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Abstract
The optimality system of a quasi-variational inequality can be reformulated as a non-
smooth equationor a constrained equationwith a smooth function.Both reformulations
can be exploited by algorithms, and their convergence to solutions usually relies on the
nonsingularity of the Jacobian, or the fact that the merit function has no nonoptimal
stationary points. We prove new sufficient conditions for the absence of nonoptimal
constrained or unconstrained stationary points that are weaker than some known ones.
All these conditions exploit some properties of a certain matrix, but do not require
the nonsingularity of the Jacobian. Further, we present new necessary and sufficient
conditions for the nonsingularity of the Jacobian that are based on the signs of certain
determinants. Additionally, we consider generalized Nash equilibrium problems that
are a special class of quasi-variational inequalities. Exploiting their structure, we also
prove some new sufficient conditions for stationarity and nonsingularity results.

Keywords Quasi-variational inequality · Generalized Nash equilibrium problem ·
Nonsingularity · Nonoptimal stationary points

Mathematics Subject Classification 65K10 · 90C33

Communicated by Roland Herzog.

B Axel Dreves
axel.dreves@unibw.de

Simone Sagratella
sagratella@diag.uniroma1.it

1 Department of Aerospace Engineering, University of the Bundeswehr Munich,
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

2 Department of Computer, Control, and Management Engineering Antonio Ruberti, Sapienza
University of Rome, Via Ariosto 25, 00185 Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-020-01678-x&domain=pdf
http://orcid.org/0000-0001-9798-0719
http://orcid.org/0000-0001-5888-1953


712 Journal of Optimization Theory and Applications (2020) 185:711–743

1 Introduction

We consider quasi-variational inequalities (QVIs). This problem class was introduced
in the paper series [1–3]. It generalizes the classical variational inequality by allowing
dependence of the feasible set from the point under consideration. We will define the
problem at the beginning of the next section. For a detailed discussion of QVIs, we
refer to [4,5]. Here, we will discuss the central conditions to ensure that general algo-
rithms for QVIs are well defined and converge. These are conditions guaranteeing that
stationary points of a merit function are indeed solutions, and conditions guaranteeing
nonsingularity of some Jacobian matrix in order to compute the descent direction.
Generalized Nash equilibrium problems (GNEPs) that can be used, for example, to
model markets with several players sharing common constraints and that were first
formally introduced in [6] can be reformulated as QVIs under mild conditions, see
[7], and are hence one of the applications of QVIs. There are a growing number of
GNEP applications, and we refer to the appendix of [8] for a test library and refer-
ences. Further applications can be found, for example, in biological [9], mechanical
[4,5], economic [10,11] or transportation problems [12,13]. Since several algorithms
for GNEPs have been introduced in the recent years, we also discuss some of our
issues for special cases of GNEPs, which are typically in a subclass of QVIs that is
not easy to solve in practice.

Algorithms for QVIs or GNEPs have to deal with the fact that solutions are typically
nonunique and often nonisolated, resulting in infinitely many solutions and singularity
of the Jacobian matrix at the solutions, which in turn make the application of classical
Newton methods difficult. Thus, the numerical solution of these problems is mathe-
matically challenging. To prove uniqueness of the solution one usually has restrictive
assumptions; see, for example, [14,15]. However, to get well-defined algorithms one
usually only requires nonsingularity at the iterates, and hence, interior point methods
are promising approaches since they restrict the iterates to a certain set. For general
Newton methods, nonsingularity at the solution is often exploited to get superlinear
local convergence. In the case of nonisolated solutions, which we typically have for
QVIs, one can still construct local fast convergent algorithms by exploiting some error
bound condition. This has been done in the GNEP setting in [16,17].

A promising approach to solve QVIs is to characterize the corresponding Karush–
Kuhn–Tucker (KKT) points as zeros of a nonsmooth function. Then, one can apply
a semismooth Newton method, as it was done in [18]. For the semismooth Newton
approach in the context of GNEPs, see also [19]. For well-defined local methods, one
requires nonsingularity of an element of the generalized Jacobian of the nonsmooth
function at an iterate. For global convergence, one can use a linesearch procedure
that is based on the squared norm of the nonsmooth function as a merit function. A
convergence result for semismooth Newton methods usually proves that accumulation
points are stationary points of the merit function. Hence, results guaranteeing that
stationary points of the merit function are indeed KKT points are required. Also, if
one uses a Levenberg–Marquardt method, see, for example, [20], to overcome the
nonsingularity problems, one minimizes the squared norm of the merit function and
relies on stationarity results.
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A different approach, also based on the solution of the KKT conditions, is an
interior pointmethod, where one solves a constrained equationwith a smooth function.
A potential reduction algorithm for QVIs or GNEPs is presented in [21] and [19],
respectively. This algorithm requires very similar nonsingularity properties as the
semismooth Newton approach at all iterates, which lie in the interior of some suitable
set here.

A further approach is a trust region method for constrained equations as introduced
in [22,23]. This can be applied directly to the smooth constrained equation reformu-
lation of the KKT system, which was done for GNEPs in [19,24]. At each iteration,
one has to solve a linear equation system, which is the same as for the interior point
approach, and one gets convergence to stationary points of the merit function. Hence,
also in this approach nonsingularity and nonoptimal stationarity are the main issues.

Moreover, let us mention that there is an approach based on the KKT conditions,
namely the LP-Newton method proposed in [25] that avoids the singularity issues by
solving a linear program instead of a linear equation system. For this approach, there
is also a globalization technique through a suitable nondifferentiable merit function
given in [26]. This avoids the problem to accumulate at possibly nonoptimal stationary
points of the merit function at least for (piecewise) smooth problems. The price one
has to pay is that each iteration becomes more expensive, since one has to solve
a linear program instead of a linear equation system at each iteration. Even these
methods converge to stationary points of some constrained equation reformulations of
the KKT conditions of the QVI, and it is fundamental to have conditions guaranteeing
that these points are actual solutions.

For all these methods, the results of this paper are directly applicable and are the
theoretical base of convergence to a solution of the QVI.

For a short overview on methods to solve QVIs, not only via their KKT conditions,
we refer to the introduction in [21] and the references cited there and to [27,28].
Finally, there are some newer augmented Lagrangian or multiplier-penalty methods
to solve QVIs proposed in [29,30] that are built on the sequential solution of simpler
variational inequalities, as first proposed in [31].

In our paper, we consider the constrained equation reformulation of the KKT con-
ditions of the QVI and the nonsmooth unconstrained reformulation. We will present
several conditions that are necessary and sufficient for the nonsingularity required by
many of the algorithms mentioned above. In the context of QVIs, these are, to the
best of our knowledge, the first necessary and sufficient conditions for nonsingularity
of the Jacobians. Furthermore, we will present sufficient conditions that avoid the
existence of nonoptimal stationary points for different constrained or unconstrained
stationarity concepts. For the constrained reformulation, this is, again to the best of
our knowledge, the first time that such kind of conditions are given in the QVI context.
Furthermore, through our analysis we obtain hints about which specific KKT refor-
mulation is preferable to be used with projected gradient-type methods or with interior
point methods. We also extend existing results for QVIs and GNEPs from [18,21,32].
In particular, in [21] one can find several nonsingularity results for a number of special
structured QVIs.

The paper is organized as follows: In Sect. 2, we introduce the problem formulation
and define the relevant functions and matrices. Further, we present our assumptions
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and we state the main facts we want to prove in this paper: Figs. 1 and 2 anticipate
and summarize the results proved in Sects. 3 and 4.

In Sect. 3, we derive new unconstrained and constrained stationarity results for
QVIs and show their applicability in some examples: In Proposition 3.1, we generalize
[19, Theorem 3.1] about unconstrained stationarity; in Proposition 3.2 and 3.3 we give
conditions to get unconstrained stationarity results, and in Example 3.1 we show that
without these conditions the stationarity results do not hold; in Theorem 3.1 and 3.2
we give new assumptions to get constrained stationarity results; Example 3.2 shows
a QVI satisfying all assumptions of Theorem 3.2, while Example 3.3 and 3.4 show
that without the conditions of Theorem 3.2 the constrained stationarity results may
not hold.

Thereafter, in Sect. 4, we present nonsingularity results for QVIs and the main
theorem provides a new necessary and sufficient condition: In Proposition 4.1, we
state the equivalence between the nonsingularity of the Jacobians of the smooth and
the nonsmooth reformulations; in Proposition 4.2 and 4.3 we report some technical
conditions for nonsingularity results; in Proposition 4.4 we give sufficient conditions
for nonsingularity results; our main Theorem 4.1 gives new necessary and sufficient
conditions for the nonsingularity of the Jacobian of the smooth reformulation in the
case of linear constraints with variable right-hand side; in the same framework, Corol-
lary 4.1 shows that the conditions given in [21, Corollary 2] are not only sufficient,
but also necessary, for the nonsingularity of the Jacobian of the smooth reformulation,
while Corollary 4.2 and 4.3 state similar nonsingularity results for the nonsmooth
reformulation.

We consider the special case of QVIs with box constraints in Sect. 5 and show
that box constraints are useful to weaken our assumptions: Proposition 5.1 provides
sufficient conditions to guarantee all assumptions of Proposition 3.2 and 3.3; Theorem
5.1 weakens the conditions of Theorem 3.2 for constrained stationarity results of the
smooth reformulation; Corollary 5.1 and 5.2 deal with the nonsingularity issue by
assuming less restrictive conditions.

Section 6 contains nonsingularity and stationarity results for GNEPs that are not
straightforward applications of the corresponding QVI results, but exploit the spe-
cial structure of GNEPs: Corollary 6.1 significantly improves [32, Theorem 4.1] for
linear problems; Lemma 6.1 defines a class of GNEPs for which many nonsingularity
and stationarity results hold, while Example 6.2 shows an application satisfying the
conditions given in Lemma 6.1; in Lemma 6.2 we identify someGNEPs with box con-
straints that have nonsingularity and stationarity properties; Proposition 6.1 provides
conditions for a GNEP with box constraints in order to obtain constrained stationarity
properties for the smooth reformulation.

We close the paper with some final remarks in conclusions section.

