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Abstract
This paper presents MaxHadoop, a flexible and scalable emulation tool, which 
allows the efficient and accurate emulation of Hadoop environments over Software 
Defined Networks (SDNs). Hadoop has been designed to manage endless data-
streams over networks, making it a tailored candidate to support the new class of net-
work services belonging to Big Data. The development of Hadoop is contemporary 
with the evolution of networks towards the new architectures “Software Defined.” 
To create our emulation environment, tailored to SDNs, we employ MaxiNet, given 
its capability of emulating large-scale SDNs. We make it possible to emulate realis-
tic Hadoop scenarios on large-scale SDNs using low-cost commodity hardware, by 
resolving a few key limitations of MaxiNet through appropriate configuration set-
tings. We validate the MaxHadoop emulator by executing two benchmarks, namely 
WordCount and TeraSort, to evaluate a set of Key Performance Indicators. The tests’ 
outcomes evidence that MaxHadoop outperforms other existing emulation tools 
running over commodity hardware. Finally, we show the potentiality of MaxHadoop 
by utilizing it to perform a comparison of SDN-based network protocols.
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1 Introduction

The Software Defined Networking (SDN) paradigm has been defined to convert the 
network environment into a new one, more intelligent and adaptable, to support new 
applications. This new paradigm introduces a centralized node, named Software 
Defined Network Controller (SDN-C), which eliminates the vertical integration of 
legacy networks [1]. This approach increases the flexibility and simplifies the net-
work management by decoupling control plane and data plane. Network nodes are 
programmable by the SDN-C through the OpenFlow protocol [2]. Programmability 
of network nodes is granted by the introduction of appropriate levels of abstraction 
that can be accessed through the use of control interfaces or Application Program-
ming Interface (API).

The interworking of SDN and Hadoop would be very beneficial to optimize the 
traffic load over network nodes as generated by Hadoop jobs. Its effectiveness has 
been demonstrated by several studies presented in the literature, as discussed in 
Sect. 3.

Several simulators and emulators have been proposed for the evaluation of SDN 
protocols, including investigations of Hadoop operation on SDNs. A good example 
is Doopnet  [3]. However, as discussed in Sect. 3, the available tools present some 
limitations in terms of scalability, requirements on hardware resources and elabora-
tion time.

A good approach is the use of Hardware in the Loop (HiL) to distribute the sim-
ulation/emulation load over multiple physical machines using a consolidated SDN 
emulator, like e.g. MaxiNet  [4]. Maxinet is a SDN emulator which partitions the 
emulated network into n portions, and instantiates each one to the available physical 
machines using the partitioning library METIS. This allows the emulation of large-
scale SDNs; however, the automatic mapping of network nodes is not appropriate to 
emulate an instance of a Hadoop Cluster because it lowers the ability to control the 
memory assignments necessary for the Hadoop job to run properly.

In this paper, we propose a framework to emulate large-scale SDNs without 
any architectural or topological limits. We exploit the HiL to distribute the emula-
tion load over multiple physical machines. We make it possible to employ Maxi-
Net, by proposing a methodology to overcome the limitation of METIS’ mapping 
of network nodes to the physical machines.1 Starting from the identification of the 
requirements of all involved processes, appropriate settings and optimal mapping are 
derived. The mapping methodology is presented in the context of Hadoop, but it can 
be easily generalized to other “heavy” applications. It is crucial to apply the same 
methodology to any other scenario to be emulated in setups involving containers and 
HiL, in order to avoid any bias in the emulation results and bottlenecks.

In particular, in this paper we show how to enable the reliable emulation of a 
Hadoop cluster in MaxiNet; we formalise the memory requirements of Hadoop 
hosts and the physical constraints of the workers in terms of design constraints of 

1 In the following we refer to the physical machines as workers.
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MaxiNet’s setup. The distribution of the emulated network nodes is derived and 
statically mapped onto the workers. Increasing the number of workers provides the 
desired horizontal scalability to MaxHadoop, making it possible to emulate very 
complex architectures, widely adopted and implemented in today’s tera-scale data 
centers, such as server-centric architectures like BCube and DCell [5], or switch-
based networks, like Fat Tree[6]. It is possible to study a MapReduce job in dif-
ferent Fat Tree configurations and different routing protocols managed by the SDN 
controller[7].

Our tool is of fundamental importance in the context of the new Big Data sources, 
such as the IoT environment, where the main challenge is the management of huge 
amounts of data. We provide a scalable and flexible tool to the research community 
to test new protocols and to explore potential future Hadoop applications on SDNs.

MaxHadoop’s scalability is prooved in this paper through tests based on two well 
known Hadoop benchmarks:

– TeraSort, a memory-intensive application that can order any amount of data 
quickly, in different configurations;

– WordCount, a CPU intensive benchmark, that counts the number of occurrences 
of each word in a given input set.

The results from the benchmarks are grouped to evaluate the main Hadoop and 
hardware KPIs during the MaxHadoop emulation of a datacenter, hosts, switches, 
network links and virtual topologies.

The test scenario consists of a tree topology with a depth of 2 with ten hosts 
distributed over two racks. The performed validation tests show the horizontal scal-
ability of MaxHadoop by increasing the number of workers, its versatility by CPU 
and Memory intensive tests, and its easiness of configuration by varying network 
bandwidth and the memory assigned to nodes. The measurements of both the emu-
lated cluster metrics and the utilization of hardware resources (CPU, RAM and net-
work) in the workers allows us to demonstrate that there are no bottlenecks or over-
sizing of the hardware in the emulation setup. The performed validation tests show 
MaxHadoop’s:

– horizontal scalability, by increasing the number of workers,
– versatility, by CPU- and memory-intensive tests,
– easiness of configuration, by varying network bandwidth and memory assigned 

to nodes.

Finally, we show the potentiality of MaxHadoop to support research on SDN-based 
network protocols, by implementing in MaxHadoop a typical use case of interwork-
ing of SDN and Hadoop in Data Centers (DC): the impact of different SDN-based 
routing strategies in a Fat-Tree topology.

