provided by combining information 
on myocardial sympathetic activity and other variables iden-
tifying, for example apoptosis, extracellular matrix activa-
tion, or angiogenesis [62].

In this regard, translational molecular imaging is expected 
to play an important role in boosting the research on the inti-
mate pathophysiological mechanisms underlying LV den-
ervation. This will also provide an invaluable tool to direct 
optimized targeted therapies.
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