2 ProblemDefinition, Assumptions andMotivation

We consider the following QVI: Find a vector x∗ ∈ K (x∗) such that

F(x∗)�(y − x∗) ≥ 0 ∀y ∈ K (x∗),
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where F : R
n → R

n is a (point-to-point) mapping and K : R
n ⇒ R

n is a point-
to-set mapping with closed and convex images. We assume that F is continuously
differentiable and that the feasible set mapping K is given by a parametric set of
inequality constraints:

K (x) := {y ∈ R
n : g(y, x) ≤ 0},

where g : R
n × R

n → R
m is twice continuously differentiable and, for each

i = 1, . . . ,m, gi (·, x) is convex on R
n , for each x ∈ R

n . We could also include
linear equations, which lead to additional smooth equations in the following optimal-
ity systems, but for simplicity of notation we drop them from our subsequent analysis.
We set

h(x) := g(x, x),

and hence, h(x) ≤ 0 means that x ∈ K (x). We say that a point x ∈ R
n satisfies the

KKT conditions, if multipliers λ ∈ R
m exist such that

L(x, λ) := F(x) + ∇yg(x, x)λ = 0,
λi ≥ 0, gi (x, x) ≤ 0, λi gi (x, x) = 0 ∀i = 1, . . . ,m.

(1)

Note that ∇yg(x, x) is the partial transposed Jacobian of g(y, x) with respect to y
evaluated at y = x .

Our aim is to find a solution x∗ of the QVI by solving the KKT conditions (1).
It is known, see, for example, [21, Theorem 1], that under the above convexity and
differentiability assumptions, KKT points are solutions of the QVI. Further, under
a suitable constraint qualification, like the Slater condition, all solutions of the QVI
are KKT points. We can use the Fischer–Burmeister function as a complementarity
function and define

ϕ : R
m × R

m → R
m, ϕ(a, b) :=

⎛
⎜⎜⎝

√
a21 + b21 − a1 − b1

...√
a2m + b2m − am − bm

⎞
⎟⎟⎠

to obtain: (x∗, λ∗) is aKKTpoint of theQVI, if and only if (x∗, λ∗) solves the nonlinear
equation system

0 = Ψ (x, λ) :=
(

L(x, λ)

ϕ(λ,−h(x))

)
. (2)

Equivalently, (x∗, λ∗) is a KKT point of the QVI, if and only if (x∗, λ∗, w∗), with
w∗ = −h(x∗), is a solution of the nonlinear constrained equation system

0 = H(x, λ,w) :=
⎛
⎝

L(x, λ)

h(x) + w

λ ◦ w

⎞
⎠ (x, λ,w) ∈ R

n × R
m+ × R

m+. (3)
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Herein, λ ◦ w is the vector with the componentwise product, and R
m+ is the set of

vectors with nonnegative components. Later on, we will also use R
m++ for the set of

vectors with positive components. If F is continuously differentiable and g is twice
continuously differentiable, it is well known that the Jacobian J H of H is given by

J H(x, λ,w) =
⎛
⎝

Jx L(x, λ) ∇yg(x, x) 0
Jh(x) 0 I
0 diag(w) diag(λ)

⎞
⎠ ;

see, for example, [18,19,21]. Here, Jx L(x, λ) denotes the partial Jacobian of L(x, λ)

with respect to x , and Jh(x) is the Jacobian of h. Further, it is also known, see, for
example, [19], that the generalized Jacobian of Ψ is given by

∂Ψ (x, λ) =
(

Jx L(x, λ) ∇yg(x, x)
−Dh Jh(x) Dλ

)
,

where the matrices Dh and Dλ are m × m diagonal matrices, with entries given by

(Di
h, D

i
λ)

⎧⎨
⎩

= (−hi (x),λi )√
hi (x)2+λ2i

− (1, 1), if (−hi (x), λi ) �= (0, 0),

∈ B1 − (1, 1), if (−hi (x), λi ) = (0, 0),

for all i = 1, . . . ,m, and B1 denotes the closed unit ball in R
2.

If the matrix Jx L(x, λ) is nonsingular, we can define the reduced matrix

M(x, λ) := Jh(x) Jx L(x, λ)−1 ∇yg(x, x) (4)

that is related to both Jacobian matrices described above. We will use the notation Mi•
to denote the i th row of a matrix M . Let us recall some known matrix properties we
will use, cf. [33].

– A matrix M ∈ R
n×n is called a P0 matrix, if for all x ∈ R

n \ {0} there is an index
i ∈ {1, . . . , n} such that xi �= 0 and xi Mi• x ≥ 0.
A matrix M ∈ R

n×n is a P0 matrix if all its principal minors are nonnegative.
– A matrix M ∈ R

n×n is called a P matrix, if for all x ∈ R
n \ {0} there is an index

i ∈ {1, . . . , n} such that xi Mi• x > 0.
A matrix M ∈ R

n×n is a P matrix if all its principal minors are positive.
– A matrix M ∈ R

n×n is called a semimonotone matrix, if for all x ∈ R
n+ \ {0} there

is an index i ∈ {1, . . . , n} such that xi > 0 and Mi• x ≥ 0.
Every P0 matrix is semimonotone.
Every nonnegative matrix is semimonotone.
The sum of a semimonotone matrix and a nonnegative one is semimonotone.

– A matrix M ∈ R
n×n is an S matrix if x ∈ R

n++ exists such that Mx > 0.

An important practical issue in the design of algorithms consists in under-
standing if all stationary points of the merit function 1

2‖H(x, λ,w)‖2, with
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(x, λ,w) ∈ R
n × R

m+ × R
m+, and of the merit function 1

2‖Ψ (x, λ)‖2, possibly with
(x, λ) ∈ R

n × R
m+, are zeros of H and Ψ , respectively.

Moreover, themain topic in order to guarantee that interior point algorithms arewell
defined and converge to a solution of the QVI is the nonsingularity of J H(x, λ,w) for
(x, λ,w) ∈ R

n ×R
m++ ×R

m++ or of the elements of ∂Ψ (x, λ) for (x, λ) ∈ R
n ×R

m++.

Note that for λ ∈ R
m++ the set ∂Ψ (x, λ) is by definition single valued and contains

only the Jacobian JΨ (x, λ).

More specifically, and summarizing, we are interested in giving conditions guar-
anteeing the following facts:

(F1) all stationary points of the merit function 1
2‖Ψ (x, λ)‖2 are zeros of Ψ ;

(F2) all stationary points of the merit function 1
2‖H(x, λ,w)‖2, with λ ≥ 0 and

w ≥ 0, are zeros of H ;
(F3) all stationary points of themerit function 1

2‖Ψ (x, λ)‖2,withλ ≥ 0 and h(x) ≤ 0,
are zeros of Ψ ;

(F4) all constrained stationary points of

min
1

2
‖Ψ (x, λ)‖2 s.t. λ ≥ 0

are zeros of Ψ ;
(F5) all constrained stationary points of

min
1

2
‖H(x, λ,w)‖2 s.t. λ ≥ 0, w ≥ 0

are zeros of H ;
(F6) J H(x, λ,w) is nonsingular for (x, λ,w) ∈ R

n × R
m++ × R

m++;
(F7) JΨ (x, λ) is nonsingular for (x, λ) ∈ R

n × R
m++ with h(x) < 0.

To the best of our knowledge, the literature of QVIs and GNEPs has only inves-
tigated conditions guaranteeing facts (F1) and (F6) so far; see [19,21]. Constrained
stationary points have been considered in the case of variational inequalities in [34],
but not for QVIs yet.

The results we will prove are of great practical interest. On the one hand, for
the first time, we give conditions guaranteeing that finding a stationary point of the
merit function 1

2‖H(x, λ,w)‖2 subject to λ ≥ 0 and w ≥ 0, or the merit function
1
2‖Ψ (x, λ)‖2 subject to λ ≥ 0, we are actually computing solutions of the QVI. On the
other hand, an important hint given by this study is that if we want to solve the QVI by
adopting a projected gradient-type method designed to minimize the merit functions
described above, then reformulation (2) is the best option. While if we want to resort
to a second order interior point algorithm, reformulation (3) seems to be preferable.

Before stating the assumptions we use in our analysis, let us introduce some nota-
tion. For an index set J ⊆ {1, . . . ,m}, we write ∇yg•J (x, x) for the matrix with all
columns of ∇yg(x, x) that belong to J , and by Jh J•(x) we denote the matrix with all
rows of Jh(x) with indices in J .

These are our main assumptions:
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(A1) For all (x, λ) ∈ R
n × R

m , the matrix Jx L(x, λ) is nonsingular and the
matrix M(x, λ) is a P0 matrix.

(A1+) For all (x, λ) ∈ R
n × R

m+, the matrix Jx L(x, λ) is nonsingular and the
matrix M(x, λ) is a P0 matrix.

(A1++) For all (x, λ) ∈ R
n × R

m++, the matrix Jx L(x, λ) is nonsingular and the
matrix M(x, λ) is a P0 matrix.

(A2) For all (x, λ) ∈ R
n × R

m+, the matrix Jx L(x, λ) is nonsingular and the
matrix M(x, λ) is a semimonotone matrix.

(A3) For all (x, λ) ∈ R
n ×R

m+, the matrix Jx L(x, λ) is nonsingular and M(x, λ)

is a positive semidefinite S matrix.
(A4) All the constraints are of the form g(y, x) = Ay + c(x), with a matrix

A ∈ R
m×n and a function c : R

n → R
m .

(A5) Let (A4) hold and let an x ∈ R
n be given. Set

dJ := det

(
Jx F(x) ∇yg•J

−Jh J•(x) 0

)
.

We assume for some index set J ⊆ {1, . . . ,m} that dJ �= 0 and either
dJ ≥ 0 for all J ⊆ {1, . . . ,m}, or dJ ≤ 0 for all J ⊆ {1, . . . ,m}.

Note that the first three assumptions only differ in the range of λ, and (A1) implies
(A1+), which again implies (A1++). Since every positive semidefinite matrix is also
a P0 matrix, (A3) implies (A1+). Since every P0 matrix is a semimonotone matrix,
(A1+) implies (A2). In (A4), we refer to a class of QVIs for which the constraints are
separable in x and y and where the y-part is linear. This is, in particular, satisfied for
linear constraints. In [21], constraints of QVIs for which (A4) holds are termed linear
with variable right-hand side. In this case, we obtain

Jh(x) = A + Jc(x), ∇yg(x, x) = ∇yg = A� and Jx L(x, λ) = Jx F(x),

and we see that both Jx L(x, λ) and M(x, λ) become independent of the multipliers
λ.

In Figs. 1 and 2, we summarize the relations we show in the next two sections.