The paper is organised as follows. In Sect. 3 we extensively review the state-of-
the-art on simulation/emulation tools to support reliable investigations of the inter-
working of Hadoop and SDNs. In Sect. 1, the basics of MaxiNet and Hadoop are 
provided. In Sect. 4, our methodology for the correct host-to-memory mapping to 
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fulfill the Hadoop requirements is presented. The Sect.  5 describes in details the 
MaxHadoop framework. Validation tests and performance evaluation of MaxHa-
doop are presented in Sect. 6. Finally, we draw a conclusion and plan future exten-
sions of the present work in Sect. 7.

2  Background

We kick off with a detailed description of the enabling frameworks underneath Max-
Hadoop, namely MaxiNet and Hadoop.

2.1  MaxiNet

As we already highlighted, MaxiNet provides the capability of emulating a large-
scale SDN network[4], where the throughput and latency on every link can be set 
by applying the TCLink class of MiniNet, being MaxiNet the extension of Mini-
Net. MaxiNet supports any external SDN controller. The controller is essential for 
the network operation, especially if multipath protocols, quality of service (QoS) or 
packet filtering policies are used. Through the controller, it is possible to program 
the OpenFlow switches to manage the data flows.

As shown in Fig. 1, MaxiNet can be deployed onto a pool of workers, that host an 
unmodified instance of MiniNet each. In practice, the whole network to be emulated 
is partitioned among different instances of MiniNet by METIS, which is a graph 
partitioning library. Workers communicate by means of generic routing encapsula-
tion (GRE) tunnels. The whole emulation is controlled by the Frontend centralized 
API provided by MaxiNet. The Frontend is a specialized worker, which distributes 
the network to be emulated onto the whole pool of workers. The Frontend stores a 
list of nodes-to-workers mapping, which enables to access all nodes. MaxiNet scales 
nicely with an increasing number of physical machines. It provides a command line 

Fig. 1  Maxinet in a nutshell
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interface (CLI), as in Mininet, which helps debug the experiments and executes 
commands within the workers’ scope. Then it supports the X-forwarding graphical 
user interfaces (GUIs) on both the workers and emulated hosts. Maxinet has native 
monitoring primitives/methods that allow the monitoring of the course of the exper-
iments by means of the observation of CPU, memory and network usage.

Unfortunately, MaxiNet is not aware of the capabilities of workers. Thus, the 
automatic mapping could exceed the performance limits of the workers in the pres-
ence of the heavy load of Hadoop processes. To overcome this limitation, we intro-
duce in Sect. 4 the host-to-memory mapping method to calculate either the number 
of workers needed to emulate the Hadoop cluster or the memory required by the 
containers used in the emulation.

Another relevant feature of the proposed emulation framework, worth to high-
light, is the support of Docker containers. Docker overcomes the MiniNet limitation 
of emulating distributed environments, such as Hadoop, over a single file system. 
Docker is an open-source project for the creation of distributed systems, allow-
ing different applications or processes to work autonomously on the same physi-
cal machine or different virtual machines[8]. The application and its dependencies 
are packaged up as a lightweight, portable, self-sufficient container. Since MiniNet 
uses a single Linux kernel for all virtual hosts, which share the host file system and 
process ID (PID) space, the use of Docker Containers, by, e.g., Containernet[9], pro-
vides a complete machine isolation between the virtual hosts and the machine’s file 
system, allowing the installation of a real Hadoop cluster.

2.2  Hadoop

Hadoop is composed of two main elements, which are: Hadoop Distributed File Sys-
tem (HDFS) and Yet Another Resource Negotiator (YARN) framework. The HDFS 
is designed to be deployed onto low-cost hardware, to provide high fault-tolerance 
and to sustain batch-processing. Also, it has been demonstrated that HDFS is a good 
provider for those applications that require high-throughput and low-latency data 
access. Generally, the data sets of applications running on top of HDFS have a size 
ranging from gigabytes to terabytes. The HDFS cluster is composed by one mas-
ter, named NameNode (NN), and usually one DataNode (DN) per node. The mas-
ter manages the filesystem namespace, regulates the access to the files and executes 
operations like opening, closing, and renaming files and directories. Another impor-
tant capability is the mapping of blocks to the DataNodes, where the blocks result 
from the file splitting procedure usually operated by the filesystem. The DataNodes 
perform the operations required by both the NameNode and the filesystem client.

Since version 2.0, Hadoop comes along with YARN which distributes into 
separate daemons the functionalities of resource management and job scheduling 
and monitoring. The YARN architecture is composed by four main elements: the 
ResourceManager (RM), the NodeManager (NM), the ApplicationMaster (AMt), 
and the Container (C). The RM is defined as the arbitrator of cluster’s resources 
allocation to competing applications. The RM is composed of two modules, namely 
the Scheduler (SC) and the Applications-Manager (AMg). The SC is in charge of 
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the resources allocation process, whereas AMg is responsible of accepting job sub-
missions and for negotiating the container of AMt. The NM is a per-node daemon 
that manages the containers and monitors their resource usage, in terms of CPU, 
disk, network, and memory utilization, and provides a periodic report to the RM 
scheduler. The AMt is a component associated with a single application. The appli-
cation is expressed as either a single job or a Directed Acyclic Graph (DAG) of jobs. 
The AMt negotiates the resources with the RM and works with NMs to perform and 
monitor the tasks. The Container is a collection of physical resources such as CPU 
cores, RAM, and disks on a single node.

An example of YARN application is the MapReduce job. MapReduce is a data 
massive generation and processing technique executed on a distributed cluster. It is 
based on the divide and conquer strategy. The MapReduce job is completed in three 
phases, namely the Map (M), Shuffle (S), and Reduce (R). The M phase takes as 
input a dataset and, based on programmer’s decisions, produces a list of (key, value) 
pairs. This list is shuffled and sorted in the S phase, whose outcome is reduced in the 
R phase.

3  Related Work

The interworking of SDN and Hadoop would be very beneficial to optimize the 
traffic load over network nodes as generated by Hadoop jobs. Examples are the 
OFScheduler[10], a dynamic OpenFlow-based network communications optimizer 
for MapReduce operations, and the PANE controller[11], which assigns to Hadoop 
the network bandwidth required to run its operations (i.e., the jobs) in the shuffle 
phase and to write the final output in the Hadoop Distributed File System (HDFS). 
The interaction between Hadoop job scheduler and the SDN control plane using a 
method for aggregating optical links in intermediate devices has been demonstrated 
in[12] and effectively satisfies the bandwidth requests.

Over the past decade, cloud computing and related ICT technologies have devel-
oped rapidly, and in the interesting study by Abbasi et al. [13], the Software-Defined 
Cloud Computing (SDCC) paradigm emerges as an approach “software-defined” 
for automating the process of optimal cloud configuration by extending virtualiza-
tion concept to all resources in a data center such as infrastructure, network, storage, 
control, protection and service level agreement.

Complete data centers transformation to SDCC principles will take years. Dur-
ing this process, several research works focus on implementation challenges in DC 
transformation, primarily in terms of programmability, scalability, interoperability, 
and security. Although the SDCC is in the early stages of development, global vir-
tualization giants like VMware have adopted SDCC concepts with proprietary solu-
tions and are able to support open cloud solutions, as Kubernetes (Tanzu) [14] and 
Docker (vSphere Integrated Containers)[15] including a wide range of virtualization 
services, management and orchestration platforms, storage resource managers, and 
hybrid-cloud deployment solutions.

The evolution of cloud services towards network emulation is described by Lai 
et al.[16]. This cloud-based network platform uses technologies such as NFV and 
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SDN to the network emulation domain and aims at providing to the users the 
“Network Emulation as a Service” (NEaaS), which can be conveniently deployed 
on both public and private clouds. To emulate networking nodes in a hybrid 
manner, Docker containers are used (representative of lightweight virtualiza-
tion technology) as a supplement to virtual machine (VM) (heavy virtualization 
technology).

Zulu et al. [17] shows a simple hybrid implementation of the technology (cloud 
and on-premises), applied to a realistic programmable network that uses an SDN 
network with OpenDayLight controller hosted on Amazon Web Services. This con-
troller is used as a control plane for a Mininet switch that allows communication 
between MiniNet hosts and a web server hosted on the Emulated Virtual Environ-
ment-Next Generation (EVE-NG).

So far, SDNs studies have been based on a plethora of simulators.
NS-3 simulator embeds a project which supports OpenFlow version 0.89[18], 

against the current version 1.5. Unfortunately, NS-3 cannot yet involve any external 
SDN controller.

Another good simulator and emulation platform is EstiNet[19], that supports 
both OpenFlow and different types of SDN controllers and offers a complete graph-
ical user interface. However, EstiNet is an expensive commercial product and its 
underlying cloud-service framework, called “Simulation as a Service”, needs either 
a service-clouding hardware platform or a cloud provider, which introduces addi-
tional costs and overhead.

A simulation framework for SDN-enabled cloud is CloudSimSdn [20], based on 
CloudSim[21]. It is one of the most famous cloud simulators for centralized man-
agement of cloud resources by a controller and offers the abstraction of the control 
plane and data plane. However, experiments are highly demanding in terms of elab-
oration time and hardware resources.

A SDN emulator which overcomes the cost-problem and introduces the easy 
management without rivals is Mininet[22], where the network is instantiated by the 
user through simple python scripts. An example Mininet framework to test a SDN 
network with a POX controller in the cloud has been presented in[23]. However, 
the main limitation of MiniNet is the scalability, because the emulation load is con-
strained to the hardware resources of the machine. A hand-crafted version “Mini-
Net Cluster Edition,” which enables the distribution of the network emulation over a 
cluster of machines, has been proposed, but is still at a prototype-stage.

Finally, an emulation framework that allows the deployment of Hadoop clusters 
on a SDN is Doopnet[3]. It uses Docker containers as the virtual hosts and natively 
supports SDN in conjunction with external OpenFlow controllers (such as Flood-
light, chosen for testing). Doopnet is an interesting framework because it is designed 
to integrate experimental testbeds in the real-world to evaluate new algorithms. 
However, it has some limitations: it runs on a single physical machine, limiting the 
size of the emulated network topology, it requires the installation of Dockernet[24] 
to manage the docker environment and requires large computing and memory capac-
ity on the single physical machine to simulate a Hadoop complex infrastructure. 
Even in this case, scalability cannot be easily achieved, i.e., either a manual and 
sophisticated error-prone procedure is required, or the hardware upgrade.
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vSDNEmul[25] was recently presented and represents a relevant solution for 
SDN emulation. It uses Docker containers to represent the elements in the emu-
lated network. It does not make use a network emulator (like e.g., Mininet), but 
SDN switches performed as Docker container for an interaction and execution of 
more realistic scenarios. For the simulation of complex environments, vSDNEmul 
requires an intensive use of CPU and RAM, which can reach up to +  230% and 
+ 2000% of Mininet requirements, respectively. vSDNEmul represents an emulator 
of boundary between the physical world (on-premise) and the cloud, because it can 
integrate the emulation with cloud solutions, such as Kubernetes[26], Swarm[27] 
and Containerd[28].

4  Host‑to‑Memory Mapping Methodology

In light of the above description of the Hadoop architecture, it is evident that the 
Hadoop processes (in particular YARN) require the assignment of specific amounts 
of physical memory and computational resources in the workers in order to run 
unbiased emulations. Beyond the possibility of increasing of the CPU and RAM 
available on the single worker, MaxHadoop guarantees the emulation scalability by 
allowing to scale out the intensive use of computational and memory resources by 
increasing the number of workers to distribute the workload.

Concerning the use of computational resources, MaxHadoop offers the virtual-
ization of applications through Docker that allows Hadoop tasks to be distributed 
evenly over all available core CPUs. In fact, by default, all Docker containers get 
the same proportion of CPU cycles and, on a multi-core system, the shares of CPU 
time are distributed over all CPU cores. Theoretically, it is possible to set advanced 
kernel-level features like the CPU scheduling and prioritization, or assign specific 
CPUs or cores a container can use. However, incorrect settings of these values can 
cause the host system to become unstable or unusable. Instead, the default configu-
ration for computing resources provides a perfectly balanced distribution for all con-
tainers, which is the best possible configuration because all Hadoop nodes, except 
the master, have the same requirements in terms of computational resources, as the 
NM and DN and MR processes. We demonstrate in Sect. 6 that it is possible to use 
the default parameters without penalizing the performance.