3 Stationarity Results for QVIs

In this section, we want to see how (A1)–(A3) imply (F1)–(F5). For (unconstrained)
stationarity results, it is clear that nonsingularity of the Jacobian, or of all the elements
of the generalized Jacobian, implies that these points must be zeros of the function.
Conditions ensuring this will be shown in the next section. Here, we present condi-
tions not requiring this nonsingularity. First, we generalization the GNEP result [19,
Theorem 3.1] to QVIs.

Proposition 3.1 If (A1)holds, every stationary point of themerit function 1
2‖Ψ (x,λ)‖2

is a zero of Ψ , i.e., (F1) is true.
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(A1+)
λ ≥ 0 :
JxL(x, λ) nonsing.
M(x, λ) is P0 matrix

(A1++)
λ > 0 :
JxL(x, λ) nonsing.
M(x, λ) is P0 matrix

(A1)
JxL(x, λ) nonsing.
M(x, λ) is P0 matrix

(A2)
λ ≥ 0 :
JxL(x, λ) nonsingular
M(x, λ) is semimonotone

(A3)
λ ≥ 0 :
JxL(x, λ) nonsingular
M(x, λ) positive semi-
definite S matrix

(F5)
constrained stationary
point of
1
2 H(x, λ, w) 2

s.t. λ ≥ 0, w ≥ 0
is zero of H

(F1)
stationary point of
1
2 Ψ(x, λ) 2

is zero of Ψ

(F2)
stationary point of
1
2 H(x, λ, w) 2

with λ ≥ 0, w ≥ 0
is zero of H

(F3)
stationary point of
1
2 Ψ(x, λ) 2

with λ ≥ 0, h(x) ≤ 0
is zero of Ψ

(F4)
constrained stationary
point of
1
2 Ψ(x, λ) 2 s.t. λ ≥ 0
is zero of Ψ

(F6)
JH(x, λ, w) nonsingular
λ > 0, w > 0

(F7)
JΨ(x, λ) nonsingular
λ > 0, h(x) < 0

h(x) < 0

Fig. 1 Summary of relations between assumptions (A1)–(A3) and facts (F1)–(F7)

Proof Let (x, λ) ∈ R
n × R

m be a stationary point, meaning

0 = ψ�Ψ (x, λ) =
(∇x L(x, λ) −∇h(x)Dh

Jyg(x, x) Dλ

) (
L(x, λ)

ϕ(λ,−h(x))

)
,

where ψ ∈ ∂Ψ (x, λ). Using nonsingularity of Jx L(x, λ) we get

L(x, λ) = ∇x L(x, λ)−1 ∇h(x)Dhϕ(λ,−h(x)).

With the definition of M(x, λ) from (4), we obtain

(
M(x, λ)� Dh + Dλ

)
(ϕ(λ,−h(x))) = 0. (5)

Both Dh and Dλ can be assumed to be negative diagonal matrices, because they are
nonpositive and Di

h or D
i
λ can be zero only ifϕ(λi ,−hi (x)) = 0.WithM(x, λ) also its
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(A4) g(y, x) = Ay + c(x)

(F6)
JH(x, λ, w) nonsingular
λ > 0, w > 0

(A5)
dJ �= 0 for some J ⊆ {1, . . . , m},
and dJ ≥ 0 for all J ⊆ {1, . . . , m}
or dJ ≤ 0 for all J ⊆ {1, . . . , m}

(F7)
JΨ(x, λ) nonsingular
λ > 0, h(x) < 0

h(x) < 0

JxF (x) nonsingular

(F6)
JH(x, λ, w) nonsingular
λ > 0, w > 0

(A1)
M(x) is P0 matrix

(F7)
JΨ(x, λ) nonsingular
λ > 0, h(x) < 0

h(x) < 0

Fig. 2 Equivalence relations between (F6) and (F7) to (A1) and (A5) under (A4)

transposed is a P0 matrix by (A1). From [35], we get that M(x, λ)� being a P0 matrix
and Dh, Dλ being negative definite implies M(x, λ)� Dh + Dλ being nonsingular.
This yields ϕ(λ,−h(x)) = 0, and then, L(x, λ) = 0, which completes the proof. ��

The following results are useful to guarantee that unconstrained stationary points,
whose dual variables are nonnegative, are solutions of the QVI.

Proposition 3.2 If (A2) holds, every stationary point of 1
2‖H(x, λ,w)‖2, for which

λ ≥ 0 and w ≥ 0 holds, is a zero of H, i.e., (F2) is true.

Proof Let (x, λ,w) ∈ R
n × R

m+ × R
m+ be a stationary point, meaning

0 = J H(x, λ,w)�H(x, λ,w) =
⎛
⎝

∇x L(x, λ) ∇h(x) 0
Jyg(x, x) 0 diag(w)

0 I diag(λ)

⎞
⎠

⎛
⎝

L(x, λ)

h(x) + w

λ ◦ w

⎞
⎠ .

This yields

h(x) + w = −diag(λ)(λ ◦ w),
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and, using nonsingularity of Jx L(x, λ) from (A2),

L(x, λ) = −∇x L(x, λ)−1 ∇h(x)(h(x) + w).

Inserting this in

Jyg(x, x) L(x, λ) + diag(w)(λ ◦ w) = 0,

we obtain
(
M(x, λ)� diag(λ) + diag(w)

)
(λ ◦ w) = 0. (6)

Let us assume for contradiction that λ ◦ w �= 0. With diag(λ) ∈ R
m+ and M(x, λ)

being a semimonotone matrix, also M(x, λ)� and M(x, λ)� diag(λ) are semimono-
tone matrices. By definition, an index j ∈ {1, . . . ,m} exists such that

λ jw j > 0,
(
M(x, λ)� diag(λ)(λ ◦ w)

)
j
≥ 0.

This implies the contradiction

0 =
((

M(x, λ)� diag(λ) + diag(w)
)

(λ ◦ w)
)
j

=
(
M(x, λ)� diag(λ)(λ ◦ w)

)
j
+ λ jw

2
j > 0.

Thus, we must have λ ◦ w = 0, and the proof holds by observing that we also get
h(x) + w = 0 and L(x, λ) = 0. ��

For illustration, we present the following example where nonoptimal stationary
points, with nonnegative λ and w, are present.

Example 3.1 Define F : R
2 → R

2 and g : R
2 × R

2 → R
2 by

F(x) =
(
2x2 − 9

2
2x1 − 9

2

)
and g(y, x) =

(−3x1 + 2y2 − 1
−3x2 + 2y1 − 1

)
.

Here, every stationary point of 1
2‖H(x, λ,w)‖2 satisfies

0 = J H(x, λ,w)�H(x, λ,w)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 −3 2 0 0
2 0 2 −3 0 0
0 2 0 0 w1 0
2 0 0 0 0 w2
0 0 1 0 λ1 0
0 0 0 1 0 λ2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

2x2 − 9
2 + 2λ2

2x1 − 9
2 + 2λ1

−3x1 + 2x2 − 1 + w1
2x1 − 3x2 − 1 + w2

λ1w1
λ2w2

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Now one can check that the point x = (1, 1), λ = (1, 1) andw = (1, 1) is a stationary
point, but it is certainly not a zero of H . In this example, we have nonsingularity of

the matrix Jx L(x, λ) =
(
0 2
2 0

)
, but the matrix

M(x, λ) =
(−3 2

2 −3

)(
0 1

2
1
2 0

) (
0 2
2 0

)
=

(−3 2
2 −3

)

is not semimonotone.

Assumption (A2) can also be used for the nonsmooth reformulation to get (F3), as
we show next.

Proposition 3.3 Let (A2) hold. Then, every stationary point of 12‖Ψ (x, λ)‖2 satisfying
λ ≥ 0 and h(x) ≤ 0 is a zero of Ψ , i.e., (F3) is true.

Proof As in Proposition 3.1, we obtain (5) that in turn can be written as

(
M(x, λ)� (−Dh) + (−Dλ)

)
(−ϕ(λ,−h(x))) = 0.

By (A2), −Dh being a nonnegative diagonal matrix implies that the matrix
M(x,λ)� (−Dh) is semimonotone. Let us assume by contradiction that
−ϕ(λ,−h(x)) �= 0. Observing that−ϕ(λ,−h(x)) ≥ 0 for all λ ≥ 0 and h(x) ≤ 0, the
definition of semimonotonicity yields the existence of an index j ∈ {1, . . . ,m} such
that

−ϕ(λ j ,−h j (x)) > 0,
(
M(x, λ)� (−Dh)(−ϕ(λ,−h(x)))

)
j
≥ 0.

This implies the contradiction

0 =
((

M(x, λ)� (−Dh) + (−Dλ)
)

(−ϕ(λ,−h(x)))
)
j

=
(
M(x, λ)� (−Dh)(−ϕ(λ,−h(x)))

)
j

+
⎛
⎝ λ j√

λ2j + h j (x)2
− 1

⎞
⎠ ϕ(λ j ,−h j (x)) > 0,

where the last inequality follows since ϕ(λ j ,−h j (x)) < 0 implies λ j > 0 and
h j (x) < 0. Thus, we must have ϕ(λ,−h(x)) = 0, and then, nonsingularity of
Jx L(x, λ) implies L(x, λ) = 0 and Ψ (x, λ) = 0. ��

In the following part, we consider constrained stationary points. For the merit
function 1

2‖Ψ (x, λ)‖2, we obtain (F4) under (A1+).

Theorem 3.1 Let (A1+)hold. Then, every constrained stationarypoint of 12‖Ψ (x, λ)‖2
subject to λ ≥ 0 is a zero of Ψ , i.e., (F4) is true.
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Proof Let (x, λ) ∈ R
n × R

m+ be a constrained stationary point, meaning

∇x L(x, λ)L(x, λ) − ∇h(x)Dhϕ(λ,−h(x)) = 0,

λi > 0 ⇒ ∇ygi (x, x)
�L(x, λ) + Di

λϕ(λi ,−hi (x)) = 0,

λi = 0 ⇒ ∇ygi (x, x)
�L(x, λ) + Di

λϕ(λi ,−hi (x)) ≥ 0.

The nonsingularity of Jx L(x, λ) from (A1+) implies

L(x, λ) = ∇x L(x, λ)−1 ∇h(x) Dh ϕ(λ,−h(x)).

Hence, if we show that ϕ(λ,−h(x)) = 0, we also get L(x, λ) = 0. Let us recall that
whenever ϕ(λi ,−hi (x)) �= 0, the diagonal elements Di

h and Di
λ are negative. Now,

we replace L(x, λ) in the constrained stationarity conditions by the above formula,
use the definition of M(x, λ) from (4) and consider five possible cases:

(a) For λi = 0, hi (x) ≤ 0, we have ϕ(λi ,−hi (x)) = 0 and Di
hϕ(λi ,−hi (x)) = 0.