Concerning the physical memory, the default configuration process of Maxi-
net assigns the memory to the different nodes according to a fair share of physical 
resources, hence the default settings of Maxinet could introduce an undesired bias 
in the emulation if the allocated physical memory was not adequate to support the 
Hadoop processes. In this section we analyse in detail the memory requirements of 
the relevant Hadoop processes and provide a methodology for the correct sizing of 
the emulation setup. We also provide a configuration algorithm to spread the Max-
Hadoop emulation setup over an adequate number of physical machines, guarantee-
ing the regular operation of a real Hadoop cluster constituted by a variable number 
of nodes. Obviously, the amount of resources, in terms of RAM and CPU, avail-
able in the physical machines shall match overall the requirements imposed by the 
Hadoop cluster.
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The process of Hadoop memory allocation for MapReduce jobs consists of two 
phases. In the first phase YARN get assigned an amount of memory My and a num-
ber of CPU cores for each container. In the second phase, the application’s resource 
requests (e.g. MapReduce) are negotiated based on the available resources on each 
NodeManager of the cluster, then the MapReduce job runs on YARN utilizing its 
distributed resources to execute its Map and Reduce tasks. Hadoop provides a series 
of files to manage the memory’s and CPU’s configuration assigned to the processes. 
The yarn-site.xml file defines the YARN settings in terms of the following four 
parameters:

– yarn.nodemanager.resource.memory-mb is the amount of physical memory 
(RAM) that can be allocated to YARN containers on a single node. The default 
value is 8192 MB.

– yarn.scheduler.maximum-allocation-mb and yarn.scheduler.minimum-alloca-
tion-mb indicate the maximum and minimum memory allocation allowed to a 
single container, respectively. The default values are 8192  MB and 1024  MB, 
respectively.

– yarn.nodemanager.resource.cpu-vcores is the number of CPU cores that can be 
allocated to YARN containers. The default value for this parameter is 8.

The file mapred-site.xml defines the MapReduce settings, expressed by the follow-
ing six parameters:

– mapreduce.map.memory.mb and mapreduce.reduce.memory.mb are the physical 
memory values required by the ResourceManager for each Map and Reduce task, 
respectively; the default values are both 1024 MB.

– mapreduce.map.java.opts and mapreduce.reduce.java.opts are the Java Virtual 
Memory (JVM) heap size for the Map and Reduce tasks, set to 80% of mapre-
duce.map.memory.mb and mapreduce.reduce.memory.mb.

– mapreduce.map.cpu.vcores and mapreduce.reduce.cpu.vcores are the number of 
virtual cores to request for each map and reduce task. The default value for both 
parameters is 1.

Furthermore, there are other fundamental processes running in a Hadoop cluster; 
their memory usage values, obtained by launching the “ps” and “jps” commands 
inside the Dockers containers, are listed in Table 1.

For the correct execution of the jobs, MaxHadoop requires the use of machines 
with adequate computational capacity, especially the physical memory. As described 
above, YARN manages the physical resources of the cluster (virtualized by Docker) 
and assumes default values for all memory-related Hadoop parameters. Unfortu-
nately, if a non-appropriate configuration of the memory-related properties is set, 
the cluster will start successfully, but won’t work properly and efficiently, introduc-
ing an undesired bias in the emulation results. In fact, the Docker containers, where 
Hadoop nodes run, are a process group spawned into independent namespaces by 
the Linux kernel, which is responsible of the resource scheduling on the hardware 
using, by default, the virtual memory subsystem. If the containers saturate the 
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available physical memory, they would use the swap file, allowing the processes to 
run properly but penalizing execution times. Therefore, it is fundamental to optimise 
these configuration settings.

Since one Hadoop cluster is usually composed of a single master node and n 
slave nodes, the total number of nodes, i.e. Docker containers, is n + 1 . Let w be the 
number of heterogeneous physical workers available in the lab, where MaxHadoop 
framework has to be installed. Hence, each worker is assigned a number of slaves 
nk for k = 1,… ,w , with n =

∑w

k=1
nk , and one worker is assigned the master node. 

Without loss of generality we assume that the master is hosted in the worker 1. The 
maximum memory requirement for the entire Hadoop environment Mh is given by:

where My is the amount of physical memory (RAM) that can be allocated to YARN 
containers on a single node; Mma = 1600 MB and Msl = 700 MB are the memory 
(RAM) amounts required by the master node and each slave node, respectively (see 
Table 1).

Let Mi = M
(i)
tot −M(i)

os
 be the memory available at the i − th worker, for i = 1,… ,w , 

where w is the number of workers, M(i)
tot is the total RAM installed in the i − th 

worker, and M(i)
os

 is the memory occupation of the OS and other processes in the 
i − th worker including, e.g., MaxiNet.2

To guarantee good performance to the Hadoop cluster and in particular to YARN, 
the MaxHadoop emulation setup should dispose of an amount of available memory 
such that the following condition holds

(1)Mh =

w∑

k=1

(
My +Msl

)
∗ nk +Mma

(2)
w∑

i=1

Mi ≥ Mh

Table 1  Memory usage of 
Hadoop processes

Node Process Memory (MB)

Master NameNode 350
SecondaryNameNode 250
ResourceManager 400
JobHistoryServer 400
WebAppProxyServer 200

Total master memory M
ma

1600
Slave DataNode 300

NodeManager 400
Total slave memory M

sl
700

2 M(i)
os

 can be obtained with the free command.
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with the constraints M1 =
(
My +Msl

)
× n1 +Mma and Mi =

(
My +Msl

)
× ni for 

i = 2,… ,w.
From the above equations we may calculate the maximum number of slaves that 

can be included in the cluster as given by:

where ⌊⋅⌋ indicates nearest integer smaller (or equal) than the argument.
The above expressions formalize the memory balance required by the emulation 

setup to design meaningful experiments in light of their objective and constraints. 
For instance, solving Eq. (2) in terms of w, we obtain the number of workers with 
given characteristics required to host a MaxHadoop emulation of a Hadoop cluster 
of certain dimensions. Solving Eq. (2) in terms of My , the memory allocation for the 
YARN containers is obtained, as constrained to the number and characteristics of 
the workers, i.e.

and so on.
Following the above mathematical calculations, the MaxHadoop emulation setup 

can be appropriately configured according to the Algorithm 1, where the notations 
are the same used in Eqs. (1)–(4). 