(b) For λi > 0, hi (x) = 0, we have ϕ(λi ,−hi (x)) = 0 and Di
hϕ(λi ,−hi (x)) = 0.

(c) For λi = 0, hi (x) > 0, we have ϕ(λi ,−hi (x)) > 0 and the stationarity conditions
imply

(M•i (x, λ))�Dhϕ(λ,−h(x)) ≥ −Di
λϕ(λi ,−hi (x)) > 0.

(d) For λi > 0, hi (x) < 0 we have ϕ(λi ,−hi (x)) < 0 and the stationarity conditions
imply

(M•i (x, λ))�Dhϕ(λ,−h(x)) = −Di
λϕ(λi ,−hi (x)) < 0.

(e) For λi > 0, hi (x) > 0, we have ϕ(λi ,−hi (x)) > 0 and the stationarity conditions
imply

(M•i (x, λ))�Dhϕ(λ,−h(x)) = −Di
λϕ(λi ,−hi (x)) > 0.

Together, we have for all i ∈ {1, . . . ,m} either Di
hϕ(λi ,−hi (x)) = 0 or

(ϕ(λi ,−hi (x))D
i
h)(M•i (x, λ))�Dhϕ(λ,−h(x)) < 0.

With M(x, λ) also its transposed matrix is a P0 matrix. If Dhϕ(λ,−h(x)) �= 0, the
definition of a P0 matrix implies that for at least one index j ∈ {1, . . . ,m} we have
D j
hϕ(λ j ,−h j (x)) �= 0 and

(ϕ(λ j ,−h j (x))D
j
h )(M• j (x, λ))�Dhϕ(λ,−h(x)) ≥ 0.

This condition excludes cases (c) to (e), and we must have ϕ(λ,−h(x)) = 0. This
completes the proof. ��
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In order to obtain (F5), we use the stronger assumption (A3).

Theorem 3.2 If (A3) holds, every constrained stationary point of the merit function
1
2‖H(x, λ,w)‖2 subject to λ ≥ 0 and w ≥ 0 is a zero of H, i.e., (F5) is true.

Proof Let (x, λ,w) ∈ R
n × R

m+ × R
m+ be a constrained stationary point, meaning:

∇x L(x, λ)L(x, λ) + ∇h(x)(h(x) + w) = 0,

λi > 0 ⇒ ∇ygi (x, x)
�L(x, λ) + w2

i λi = 0,

λi = 0 ⇒ ∇ygi (x, x)
�L(x, λ) + w2

i λi ≥ 0,

wi > 0 ⇒ hi (x) + wi + wiλ
2
i = 0,

wi = 0 ⇒ hi (x) + wi + wiλ
2
i ≥ 0.

Nonsingularity of Jx L(x, λ) implies L(x, λ) = −∇x L(x, λ)−1∇h(x)(h(x)+w).We
must consider four possible cases:

(a) For λi > 0, wi > 0, we get

(M•i (x, λ))�(h(x) + w) = w2
i λi > 0, hi (x) + wi = −wiλ

2
i < 0.

(b) For λi > 0, wi = 0, we get

(M•i (x, λ))�(h(x) + w) = w2
i λi = 0, hi (x) + wi ≥ −wiλ

2
i = 0.

(c) For λi = 0, wi > 0, we get

(M•i (x, λ))�(h(x) + w) ≤ w2
i λi = 0, hi (x) + wi = −wiλ

2
i = 0.

(d) For λi = 0, wi = 0, we get

(M•i (x, λ))�(h(x) + w) ≤ w2
i λi = 0, hi (x) + wi ≥ −wiλ

2
i = 0.

Thus, in all the cases we obtain

(hi (x) + wi )(M•i (x, λ))�(h(x) + w) ≤ 0. (7)

Since M(x, λ), and hence also its transposed matrix, is positive semidefinite, we get

0 ≥
m∑
i=1

(hi (x) + wi )(M•i (x, λ))�(h(x) + w)

= (h(x) + w)(M(x, λ))�(h(x) + w) ≥ 0.

This implies that for all i = 1, . . . ,m we must have

(hi (x) + wi )(M•i (x, λ))�(h(x) + w) = 0. (8)
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Thus, case (a) cannot hold, and we have λ ◦ w = 0. By (A3), M(x, λ) is an S matrix,
and hence, the system M(x, λ) z > 0, z > 0 is solvable. The alternatives theorem of
Ville, see [36], gives that the system

M(x, λ)�v ≤ 0, v ≥ 0, v �= 0

is not solvable. From the cases (b) to (d), we have that

M(x, λ)�(h(x) + w) ≤ 0, h(x) + w ≥ 0.

Hence, we must have h(x)+w = 0. This, in turn implies L(x, λ) = 0, and therefore,
we have H(x, λ,w) = 0. ��

Inspecting the proof starting from equation (7), one could also finalize it by assum-
ing thatM(x, λ) is a P matrix.Unfortunately, the P property ofM(x, λ) for allλ ∈ R

m+
is a very strong condition, since it implies nonsingularity of the matrix M(x, λ). This,
in turn, can only hold if ∇h(x) and Jyg(x, x) are full rank matrices and hence, in
particular, requires that we have linear independent constraints.

Let us give an example, where we can apply Theorem 3.2.

Example 3.2 We consider the QVI defined through

F(x) :=
⎛
⎝
2x1
2x2
2x3

⎞
⎠ , g(y, x) :=

⎛
⎝
2y1 + x2 + 2x3 + 1
x1 + 2y2 + x3 + 2
2x1 + x2 + 2y3 + 3

⎞
⎠ .

Here, the matrix Jx L(x, λ) = Jx F is nonsingular. Further, we have

M =
⎛
⎝
2 1 2
1 2 1
2 1 2

⎞
⎠

⎛
⎝
1/2 0 0
0 1/2 0
0 0 1/2

⎞
⎠

⎛
⎝
2 0 0
0 2 0
0 0 2

⎞
⎠ =

⎛
⎝
2 1 2
1 2 1
2 1 2

⎞
⎠ ,

which is symmetric positive semidefinite. Since all matrix entries of M are positive,
the system M z > 0, z > 0 can be solved with a vector having all elements equal to
1, and M is an S matrix. Thus, Theorem 3.2 guarantees that (F5) holds.

With the next example, we see that, in contrast to (F4), (A1+) or positive semi-
definiteness of M(x, λ) alone is not sufficient to get (F5).

Example 3.3 Let us consider the QVI defined through

F(x) :=
(
x1
x2

)
, g(y, x) :=

(
y1 + x2 + 2

−2x1 − 2y2 + 1

)
.

This QVI does not even have a feasible point, but a constrained stationary point
x̄ = (0, 0), λ̄ = (0, 0), w̄ = (0, 0), since

L(x̄, λ̄) =
(
0
0

)
, h(x̄) =

(
2
1

)
, and ∇h(x̄) =

(
1 −2
1 −2

)
,
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imply the constrained stationarity conditions

∇x L(x̄, λ̄)L(x̄, λ̄) + ∇h(x̄)(h(x̄) + w̄) = 0,

λi = 0 ⇒ ∇ygi (x̄, x̄)
�L(x̄, λ̄) + w̄2

i λ̄i ≥ 0,

w̄i = 0 ⇒ hi (x̄) + w̄i + w̄i λ̄
2
i ≥ 0.

However, this point is not feasible, hence not a solution of H(x, λ,w) = 0. Further-
more, in this example we have

M =
(

1 1
−2 −2

) (
1 0
0 1

) (
1 0
0 −2

)
=

(
1 −2

−2 4

)
,

which is a P0 matrix and positive semidefinite. This shows that the P0 property of
M(x, λ), or its positive semidefiniteness, is not sufficient for a constrained stationary
point of H to be a solution of H(x, λ,w) = 0.

We can also give an example that has feasible points and where M is positive
semidefinite, but nonoptimal constrained stationary points exist.

Example 3.4 Consider the QVI defined through

F(x) :=
(

x1
x2 + 3

)
, g(y, x) :=

(
y1 − 2x2 + 2

−2y1 + x2 + 1

)
.

This QVI has feasible points, for example (2, 2). Here, the point x̄ = (0, 0),
λ̄ = (0, 0), w̄ = (0, 0) is a constrained stationary point, since

h(x) + w =
(
2
1

)
, L =

(
0
3

)
, ∇yg

� L =
(
0
0

)
,

∇x L(x̄, λ̄)L(x̄, λ̄) + ∇h(x̄) (h(x̄) + w) =
(
0
3

)
+

(
1 −2

−2 1

)(
2
1

)
=

(
0
0

)
.

Obviously the point is not feasible and hence not a zero of H .We have in this example

M =
(

1 −2
−2 1

)(
1 −2
0 0

)
=

(
1 −2

−2 4

)
,

which is a symmetric positive semidefinite matrix. Hence, this condition is not
sufficient for (F5). Moreover, we can see that (A3) is violated, since the system
M z > 0, z > 0 is not solvable.

4 Nonsingularity Results for QVIs

In this section, we deal with the nonsingularity facts (F6) and (F7). Let us recall that
for λ ∈ R

m++ the set ∂Ψ (x, λ) = {JΨ (x, λ)} is single valued. First, we show that the
two facts (F6) and (F7) are equivalent for all x with h(x) < 0.
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Proposition 4.1 Let an arbitrary x ∈ R
n with h(x) < 0 be given. Then, JΨ (x, λ)

is nonsingular for all λ ∈ R
m++ if and only if J H(x, λ,w) is nonsingular for all

(λ,w) ∈ R
m++ × R

m++. This means (F7) is equivalent to (F6) for all x ∈ R
n with

h(x) < 0.

Proof For h(x) < 0 and λ ∈ R
m++, the matrices Dh and Dλ are negative definite, with

Di
h = −hi (x)√

hi (x)2+λ2i

−1 < 0 and Di
λ = λi√

hi (x)2+λ2i

−1 < 0.Thus, thematrix JΨ (x, λ) =
(

Jx L(x, λ) ∇yg(x, x)
−Dh Jh(x) Dλ

)
is nonsingular, if and only if

(
Jx L(x, λ) ∇yg(x, x)
Jh(x) −D−1

h Dλ

)
is

nonsingular. For any fixed x ∈ R
n with hi (x) < 0 and λi > 0, the function

λi �→ (Di
h)

−1 (Di
λ) =

λi −
√
hi (x)2 + λ2i

−hi (x) −
√
hi (x)2 + λ2i

.

is continuouswith limλi↓0(Di
h)

−1 (Di
λ) = +∞ and limλi→∞(Di

h)
−1 (Di

λ) = 0.Thus,
nonsingularity of JΨ (x, λ) for all λ ∈ R

m++ is equivalent to nonsingularity of the
matrices

(
Jx L(x, λ) ∇yg(x, x)
Jh(x) −D

)
(9)

for all positive definite diagonal matrices D ∈ R
m×m++ .