(3)n =

⌊
M1 −Mma

Msl +My

⌋
+

w∑

i=2

⌊
Mi

Msl +My

⌋

(4)My =

∑w

i=1
Mi −Mma∑w

k=1
nk

−Msl



1621

1 3

Journal of Network and Systems Management (2020) 28:1610–1638 

5  The MaxHadoop Emulator

5.1  MaxHadoop Architecture

The MaxHadoop architecture, as shown in Fig. 2, consists in four layers, which are 
detailed in the following, scrolling the architecture bottom-up. 

Layer I: Physical Setup  It gathers the workers that form the cluster for 
the computations and a laptop where the con-
troller SDN is installed. In this layer the work-
ers are connected to each other using the physi-
cal Ethernet network connection.

Layer II: Network Environment  It corresponds to the emulation of the network 
environment, i.e., the SDN in MaxiNet. The 
centralization of network control in the SDN 
controller allows the SDN controller to imple-
ment common network services, such as rout-
ing, multicast, access control, bandwidth man-
agement, quality of service, optimization of 
switch workloads, and other policies through 
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the use of APIs. MaxHadoop supports any 
external SDN controller, which centrally man-
ages the paths of data flows, including the paths 
between Mappers and Reducers. For our exper-
iments we chose Ryu[29]. It can be imple-
mented on a dedicated hardware device.

  The installation of MaxiNet on the Linux 
machine takes place through a simple script. 
Maxinet creates topologies and runs virtual 
hosts, network devices and links, instantiated 
by simple python scripts that make the physical 
cluster similar to a real network. The configura-
tion of the environment is set through the Maxi-
Net configuration file which defines all parame-
ters, including the default OpenFlow controller, 
and specifies the location of the frontend server 
and the workers properties.

Layer III: Docker Engine  On top of MaxiNet is the Docker environment. 
MaxHadoop uses Docker containers to emulate 
the hardware and the software to be evaluated, 
in place of the default MaxiNet shell-based 
hosts. Docker is available cross-platform, sup-
ports hardware resources to emulate differ-
ent devices, and is a lightweight option for an 
isolated environment to execute code. To swap 
out the MiniNet hosts with a Docker container 
we use a virtual Ethernet pair. This way, Maxi-
Net can also run Docker containers instead of 
the default shell-based hosts. To run Hadoop 
on emulated hosts, we have used a “Plug and 
Play” Docker image having Hadoop installed 
on Ubuntu. We have built the image starting 
from Hadoop source code version 2.9.0, and 
compiled inside a container. With this we have 
created a source Hadoop Docker Image for all 
cluster nodes, considerably reducing the size of 
the image compared to the installation from the 
Hadoop binary file.

Layer IV: Hadoop Cluster  It emulates a cluster Hadoop in a “Fully-Dis-
tributed” mode[30], where the daemons run 
on a cluster of machines, composed of Docker 
containers and configured with a master/slave 
architecture to distribute and process data 
between the various nodes. Hadoop master and 
slave nodes run within different Docker con-
tainers, NameNode and ResourceManager run 
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within Hadoop-master container and DataNode 
and NodeManager run within Hadoop-slave 
container.

5.2  Emulation Output Parameters

MaxHadoop may monitor many Hadoop metrics. The most common metrics are 
the amount of transferred data and the time spent by all flows generated during a 
phase of Shuffle in a MapReduce job, performed on a topology enabled for SDN. 
To access information about MapReduce flows we use the Hadoop metrics that 
are published with the REpresentational State Transfer (REST) API. The REST 
API provides counters, attempts, and configuration information about the jobs 
and tasks. To complete Hadoop cluster processes, we have enabled the proxy 
server that is embedded within the ResourceManager service of YARN to access 
the MapReduce ApplicationMaster REST APIs[31]. The detection of Hadoop 
metrics via REST API can be done either on-line during the execution of the Job, 
by issuing queries to the Hadoop Application Master; or off-line at the end of 
the job, by issuing queries to the History Server of the Hadoop cluster or access-
ing its logs. In particular, our framework can capture real-time information about 
running MapReduce tasks and produce an output using the Application Master 
REST APIs.

Moreover, the Hadoop Job HistoryServer stores data of task-level details that 
maintains information of MapReduce applications executed over the cluster. Net-
work flows can be captured by using either the SDN REST-API services or the 
Hadoop metrics/counter related to MapReduce jobs. The SDN REST-API services 
proactively pull global network traffic information based on any given port number. 
For instance, data shuffling traffic is captured during the MapReduce Shuffle phase 
using port number 50010.

The MapReduce framework exposes a number of parameters to track statistics 
on MapReduce job execution. On-Line detection is applied over a time window 
closely related to the Job. At the end of the Job, any communication on the sockets 
is closed. The metrics can be pulled in real time via REST API calls, by polling the 
ResourceManager while waiting for the Job to run. When a Job is detected in “Run-
ning” status it is possibile to obtain, in real time, the following metrics from the 
ApplicationMaster:

– Task Name;
– Task Type;
– Host and Rack;
– State of the Task;
– Amount of data to be transferred to the Reducer.

These data can be given in input to traffic engineering techniques to optimize 
the routing, redirect some traffic and reduce the Shuffle phase duration. For the 
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off-line detection of information related to MapReduce job we propose the use of 
Rumen[32], a framework that mines JobHistory logs to extract relevant data, store 
them in an easily-parsed, condensed format or digest and to generate statistics from 
Hadoop jobs useful for performance optimization and simulation.