Now, since for some (λ,w) ∈ R
m++ × R

m++ we can write any positive definite
diagonal matrix in the form D = diag(λ)−1 diag(w), nonsingularity of (9) for all
positive definite diagonal matrices D ∈ R

m×m++ is equivalent to nonsingularity of

(
Jx L(x, λ) ∇yg(x, x)
Jh(x) −diag(λ)−1 diag(w)

)

for all (λ,w) ∈ R
m++ × R

m++. This, in turn, is equivalent to

J H(x, λ,w) =
⎛
⎝
Jx F(x) ∇yg 0
Jh(x) 0 I
0 diag(w) diag(λ)

⎞
⎠

being nonsingular for all (λ,w) ∈ R
m++ × R

m++, and the proof is complete. ��
The following general necessary and sufficient condition for the nonsingularity of

J H was proved in [21, Theorem 3].

Proposition 4.2 Let (x, λ,w) ∈ R
n × R

m++ × R
m++ be given. Then, the matrix

Jx L(x, λ) + ∇yg(x, x) diag
(
w−1 ◦ λ

)
Jh(x)

is nonsingular, if and only if J H(x, λ,w) is nonsingular.
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In the same spirit, we obtain a similar result for JΨ .

Proposition 4.3 Let (x, λ) ∈ R
n × R

m++ with h(x) �= 0 be given. Then, the matrix

Jx L(x, λ) + ∇yg(x, x) D
−1
λ Dh Jh(x)

is nonsingular, if and only if JΨ (x, λ) is nonsingular.

Proof Since h(x) �= 0 and λ ∈ R
m++, we have a negative definite diagonal matrix Dλ.

For a vector v = (v1, v2) ∈ R
n+m, we get that

0 = JΨ (x, λ)v =
(

Jx L(x, λ) ∇yg(x, x)
−Dh Jh(x) Dλ

) (
v1

v2

)

is equivalent to

v2 = D−1
λ Dh Jh(x) v1,

0 =
(
Jx L(x, λ) + ∇yg(x, x) D

−1
λ Dh Jh(x)

)
v1.

Thus, nonsingularity of JΨ (x, λ) is equivalent to the nonsingularity of the matrix
Jx L(x, λ) + ∇yg(x, x) D

−1
λ Dh Jh(x). ��

We remark that the assumption h(x) �= 0 in Proposition 4.3 is mandatory to exploit
the reduced matrix given in the proposition. In fact, if hi (x) = 0 for even one single
element, the matrix Dλ becomes singular.

The first part of the following result was proved in [21, Corollary 2]. The second
one follows from the first one with Proposition 4.1.

Proposition 4.4 Let (A1++) hold. Then,

(a) J H(x, λ,w) is nonsingular for all (x, λ,w) ∈ R
n ×R

m++ ×R
m++, i.e., (F6) holds;

(b) JΨ (x, λ) is nonsingular for all (x, λ) ∈ R
n×R

m++ with h(x) < 0, i.e., (F7) holds.

For checking nonsingularity of J H(x, λ,w) for all (λ,w) ∈ R
m++ × R

m++, it
would be nicer to have a condition that is independent of the choice of (λ,w). In
this perspective, if (A4) holds (meaning that we have linear constraints with variable
right-hand side), we obtain exactly what we want, that is, (A1) does not involve the
variables λ, because now, the matrices Jx L(x) and M(x) depend exclusively on x .
This also means that (A1), (A1+) and (A1++) coincide. Moreover, under (A4), we
derive sharper nonsingularity results.

Now, we state our main theorem, a necessary and sufficient condition for the matrix
J H(x, λ,w) to be nonsingular for all λ,w ∈ R

m++. This theorem and the following
corollary are a nontrivial and fundamental generalization of the results of [21], where
only sufficiency was proved.

Theorem 4.1 Let x ∈ R
n be given, and let (A4) hold. Then, J H(x, λ,w) is non-

singular for all λ,w ∈ R
m++, if and only if (A5) holds, i.e., for some J ⊆ {1, . . . ,m},
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dJ := det

(
Jx F(x) ∇yg•J

−Jh J•(x) 0

)
�= 0 and either dJ ≥ 0 for all J ⊆ {1, . . . ,m}, or

dJ ≤ 0 for all J ⊆ {1, . . . ,m}.

Proof We have det(J H(x, λ,w)) = det

⎛
⎝
Jx F(x) ∇yg 0
Jh(x) 0 I
0 diag(w) diag(λ)

⎞
⎠ .

Developing this determinant by the last m rows, we obtain a sum over the index
sets J ⊆ {1, . . . ,m}, where every addend contains products of λi , i ∈ J and wi ,

i ∈ J c := {1, . . . ,m} \ J . For each i ∈ J , we drop the corresponding columns of the
last block. For each ĩ ∈ J c, we drop the corresponding column ∇yg•ĩ in the second
block and, since we also drop the row with λĩ , we can develop the remaining matrix
after the corresponding column ĩ in the middle right block. This results in dropping
the row Jhĩ•(x). Further, note that in the determinant formula, we get for every i ∈ J
a positive sign, and for every i ∈ J c we get one negative and one positive sign for the
two developments. Thus, we obtain for the determinant of J H(x, λ,w)

det(J H(x, λ,w))

=
∑

J⊆{1,...,m}
(−1)|J c|

(∏
i∈J c

wi

)(∏
i∈J

λi

)
det

(
Jx F(x) ∇yg•J
Jh J•(x) 0

)

=
∑

J⊆{1,...,m}
(−1)|J c|(−1)|J |

(∏
i∈J c

wi

) (∏
i∈J

λi

)
det

(
Jx F(x) ∇yg•J

−Jh J•(x) 0

)

= (−1)m
∑

J⊆{1,...,m}

(∏
i∈J c

wi

)(∏
i∈J

λi

)
dJ .

If dJ �= 0 for some J ⊆ {1, . . . ,m}, and, either dJ ≥ 0 for all J ⊆ {1, . . . ,m}, or
dJ ≤ 0 for all J ⊆ {1, . . . ,m}, i.e., if (A5) holds, we have det(J H(x, λ,w)) �= 0 for
all λ,w ∈ R

m++, and hence, J H(x, λ,w) is nonsingular.
Now, assume (A5) does not hold. Then, we either have dJ = 0 for all

J ⊆ {1, . . . ,m}, which immediately implies that det(J H(x, λ,w)) = 0, or we have
index sets J1, J2 ⊆ {1, . . . ,m} such that

dJ1 > 0 > dJ2 .

In this case, let us define

dmax := max
J⊆{1,...,m} |dJ | and dmin := min

J⊆{1,...,m},|dJ |�=0
|dJ |.

Now we set

λi =

⎧⎪⎪⎨
⎪⎪⎩

2m, if i ∈ J1 ∩ J2,
z, if i ∈ J1 \ J2,
1
z , if i ∈ J2 \ J1,
dmin
dmax

, else,

and wi =

⎧⎪⎪⎨
⎪⎪⎩

2m, if i ∈ J c1 ∩ J c2 ,

z, if i ∈ J c1 \ J c2 ,
1
z , if i ∈ J c2 \ J c1 ,
dmin
dmax

, else.
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With these settings f : R++ → R,

f (z) :=
∑

J⊆{1,...,m}

(∏
i∈J c

wi

) (∏
i∈J

λi

)
dJ

is a continuous function. To analyze its behavior for z → +∞,we have to consider the
coefficients for the terms with the largest power of z, which is |J1 \ J2| + |J c1 \ J c2 |.
Since dJ1 > 0, we obtain for the index set J1 the positive addend

z|J1\J2|+|J c1 \J c2 | (2m)|J1∩J2|+|J c1∩J c2 | dJ1

The remaining index sets J̃ �= J1 leading to the largest power of z must sat-
isfy J1 \ J2 ⊆ J̃ and J c1 \ J c2 ⊆ J̃ . By construction, we have natural numbers
α ≤ |J1 ∩ J2|+ |J c1 ∩ J c2 |−1 and β ≥ 1, such that the corresponding addend satisfies

z|J1\J2|+|J c1 \J c2 | (2m)α
(
dmin

dmax

)β

dJ̃

≤ z|J1\J2|+|J c1 \J c2 | (2m)|J1∩J2|+|J c1∩J c2 |−1 dmin

dmax
|dJ̃ |

≤ z|J1\J2|+|J c1 \J c2 | (2m)|J1∩J2|+|J c1∩J c2 |−1 dJ1

Since the total number of possible index sets J̃ �= J1 is not greater than 2m − 1, and

(2m − 1)(2m)|J1∩J2|+|J c1∩J c2 |−1 dJ1 < (2m)|J1∩J2|+|J c1∩J c2 | dJ1 ,

the coefficient of z|J1\J2|+|J c1 \J c2 | is positive. Thus, we have

lim
z→∞ f (z) = +∞.

Using analogous arguments for the index set J2 with dJ2 < 0, we can show that the
coefficient for the largest power of 1

z is negative and hence

lim
z→0

f (z) = −∞.

Now, by continuity of f , it has a zero. Thus, we can find λ,w ∈ R
m++, such that

det(J H(x, λ,w)) = 0, and hence, J H(x, λ,w) is singular, which completes the
proof. ��

This theorem shows that under (A4) the nonsingularity condition (F6) is equivalent
to (A5) holding for all x ∈ R

n . Next, we present a new corollary showing that under
(A4) and nonsingularity of Jx F(x), (A1) is necessary and sufficient for (F6).

Corollary 4.1 Let x ∈ R
n be given, (A4) hold, and Jx F(x) be nonsingular. Then, the

matrix J H(x, λ,w) is nonsingular for all λ,w ∈ R
m++, if and only if M(x) is a P0

matrix.
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Proof By Theorem 4.1, J H(x, λ,w) being nonsingular means that for some

J ⊆ {1, . . . ,m}we have dJ = det

(
Jx F(x) ∇yg•J

−Jh J•(x) 0

)
�= 0 and either dJ ≥ 0 for all

J ⊆ {1, . . . ,m} or dJ ≤ 0 for all J ⊆ {1, . . . ,m}. By the assumption on Jx F(x), we
have d∅ = det Jx F(x) �= 0. Further, for J �= ∅ we can use the determinant formula
for block matrices to obtain

dJ = det(Jx F(x)) det(Jh J•(x) Jx F(x)−1 ∇yg•J ) = d∅ det(MJ J (x)).