In MaxHadoop it is also possible to monitor physical hardware resources, 
used by the workers running the experiment, to detect CPU usage, memory uti-
lization and network data rate. This information can be used to detect bottle-
necks in the hardware resources used for the testbed or if those resources are 
underutilized.

Although the MiniNet/MaxiNet network is isolated from the LAN and from 
the Internet by default, in MaxHadoop we create a specialized host emulated at 
the frontend which tunnels SSH from the frontend to the emulated hosts. This 
solution grants the access to the Hadoop cluster from the physical frontend 
machine, via network, like in a real environment.

A hybrid architecture composed of an environment of physical servers dedi-
cated to Hadoop and a emulator of virtualized nodes on Docker containers, such 
as MaxHadoop, could provide a very interesting solution. For example, if we 
detect a saturation of the resources of the physical cluster through the REST 
API queries, we could activate small virtualized computing centers that are nor-
mally dedicated to test environments, to increase the computing capacity. All 
this assumes proper configuration of IP addressing and virtualized environment 
name resolution. In MaxHadoop the name resolution has been simplified using 
the “hosts” file instead of the DNS Server for the configuration.

5.3  MaxHadoop Workflow

The MaxHadoop workflow for a test execution is depicted in Fig. 3. The first step is 
to create the Docker image to generate Docker containers. In this phase we set the 
number of hosts and other information useful for the setup (daemons, memory, rack 
awareness, web interfaces, numbers of hosts, etc.), through the scripts. It is possible 
to set an arbitrary number of hosts by correctly configuring the network environment 
for the MaxiNet experiment. Every change in the number of hosts involves a new 
compilation of the Docker image, i.e., the Hadoop environment configuration file 
and the file for resolving node names have to be edited and updated.

The next step is the setup of the routing protocols and the start of the SDN con-
troller. With the MaxiNet experiment setup we create a Python script that defines the 
Docker containers for the Hadoop cluster and the network topology in detail, with 
a number of OpenFlow switches and links to the same switches and hosts. After 
the execution of the Python script, the experiment is started with the network envi-
ronment and the Hadoop cluster, virtualized within Docker containers. So, virtual 
switches and hosts are mapped over one or more workers. At this point, it is no 
longer possible to change the cluster settings and topology. Mapping and hostname 
mapping are passed to the constructor of the experiment class to generate an instance 
and then it goes to the Command Line Interface (CLI). The role of nodes within the 
cluster is determined by the IP addresses and hostnames dynamically assigned by 
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the script. The use of Docker containers is simple. The MaxiNet class, for import-
ing Docker machines, is invoked by the Python script that specifies the name of the 
Docker Image, the IP address, and the Hostname of the Docker container. It is also 
possible to specify limitations on the resources used (CPU and memory) through 
additional parameters. At this point it is possible to launch the benchmark and col-
lect the information through TraceBuilder. When the benchmark is done, task-level 
details are extracted by Rumen from Hadoop JobHistory, such as the Map tasks, 
Reduce tasks, and the nodes where they are executed. Information about Map tasks 
and the amount of Shuffle data transferred to the Reducer nodes is aggregated.

6  Validation and Tests

We validated MaxHadoop through a series of experiments. In the following, we 
review the settings of the experimental setup and describe the validation tests. 
Finally, we discuss the presented results.

START

Execution Benckmark

Execution Rumen TraceBuilder

Data Export for Analysis

Stop Hadoop Cluster

New test

NO

END

Start Hadoop Cluster

Start SDN controller

Start Maxinet Experiment

Setup Hadoop Docker Environment
(memory configuration numbers of nodes)

Deploy Docker Image

 Start Network Topology
 and Docker Container

Setup
Number of

Hosts

Setup
Routing
Protocol

Setup
Environment

Close Maxinet Experiment

Change host nr

Change
Routing
Protocol
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NO

NO

YES
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Start Monitoring REST API
ApplicationMaster (optional)

Fig. 3  The MaxHadoop workflow
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6.1  Setup Settings

MaxHadoop is conceived to share the emulation load over multiple workers, whose 
number can be extended according to the extent of the network to be emulated and 
the characteristics of the physical machines used. To avoid bottlenecks, two identical 
workers have been used here. The experimental setup is described in Table 2. The 
SDN controller is hosted in a laptop Acer ES575G with 12 GB memory, 1 Intel Core 
i7-7500U 2, 70 GHz and 1 TB hard drive. OpenFlow 1.3 is adopted for the interac-
tion between the SDN controller and the switches. The network topology is emu-
lated on the workers, through MaxiNet, utilizing virtual machines on top of VMware 
ESXi 6.5 Hypervisor. This hypervisor is not really necessary for the experiment, but 
it greatly simplifies the portability of the entire environment on different hardware 
without changing the configuration and parameters of the emulation. Typical expe-
rienced CPU overhead for a general-purpose server workload on an ESXi Hypervi-
sor is around 1–5%, with 5–10% memory overhead. With 64-bit CPUs that support 
the most recent CPU hardware virtualization extensions, it is possible to reduce the 
overhead to 1% [33]. Hence, the total overload is considered wholly negligible in 
relation to the advantages obtained.

The setup settings of MaxHadoop are provided manually through a python script 
based on Algorithm 1. The emulated cluster consists of 10 hosts organized into two 
racks with links at 100 Mbps as depicted in Fig. 4 for either one or two workers.

The memory that YARN and the MapReduce applications can use in the 
workers and the load’s distribution over them is set according to the Eq.  (2) 
The configuration with one worker, with Mi = 73728  MB, Mos = 1700  MB, 
My = 6114  MB and a number of slaves n = 9 and one master, satisfies Eq.  (2), 
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which gives 72280 MB ≥ 62926 MB. In the case of two workers, the Eq. (4) gives 
that each YARN node can be assigned Mi = 15128 MB. We set the Hadoop and 
YARN parameters as presented in Table  3, to make a fair assessment of scal-
ability of MaxHadoop by doubling the computational capacity and the memory. 
Other settings are dictated by the specificity of the validation tests, which are 
organized as follows:

– Benchmarking Tests: we performed CPU-intensive and memory-intensive 
tests, with one or two workers, using WordCount (WC) and TeraSort (TS). 
These tests are intended to show the versatility of our emulator and to measure 
the use of physical resources to assess possible bottlenecks.

– Comparison with a Similar Emulator: we replicated in MaxHadoop the 
same scenarios (including the memory configuration) that have been used for 
the tests in Doopnet[3] to compare the execution time, using either one or two 
workers. This test is intended to validate the scalability and to demonstrate 
that the use of machines with lower performance does not lead to an undesir-
able increase of the execution time. We use both the above-mentioned bench-
marking tools, and make multiple experiments with two workers by increasing 

Table 3  Memory settings

Parameter Doopnet/ MaxHadoop MaxHadoop 
max memory 
tests

hadoop-env.sh
 HADOOP_HEAPSIZE 500 500
 HADOOP_NAMENODE_INIT_HEAPSIZE 500 500

yarn-env.sh
 YARN_HEAPSIZE 500 500
 YARN_RESOURCEMANAGER_HEAPSIZE 500 500
 YARN_NODEMANAGER_HEAPSIZE 500 500
 YARN_TIMELINESERVER_HEAPSIZE 500 500

mapred-env.sh
 HADOOP_JOB_HISTORYSERVER_HEAPSIZE 250 250

yarn-site.xml
 yarn.nodemanager.resource.memory-mb 6114 12288
 yarn.nodemanager.resource.memory-mb 6114 12288
 yarn.scheduler.minimum-allocation-mb 256 1024
 yarn.scheduler.maximum-allocation-mb 6114 6114

mapred-site.xml
 mapreduce.map.memory.mb 1024 2048
 mapreduce.reduce.memory.mb 1024 4096
 mapreduce.map.java.opts -xmx819m -xmx1638m
 mapreduce.reduce.java.opts -xmx819m -xmx3277m



1629

1 3

Journal of Network and Systems Management (2020) 28:1610–1638 

either the network connection bandwidth or the memory assigned to Hadoop 
services. These tests are intended to show the effects of emulation settings on 
the execution time.

6.2  Benchmarking Tests

In the WC benchmark test with 2 workers, data processing is performed on the Map-
per nodes that hold the input block to be processed, according to the Hadoop “data 
locality” and “rack awareness” and only the final result is transferred to the Reducer 
which utilizes few resources. This minimizes the use of network bandwidth between 
workers by transferring blocks inside a rack. As shown in Fig. 5, all the Map tasks 
commit most of the execution time and the Sort and Reduce phases are negligible, 
i.e. the use of physical memory during the test run is minimal. Indeed, the use of 
resources during the WC benchmark test is shown in Fig. 6.

Figure 6a evidences that the WC benchmark is totally CPU intensive: the use of 
the CPU of the two workers is 100% for the whole duration of the test. This means 
that our choice of setting no constraints to limit a given Docker container’s access 
to the host machine’s CPU cycles leads to an optimal and full usage of the CPU 
resources according to the default settings.

Fig. 5  Execution time in the WordCount test with two workers running a MapReduce job
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The data transfer between the two workers is low, as shown in Fig. 6b. The mem-
ory used by the two workers is shown in Fig. 6c, where we distinguish between the 
free memory, that can be used by YARN containers, and the cached memory primar-
ily used by HDFS. The free memory has a low usage. Buffered memory used for 
disk write operations was constant 0 and was not included in the Fig. 6c.

TeraSort exhibits a different behavior than the WC benchmark in the use of phys-
ical resources. We may identify two phases: the initial one is CPU and memory-
intensive, whereas the second is only memory-intensive. The first phase corresponds 
to the Map Task and the second one to the Reduce Task of the MapReduce job, as 
shown in Fig. 7. This is evident in Fig. 8a that shows the use of the CPU in the two 
workers. The data transfer from the worker 1 to worker 2 shown in Fig. 8b is due to 
the Shuffle phase that sends the HDFS blocks from the Mappers to the sole Reducer 
(slave 6) to process the final result through the following phases of Sort and Reduce. 
Figure 8c shows the use of RAM by the workers. We note that during the Reduce 
phase in worker 2 there is an intense use of free memory by the slave 6 and the 
cached memory by HDFS. The bottlenecks are created by the CPU-intensive usage 
in the initial phase and by the network saturation during the transfer of HDFS blocks 
in the Shuffle phase.

Fig. 6  WordCount test with two workers: a CPU utilization; b Network connection utilization; c Memory 
usage
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Fig. 7  Execution time of MapReduce job over two workers for TeraSort benchmark with an input data 
set of 20 GB

Fig. 8  TeraSort test with two workers: a CPU utilization; b Network connection utilization; c Memory 
usage
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6.3  Comparison with a Similar Emulator

We launched the benchmarks WC and TS in three different scenarios: (a) in the pres-
ence of Hadoop traffic only, (b) in the presence of Hadoop traffic and background 
traffic generated by iperf tool with iperf server on the odd Docker containers and 
iperf clients on the even Docker containers, (c) Hadoop traffic and background traf-
fic with a mechanism for the QoS enforcement in the switches to schedule the iperf 
traffic to the low priority queue. This policy grants to the Hadoop traffic the 99% 
of the link capacity while competing with the background traffic. Openflow 1.3 is 
utilized for the interaction with L2 switches running Open vSwitch 1.10. Traffic pri-
oritization is implemented utilizing min-rate and max-rate properties.

The comparison of the benchmarks execution times in Doopnet and MaxHadoop 
with different configurations is summarized in Table  4 for the thirteen tests per-
formed. The execution time of MaxHadoop for Test 1 using one worker and WC is 
higher than that of Doopnet by 19%, whereas it is 39% lower in Test 2 (two work-
ers), i.e. doubling the computing power brings an improvement of 48%.