Thus, the nonsingularity of J H is equivalent to requiring that

det(MJ J (x)) ≥ 0, ∀ J ⊆ {1, . . . ,m}, J �= ∅.

This coincides with the fact that M(x) is a P0 matrix, and proves the equivalence. ��
Let us present an example that illustrates the applicability of the corollary, in par-

ticular, if we have a linear function F yielding that M(x) becomes independent of
x .

Example 4.1 Define F : R
2 → R

2 and g : R
2 × R

2 → R
2 by

F(x) =
(
2x2 − 1
2x1 − 1

)
and g(y, x) =

(
x1 + 2y2 − 1
x2 + 2y1 − 1

)
.

The QVI has the unique solution
( 1
3 ,

1
3

)
. We have (A4), and Jx F =

(
0 2
2 0

)
is

nonsingular. But, the matrix

M = M(x) =
(
1 2
2 1

)(
0 1

2
1
2 0

) (
0 2
2 0

)
=

(
1 2
2 1

)

is not a P0 matrix for any x ∈ R
n . Hence, by Corollary 4.1, J H(x, λ,w) is for all

x ∈ R
n singular for some λ,w ∈ R

m++. For example, one can set λ1 = λ2 = w1 = w2.
Let us further mention that M is semimonotone, and hence, (A2) is satisfied. Thus,

Proposition 3.2 yields the stationarity result (F2) in this case, where nonsingularity of
J H(x, λ,w) is violated.

From Proposition 4.1, we obtain the following corollaries for nonsingularity of
JΨ (x, λ):

Corollary 4.2 Let x ∈ R
n with h(x) < 0 be given, and let (A4) hold. Then, the matrix

JΨ (x, λ) is nonsingular for all λ ∈ R
m++, if and only if (A5) holds.

Corollary 4.3 Let x ∈ R
n with h(x) < 0 be given, (A4) hold and Jx F(x) be nonsin-

gular. Then, the matrix JΨ (x, λ) is nonsingular for all λ ∈ R
m++, if and only if M(x)

is a P0 matrix.
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5 QVIs with Box Constraints

Now, we discuss the case of QVIs with additional box constraints, i.e.,

K (x) := {y ∈ [l, u] ⊆ R
n : g(y, x) ≤ 0}.

The KKT conditions become

L(x, λ) := F(x) + λ1 − λ2 + ∇yg(x, x)λ
3 = 0,

λ1i ≥ 0, xi − ui ≤ 0, λ1i (xi − ui ) = 0 ∀i = 1, . . . , n,

λ2i ≥ 0, li − xi ≤ 0, λ2i (li − xi ) = 0 ∀i = 1, . . . , n,

λ3i ≥ 0, gi (x, x) ≤ 0, λ3i gi (x, x) = 0 ∀i = 1, . . . ,m.

The constrained nonlinear system in the box constrained case is to solve

H(x, λ,w) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

L(x, λ)

x − u + w1

−x + l + w2

h(x) + w3

λ1 ◦ w1

λ2 ◦ w2

λ3 ◦ w3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (x, λ,w) ∈ R
n × R

m+ × R
m+.

We show that the presence of the box constraints can be exploited in order to obtain
the facts (F1)–(F7) under weakened assumptions. First, we will give some sufficient
conditions for (A2) that entails (F2) and (F3).

Proposition 5.1 Let a QVI with box constraints be given and all entries in Jh(x)
be nonnegative. If Jx L(x, λ) is a positive diagonal matrix, the matrix M(x, λ) is
semimonotone, i.e., (A2) is satisfied.

Proof To show that

M(x, λ) =
⎛
⎝

I
−I

Jh(x)

⎞
⎠ Jx L(x, λ)−1 (

I −I ∇yg(x, x)
)

=
⎛
⎝

Jx L(x, λ)−1 −Jx L(x, λ)−1 Jx L(x, λ)−1 ∇yg(x, x)
−Jx L(x, λ)−1 Jx L(x, λ)−1 −Jx L(x, λ)−1∇yg(x, x)

Jh(x) Jx L(x, λ)−1 −Jh(x) Jx L(x, λ)−1 Jh(x) Jx L(x, λ)−1 ∇yg(x, x)

⎞
⎠

is semimonotone, let a vector v = (v1, v2, v3) ∈ R
n+n+m+ \ {0} be given.

First, assume v1j > 0 for some j ∈ {1, . . . , n}. Then, we must either have
Mj•(x, λ)v ≥ 0 (and hence M(x, λ) is semimonotone), or we get from the j th row
v2j > 0, since Jx L(x, λ)−1 is a positive diagonal matrix andwith Jh(x) also all entries
in ∇yg(x, x) are nonnegative. Since the j th row is the negative of the (n + j)th row,
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either Mj•(x, λ)v ≥ 0 or M(n+ j)•(x, λ)v ≥ 0 must hold, and hence, M(x, λ) must
be semimonotone.

Now assume v1 = 0, and define the set

J := { j ∈ {1, . . . , n} : v2j > 0}.

If J = ∅, we have v2 = 0. Since the matrix Jh(x) Jx L(x, λ)−1 ∇yg(x, x) has only
nonnegative entries, it is semimonotone, and hence, M(x, λ) is semimontone. Thus,
assume J �= ∅. We are done, if one of the components

Jx L J•(x, λ)−1 v2 − Jx L J•(x, λ)−1∇yg(x, x) v3

is nonnegative. Hence, assume they are all negative. For J �= ∅ the fact that
Jx L(x, λ)−1 is a positive diagonal matrix immediately implies that at least one
component of v3 must be positive. Since all entries in Jx L(x, λ)−1∇yg(x, x) v3 are
nonnegative, we have

Jx L(x, λ)−1 v2 − Jx L(x, λ)−1∇yg(x, x) v3 ≤ 0

Multiplying with the nonpositive matrix −Jh(x) results in

−Jh(x) Jx L(x, λ)−1 v2 + Jh(x) Jx L(x, λ)−1∇yg(x, x) v3 ≥ 0.

Since this corresponds to the lastm rows ofM(x, λ), thematrixmust be semimonotone
since one of the components of v3 is positive. ��

The assumption (A3) is restrictive in the case without box constraints and does not
hold, for example, if M(x, λ) consists of two rows, where one is the negative of the
other. A different condition can be obtained for QVIs with additional box constraints.
Let us denote

g̃(y, x) :=
⎛
⎝

y − u
l − y
g(y, x)

⎞
⎠ .

Here, we can use a positive linear independence assumption, rather than (A3), to obtain
a constrained stationarity result.

Theorem 5.1 Let a QVI with box constraints be given. Assume that for all
(x, λ) ∈ R

n ×R
m+, the matrix Jx L(x, λ) is nonsingular and that the matrix M(x, λ) =

J h̃(x)Jx L(x, λ)−1∇y g̃(x, x) is positive semidefinite. Further, assume the gradients
∇h̃ j (x) for j ∈ J := { j ∈ {1, . . . ,m} : h̃ j (x) > 0} are positive linear independent.
Then, every constrained stationary point of the merit function 1

2‖H(x, λ,w)‖2 subject
to λ ≥ 0 and w ≥ 0 is a zero of H, i.e., (F5) is true.
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Proof First, we can follow the lines of the proof of Theorem 3.2 to obtain (8) and thus
to exclude the case (a), which was λi > 0 and wi > 0, through the assumed positive
semidefiniteness of M(x, λ). Thus, we must have λ ◦ w = 0. Now, we inspect the
constrained stationarity conditions for the box constraints. Then, we obtain for every
i = 1, . . . , n:

λ1i > 0 ⇒ Li (x, λ) + (w1
i )

2λ1i = 0 ⇒ Li (x, λ) = 0,
λ2i > 0 ⇒ −Li (x, λ) + (w2

i )
2λ2i = 0 ⇒ Li (x, λ) = 0,

λ1i = 0 ⇒ Li (x, λ) + (w1
i )

2λ1i ≥ 0 ⇒ Li (x, λ) ≥ 0.
λ2i = 0 ⇒ −Li (x, λ) + (w2

i )
2λ2i ≥ 0 ⇒ −Li (x, λ) ≥ 0,

If λ1i > 0 or λ2i > 0, the first two lines imply Li (x, λ) = 0. If both λ1i = 0 and
λ2i = 0, the lines three and four imply again Li (x, λ) = 0. Since this holds for all
i = 1, . . . , n, we have L(x, λ) = 0.

It remains to show that h̃(x)+w = 0. From the constrained stationarity conditions,
we get with λ ◦ w = 0:

wi > 0 ⇒ h̃i (x) + wi + wiλ
2
i = 0 ⇒ h̃i (x) + wi = 0,

wi = 0 ⇒ h̃i (x) + wi + wiλ
2
i ≥ 0 ⇒ h̃i (x) ≥ 0.

This together with L(x, λ) = 0 and J := { j ∈ {1, . . . ,m} : h̃ j (x) > 0} implies that
the remaining stationarity condition yields

0 = ∇x L(x, λ)L(x, λ) + ∇h̃(x)(̃h(x) + w) = ∇h̃•J (x )̃hJ (x)

Since h̃ J (x) > 0 and the gradients∇h̃ j (x), j ∈ J are positively linearly independent,
we must have J = ∅, which means h̃(x) + w = 0, and completes the proof. ��

In the box constrained case, the Jacobian J H(x, λ,w) is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Jx L(x) I −I ∇yg(x, x) 0 0 0
I 0 0 0 I 0 0

−I 0 0 0 0 I 0
Jh(x) 0 0 0 0 0 I
0 diag(w1) 0 0 diag(λ1) 0 0
0 0 diag(w2) 0 0 diag(λ2) 0
0 0 0 diag(w3) 0 0 diag(λ3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let λ,w ∈ R
2n+m++ be given, and let us define the matrix

J̃x L(x, λ,w) := Jx L(x) + diag(λ1 ◦ (w1)−1) + diag(λ2 ◦ (w2)−1).
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It is not difficult to see that J H(x, λ,w) is nonsingular, if and only if

⎛
⎝
J̃x L(x, λ,w) ∇yg(x, x) 0

Jh(x) 0 I
0 diag(w3) diag(λ3)

⎞
⎠

is nonsingular. In this setting, we can replace the nonsingularity of Jx L(x, λ) from
(A1++) by positive semidefiniteness of Jx L(x, λ) in Proposition 4.4 and in Corollary
4.1. In fact, in this case J̃x L(x, λ,w) becomes nonsingular for all λ,w ∈ R

m++, and
the developments follow as in the case without box constraints. We observe that this
also holds, if we have either a lower or an upper bound for each variable, and we do
not need both of them. Defining

M̃(x) := Jh(x) J̃x L(x, λ,w)−1∇yg(x, x), (10)

we get the following results.

Corollary 5.1 Assume box constraints. Let the matrix Jx L(x, λ) be positive semi-
definite and the matrix M̃(x) be a P0 matrix for all (x, λ) ∈ R

n × R
m++. Then,

(a) J H(x, λ,w) is nonsingular for all (x, λ,w) ∈ R
n ×R

m++ ×R
m++, i.e., (F6) holds;

(b) JΨ (x, λ) is nonsingular for all (x, λ) ∈ R
n×R

m++ with h(x) < 0, i.e., (F7) holds.

Corollary 5.2 Assume we have box constraints, (A4) holds, and Jx F(x) is positive
semidefinite for all x ∈ R

n. Then,

(a) (F6) is equivalent to M̃(x) being a P0 matrix;
(b) (F7) is equivalent to M̃(x) being a P0 matrix for all x ∈ R

n with h(x) < 0.

Moreover, if Jx F(x) is positive definite for all x ∈ R
n, then

(c) M̃(x) is a P0 matrix if and only if M(x) is a P0 matrix.

Proof Point (c) is due to point (a) and Corollary 4.1. ��

6 GNEPs

It was first observed in [7] that under mild assumptions a GNEP can be reformulated
as an equivalent QVI. Hence, we can obtain GNEP results by applying the QVI results
from the last sections. We will not state all of them here, but we will focus on special
cases, where we can obtain new results.

We consider GNEPs with linear constraints and quadratic cost functions. Let matri-
ces Qν ∈ R

nν×nν and Aνμ ∈ R
mν×nν , and vectors cν ∈ R

nν and bν ∈ R
mν be given.

Further, Xν is a closed convex subset of R
nν . Each player ν = 1, . . . , N tries to find

xν ∈ R
nν to solve the problem

min
xν

1

2
(xν)�Qνx

ν + (cν)�xν s.t.
N∑

μ=1

Aνμ xμ ≤ bν, xν ∈ Xν .
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Notice that the GNEPs considered here have objective functions that depend only on
private variables, while the constraints may couple all the variables. We underline that
the coupling constraints are not necessarily shared by all the players, and therefore,
these GNEPs are, in general, no generalized potential games as defined in [37,38].
The QVI reformulation of the GNEP is made up by

F(x) =
⎛
⎜⎝
Q1

. . .

QN

⎞
⎟⎠ x+

⎛
⎜⎝
c1

...

cN

⎞
⎟⎠ , g(y, x)=

⎛
⎜⎝

A11 y1+ ∑
μ�=1 A1μ xμ−b1

...

ANN yN+ ∑
μ�=N ANμ xμ−bN

⎞
⎟⎠ .

By the linearity of the constraints, we have (A4).
For completeness, let us first mention that the case of linear cost functions, i.e., if

we have Qν = 0 for all ν = 1, . . . , N , is discussed in [32]. In particular, we have in
[32, Theorem 4.1] the following result:

Lemma 6.1 Let Qν = 0 and Xν = R
nν for all ν ∈ {1, . . . , N }. Assume that

det(∇yg•J Jh J•) ≥ 0 for all J ⊆ {1, . . . ,m} with |J | = n, and that the determinant
is positive for one of these sets. Then, J H(λ,w) is nonsingular for all λ,w ∈ R

m++.

Exploiting Theorem 4.1, we can extend Lemma 6.1 and get necessary and sufficient
conditions for the nonsingularity.

Corollary 6.1 Let Qν = 0 and Xν = R
nν for all ν ∈ {1, . . . , N }. J H(λ,w) is

nonsingular for all λ,w ∈ R
m++, if and only if all determinants det(∇yg•J Jh J•) with

J ⊆ {1, . . . ,m} and |J | = n, are either all nonnegative or all nonpositive, and at
least one of them is not 0.

Proof By Theorem 4.1, we consider the signs of dJ := det

(
0 ∇yg•J

−Jh J• 0

)
. We

have dJ = 0 for every J ⊆ {1, . . . ,m} with |J | �= n. For |J | = n we have

dJ = (−1)n det

(−Jh J• 0
0 ∇yg•J

)
= (−1)2n det(Jh J•) det(∇yg•J )

= det(∇yg•J Jh J•).

Now, the assertion is a consequence of Theorem 4.1. ��
In the next example, the matrix J H(x, λ,w) is always singular.

Example 6.1 Consider the linear 2-player GNEP

min−x1 s.t. x1 + x2 ≤ 1,

min−x2 s.t. x1 + x2 ≤ 1.

From Lemma 6.1, we get that J H(x, λ,w) is singular for some λ,w ∈ R
m++, since

for J = {1, 2} we get det(∇yg•J Jh J•) = det

((
1 0
0 1

) (
1 1
1 1

))
= 0. But even more,
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in this example J H(x, λ,w) is singular for all λ,w ∈ R
m++, since

det(J H(x, λ,w)) = λ1λ2 det

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 −1 0 0
−1 −1 0 0

⎞
⎟⎟⎠ + λ1w2 det

⎛
⎝

0 0 1
0 0 0

−1 −1 0

⎞
⎠

+λ2w1 det

⎛
⎝

0 0 0
0 0 1

−1 −1 0

⎞
⎠ + w1w2 det

(−1 −1
−1 −1

)
= 0.

Next,we consider themore general quadratic setting.However,we restrict ourselves
to GNEPs, where all players have the same number of variables, i.e., we assume
n1 = . . . = nN . For some special structures, we get the facts (F1)–(F7).

Theorem 6.1 Let n1 = . . . = nN , Qν = βνT with βν ∈ R++ and a positive
definite matrix T ∈ R

n1×n1 , and Xν = R
n1 for all ν ∈ {1, . . . , N }. Assume

Aνμ = αμ(Bν + Eνμ) with αμ ∈ R and Bν, Eνμ ∈ R
mν×n1 , Eνν = 0, for all

μ, ν ∈ {1, . . . , N }.
1. Let all entries of either EνμT−1Bμ or (Bν + Eνμ)T−1Bμ be nonnegative for all

μ, ν ∈ {1, . . . , N }. Then, M is a semimonotone matrix, i.e., (A2) holds, implying
(F2) and (F3).

2. Let Eνμ = 0 for all μ, ν ∈ {1, . . . , N }. Then, M is a P0-matrix, i.e., (A1) holds,
implying (F1)-(F4), (F6) and (F7).

3. Let Eνμ = 0, let Bν be a positive matrix, let T−1 be a nonnegative matrix with a

positive diagonal, and let α2
ν

βν
= α2

μ

βμ
> 0 for all μ, ν ∈ {1, . . . , N }. Then, M is a

positive semidefinite S matrix, i.e., (A3) holds, implying that all the facts (F1)-(F7)
are true.

Proof We start with case 2: Jx L(x) =
⎛
⎜⎝

β1T
. . .

βN T

⎞
⎟⎠ , is nonsingular, by the

assumed positive definiteness of T and since βi > 0 for all i = 1, . . . , N . Further, we
have

M =
⎛
⎜⎝

α1B1 · · · αN B1
...

...

α1BN · · · αN BN

⎞
⎟⎠

⎛
⎜⎜⎝

1
β1
T−1

. . .
1

βN
T−1

⎞
⎟⎟⎠

⎛
⎜⎝

α1B�
1

. . .

αN B�
N

⎞
⎟⎠

=

⎛
⎜⎜⎜⎝

α2
1

β1
B1T−1B�

1 · · · α2
N

βN
B1T−1B�

N
...

...
α2
1

β1
BNT−1B�

1 · · · α2
N

βN
BN T−1B�

N

⎞
⎟⎟⎟⎠

=B T−1 B
�
D,
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where B :=
⎛
⎜⎝

B1
...

BN

⎞
⎟⎠ and D :=

⎛
⎜⎜⎜⎝

α2
1

β1
Im1

. . .

α2
N

βN
ImN

⎞
⎟⎟⎟⎠ . For J ⊆ {1, . . . ,m}, we have

det(MJ J ) = det((B T−1 B
�
)J J DJ J ) = det((B T−1 B

�
)J J ) det(DJ J ) ≥ 0,

because B T−1 B
�

is positive semidefinite, hence a P0 matrix, and D is positive
semidefinite and diagonal. Therefore, M is a P0 matrix, that is, (A1) is true. As
a consequence, (F1) holds by Proposition 3.1 and (F4) by Theorem 3.1. Further,
Proposition 4.4 gives (F6) and (F7). Finally, since (A1) implies (A2), we have (F2)
from Proposition 3.2 and (F3) from Proposition 3.3.

Now, let us consider case 1: We have

M = B T−1 B
�
D+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
α2
2

β2
E1 2T−1B�

2 · · · α2
N

βN
E1 N T−1B�

N

α2
1

β1
E2 1T−1B�

1 0
...

...
. . .

α2
N

βN
EN−1 N T−1B�

N
α2
1

β1
EN 1T−1B�

1 · · · α2
N−1

βN−1
EN N−1T−1B�

N−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If the first condition holds, M is the sum of a P0 matrix and a nonnegative one; thus,
it is semimonotone. If the second condition holds, M is nonnegative and then also
semimonotone. In any case, (A2) holds. Now, (F2) follows from Proposition 3.2 and
(F3) from Proposition 3.3.

In case 3, the matrix M = B T−1 B
�
D, with D = α2

1
β1
I , is positive semidefinite.

The assumptions on T−1 and Bν imply that Mz = α2
1

β1
B T−1 B

�
z > 0, for any vector

z > 0. Thus, (A3) is true. Fact (F5) comes from Theorem 3.2, while all the others
follow as in case 2, since (A3) implies (A1). ��
Example 6.2 Let us consider N firms operating in a specific area. Each firm produces
its goods in n1 spots. Let xν ∈ R

n1+ be the quantities of production of the νth firm, and
let its cost be given by

costν(x
ν) := (mν)�xν + 1

2
βν

n1∑
i=1

(xν)2,

where mν ∈ R
n1− are the marginal costs and βν > 0. Let αν > 0 be a number giving

the degree of pollution of the n1 plants of the νth firm. Any firm ν must control the
level of pollution in mν different spots of the area:

ανBν x
ν +

∑
μ�=ν

αμ(Bν + Eνμ) xμ ≤ bν,
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where: Bν ∈ R
mν×n1++ represents the absolute pollution impact of the n1 spots of

production of the νth firm on the mν spots, where the pollution must be controlled by
the firm; Eνμ ∈ R

mν×n1 represents some deviations from Bν , and (Bν + Eνμ) is the
absolute pollution impact of the μth firm on the mν spots controlled by the νth firm;
bν ∈ R

mν++ are the maximum levels of pollution allowed in the mν spots controlled by
the νth firm. Any firm ν minimizes costν subject to its pollution constraints.

Referring to Lemma 6.1, we can prove the following assertions.
1. Let all (Bν + Eνμ) ≥ 0, i.e., the absolute pollution impacts of the firms are

nonnegative. Then, (A2) holds and the facts (F2) and (F3) are true.
2. Let Eνμ = 0 for all ν and μ, i.e., the plants of all the firms in any specific spot

impact equally on the controlled spots. Then, (A1) holds and facts (F1)–(F4), (F6)
and (F7) are true.

3. Let Eνμ = 0 and α2
ν

βν
= α2

μ

βμ
for all ν and μ, which is, for example, true if the

degrees of pollution αν and the parameters bν are the same for all the firms. Then,
(A3) holds and all the facts (F1)–(F7) are true.

Now we consider a different framework involving box constraints.

Theorem 6.2 Assume n1 = . . . = nN , Qν ∈ R
n1×n1+ are nonnegative diagonal matri-

ces, Xν = [lν, uν] for all ν = 1, . . . , N , and Aνμ = DνDμ + Eνμ, with diagonal
matrices Dν, Dμ ∈ R

n1×n1 and matrices Eνμ ∈ R
n1×n1 for all ν, μ ∈ {1, . . . , N }.

1. Let Qν be positive diagonal matrices for all ν ∈ {1, . . . , N }, and Aνμ be non-
negative for all μ, ν ∈ {1, . . . , N }. Then, (A2) holds and the facts (F2) and (F3)
are true.

2. Let Eνμ = 0 for all μ, ν ∈ {1, . . . , N }. Then, M̃ is a P0-matrix, and the facts (F6)
and (F7) are true. If, moreover, Qν is positive definite for all ν = 1, . . . , N, (A1)
holds and facts (F1)-(F4), (F6) and (F7) are true.

Proof Point 1 is due to Proposition 5.1.
Let us consider point 2. Let arbitrary λ,w ∈ R

3n++ be given. By assumption Jx F is
positive semidefinite. We set

J̃x L(λ,w) = Jx F + diag(λ2 ◦ (w2)−1) + diag(λ3 ◦ (w3)−1) =:
⎛
⎜⎝
Q̃1

. . .

Q̃N

⎞
⎟⎠ ,

with positive definite diagonal matrices Q̃ν ∈ R
n1×n1, ν = 1, . . . , N . We get

M̃ =
⎛
⎜⎝

D1D1 · · · D1DN
...

...

DN D1 · · · DN DN

⎞
⎟⎠

⎛
⎜⎝
Q̃−1

1
. . .

Q̃−1
N

⎞
⎟⎠

⎛
⎜⎝
D1D1

. . .

DN DN

⎞
⎟⎠

=
⎛
⎜⎝

D1D1 Q̃
−1
1 D1D1 · · · D1DN Q̃

−1
N DN DN

...
...

DN D1 Q̃
−1
1 D1D1 · · · DN DN Q̃

−1
N DN DN

⎞
⎟⎠
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= C C� Ď,

where C :=
⎛
⎜⎝

D1
...

DN

⎞
⎟⎠ and Ď :=

⎛
⎜⎝
D1 Q̃

−1
1 D1

. . .

DN Q̃
−1
N DN

⎞
⎟⎠ .

For arbitrary J ⊆ {1, . . . ,m}, we have

det(M̃J J ) = det((C C�)J J ĎJ J ) = det((C C�)J J ) det(ĎJ J ) ≥ 0,

because C C� is positive semidefinite, and Ď is positive semidefinite and diagonal.
Therefore, M̃ is a P0 matrix. Facts (F6) and (F7) follow from Corollary 5.1.

Moreover, if matrices Qν are positive definite, then we can exploit the point (c) of
Corollary 5.2 to say that assumption (A1) holds. Then, the assertion can be obtained
as in point 2 of Lemma 6.1. ��
Remark 6.1 Let us give an example class, where Lemma 6.2 can be applied forGNEPs.
Suppose, each player has one variable, and, beside box constraints, we have exactly
one constraint, that is shared by all players. Then, this constraint can be stated using
Aνμ = Dμ ∈ R and Dν = 1 for all ν, μ = 1, . . . , N . Now, if all Qν ∈ R++, the
second case of Lemma 6.2 guarantees (F1)–(F4), (F6) and (F7).

Remark 6.2 Unfortunately, if we have GNEPs with two or more linearly independent
shared constraints, the matrix M̃ can easily fail to be a P0-matrix. For example, con-
sider a 2 player game, where each player has one variable and we have, beside box
constraints, two shared constraints a1x1 + a2x2 ≤ b1, a3x1 + a4x2 ≤ b2. Then, if

Q̃1, Q̃2 > 0 we have that J̃x L =
(
Q̃1 0
0 Q̃2

)
is nonsingular. Further,

M̃ =

⎛
⎜⎜⎝

a21 Q̃
−1
1 a1a3 Q̃

−1
1 a22 Q̃

−1
2 a2a4 Q̃

−1
2

a1a3 Q̃
−1
1 a23 Q̃

−1
1 a2a4 Q̃

−1
2 a24 Q̃

−1
2

a21 Q̃
−1
1 a1a3 Q̃

−1
1 a22 Q̃

−1
2 a2a4 Q̃

−1
2

a1a3 Q̃
−1
1 a23 Q̃

−1
1 a2a4 Q̃

−1
2 a24 Q̃

−1
2

⎞
⎟⎟⎠ .

For the index sets I = {2, 3} and J = {1, 4}, we obtain

det(M̃I I ) = −a2a3(a1a4 − a2a3)Q̃
−1
1 Q̃−1

2 ,

det(M̃J J ) = a1a4(a1a4 − a2a3)Q̃
−1
1 Q̃−1

2 .

Now we see that M̃ is not a P0 matrix, whenever sign(a1a4) = sign(a2a3) �= 0.
In this case, by point (c) of Corollary 5.2 we obtain that the matrix M is not a P0
matrix. Then, Corollary 4.1 shows that J H(x, λ,w) fails to be nonsingular for all
(λ,w) ∈ R

2++ × R
2++.

Finally, we want to present some GNEPs with box constraints, where (F5) can be
shown. We discuss an example class that often occurs in applications.
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Proposition 6.1 Let Xν = [lν, uν] for all ν = 1, . . . , N ,, and further, only upper
constraints are present, i.e., all coefficients of the remaining constraints are positive.
Let the feasible set be nonempty. If all Qν ∈ R

nν×nν , ν = 1, . . . , N are nonsingular
and M is positive semidefinite, (F5) holds.

Proof Since all Qν ∈ R
nν×nν , ν = 1, . . . , N are nonsingular, Jx L = Jx F

is nonsingular. Since M is positive semidefinite by assumption, we can apply
Theorem 5.1, if we have shown that the columns of the matrix ∇h•J (x) with
J = { j ∈ {1, . . . ,m} : h j (x) > 0} are positively linearly independent for all x ∈ R

n .

Assume we have a vector v ∈ R
|J |
+ with ∇h•J (x)v = 0. We want to show that v = 0

must hold.
Whenever J contains an upper box constraint with index j0, the corresponding

lower box constraint is not in J . Hence, the matrix ∇h•J (x) has a corresponding
row, with only nonnegative entries, and we must have v j0 = 0. Thus, we can assume
without loss of generality that J does not contain any upper box constraint.

Since the feasible set is nonempty, the set J = { j ∈ {1, . . . ,m} : h j (x) > 0}
cannot contain all lower box constraints and an additional upper constraint. Hence,
the matrix ∇h•J (x) can either contain only lower box constraints, resulting in v = 0,
or it must contain at least one row where all entries are nonnegative. But then, the
components of v corresponding to the positive coefficients of the upper constraints
must all be zero. The remaining matrix has only lower box constraints, again resulting
in v = 0. Thus, we must have v = 0, meaning that the columns of ∇h•J (x) are
positively linear independent for all x ∈ R

n . By Theorem 5.1, fact (F5) holds. ��

7 Conclusions

In this paper, we presented a number of necessary and sufficient conditions for themain
issues, when solving QVIs via a smooth constrained or a nonsmooth unconstrained
equation reformulation of their KKT conditions.We have seen that the matrix M plays
a crucial role. The first issue is to guarantee that stationary points of the merit function
are indeed solutions. We considered several concepts of constrained or unconstrained
stationary points, and the issue was solved under a P0 property for the nonsmooth
reformulation. For the constrained, but smooth, reformulation we required stronger
assumptions, namely positive semidefiniteness of M together with the S property of
this matrix. Further, we gave an example, showing that the P0 property is not sufficient
in the smooth reformulation. Considering only stationary points within the feasible
set, which is important for interior point methods, we showed the stationarity result
for both reformulations, if M is a semimonotone matrix.

For the second issue, the nonsingularity of the Jacobian at feasible iterates, we con-
sidered the QVI class, where the constraints are linear with variable right-hand side.
Here, we proved equivalence of the nonsingularity with a sign condition for determi-
nants of certain matrices, which are independent of the dual variables. Furthermore,
under an additional nonsingularity assumption on Jx F(x), we showed equivalence to
the P0 property of M . In the context of QVIs, these are, to the best of our knowledge,
the first necessary and sufficient conditions for nonsingularity of the Jacobians. We
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have also seen that, for QVIs with box constraints, some of the assumptions can be
weakened.

We further presented some subclasses of GNEPs with linear constraints and
quadratic cost functions, for which the Jacobian is always nonsingular, and the absence
of nonoptimal stationary points can be shown. Moreover, we extended a known suf-
ficient nonsingularity condition for GNEPs with linear constraints and cost functions
to a necessary and sufficient condition.
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