Higher execution times are experienced in the tests with WC with background traf-
fic and no QoS (Tests 3 and 4) since iperf shares with Hadoop both the network band-
width and host’s computational power. MaxHadoop with one worker (Test 3) runs the 
test in 7.917 seconds, 5% more than Doopnet and in 4.123 seconds with two work-
ers (Test 4), 45% less than Doopnet. The improvement of MaxHadoop with 2 work-
ers compared to the use of only one, is equal again to 48%. Introducing also the QoS 
(Tests 5 and 6), the bandwidth for iperf is limited to 1% of the link, and the execu-
tion time of MaxHadoop on one worker is 4% higher than Doopnet, and drops by 
47% with two workers. The improvement with two workers is 49%. Actually, the WC 
benchmark run is CPU-intensive throughout its lifetime. By increasing the number of 

Table 4  Comparison of the execution times of WordCount and TeraSort benchmarking tests obtained by 
the emulation of the same scenarios in Doopnet and MaxHadoop

In MaxHadoop additional results are obtained by varying the link capacity and the memory settings

Test Benchmark Workers Link speed 
[Mbps]

Memory [MB] QoS Background 
traffic

Doopnet MaxHadoop

1 WC 1 100 6114 No No 5675 s 6749 s
2 WC 2 100 6114 No No – 3485 s
3 WC 1 100 6114 No Yes 7542 s 7917 s
4 WC 2 100 6114 No Yes – 4132 s
5 WC 1 100 6114 Yes Yes 6609 s 6871 s
6 WC 2 100 6114 Yes Yes – 3523 s
7 TS 2 100 6114 No No – 1905 s
8 TS 2 100 6114 No Yes – 2948 s
9 TS 2 100 6114 Yes Yes – 2309 s
10 WC 2 1000 6114 No No – 3454 s
11 TS 2 1000 6114 No No – 567 s
12 WC 2 100 12288 No No – 3418 s
13 TS 2 100 12288 No No – 1295 s
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workers from one to two, we observe a decrease in the job execution time of 48-49% 
because it doubles the computing power (from 8 to 16 CPUs available for calculation).

In general, we may conclude that MaxHadoop on two workers offers improved per-
formance with respect to Doopnet simulator, although less CPU cores are available for 
MaxHadoop, i.e., 16 CPUs overall on two workers, against the 24 CPU for Doopnet.

The same tests have been done with the TS benchmark. In TS it is possible to 
select the amount of data to be ordered for the tests; we have used a data set of 
20 GB. The TS benchmark execution times are also reported in Table 4. TS bench-
mark takes 1.905 seconds in the presence of Hadoop traffic only (Test 7). Adding 
the background traffic generated by iperf tools, the execution time rises to 2948 sec-
onds (+ 55%) (Test 8). Introducing the QoS queueing mechanism (Test 9), the task 
execution time is 2309 seconds, 21% higher than in the case of Hadoop traffic only 
and 22% lower than in the presence of background traffic. Obviously, this reduc-
tion of the MapReduce job execution time is due to the Hadoop traffic prioritization 
with respect to the other traffic generated by iperf. Increasing the network connec-
tion bandwidth in MaxHadoop from 100 Mbps to 1 Gbps (Test 11) we obtain the 
execution times shown in Fig. 9 for the TS benchmark on two workers. A signifi-
cant reduction of the execution times of the MapReduce job is observed with respect 
to the results shown in Fig. 7. The execution times of WC and TS with two work-
ers with a link speed of 1000 Mbps are reported in Table 4, i.e., Tests 10 and 11. 
For the WC benchmark the execution time reduction is 1% compared to Test 1. The 
improvement is negligible because that job uses mainly the CPU processing power. 
Test results change for the TeraSort benchmark with a job execution time in Test 11 
of 70% lower than in test 7. The increase of link speed leads to a considerable reduc-
tion in the time required to execute the shuffle phase (Fig.  9) responsible for the 
transfer of data from the Mappers to the Reducers (slave4 and slave3). Tests 12 and 
13 present the performance of MaxHadoop when the maximum available memory 
capacity is assigned to Hadoop services and YARN for the WC and TS benchmarks, 
respectively. The time reduction for WC (Test 12) is 2% lower than Test 1 and for TS 
(Test 13) is 32% lower than Test 7. The increase in the available memory involves 

Fig. 9  Execution time of MapReduce job with the network connection speed at 1Gbps
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the use of multiple YARN containers, and therefore additional hardware resources to 
run applications or, as in this case, the MapReduce job of TeraSort.

6.4  Network Protocols Comparison Use Case

In this section we report an emulation’s outcome obtained utilizing MaxHadoop 
emulation environment. Starting from the setup described in Sect.  6.1, we utilize 
MaxHadoop to perform a comparison of Hadoop perfomance utilizing different 
SDN-based routing strategies in a Fat-Tree topology.

We compare the performance of the SDN implementation of two well-known net-
work protocols: Spanning Tree Protocol (STP) and Equal Cost Multi Path (ECMP). 
STP is designed to reduce a mesh topology to a single spanning tree eliminating all 
loops in the topology. Furthermore, in case of a node failure or breakdown in data 
path, it will reconfigure automatically the spanning tree to provide a service of fault 
tolerance. ECMP, instead, allows the choice of multiple next hops with equal cost. 
The ECMP spreads the traffic loads with the implementation of multiple equal cost 
shortest paths. This protocol, through the use of a hash function, spreads the for-
warding traffic toward a destination on a set of forwarding ports with the same cost, 
rather than implementing a spanning tree for each destination.

The SDN control is implemented utilizing Ryu Controller and OpenFlow 1.3. 
Networkx Python Library is utilized to create a graph representation of the network 
and to calculate all shortest paths between pairs of nodes.

We compare the performance of the two proposed routing algorithms by measur-
ing the time taken by the Reducer task and the Shuffle phase to complete the Terasort 
benchmark operation. The reduce task time includes the shuffle phase as well as sort 
and reduce operations time. We evaluate the performance by varying the number of 
Hadoop hosts in the network, the number of Reducer nodes. The amount of data to 
be ordered by TeraSort is set to 10GB. It is worth to recall that the Shuffle phase 
strongly loads the network because it includes the data transfer from “mapper nodes” 
to the “reduce node.”

Figure 10 shows the performance of the two network protocols in different sce-
narios. In a scenario with 1 reducer node and 8 Hadoop hosts, the Shuffle phase 

Fig. 10  Terasort execution time. a 1 reducer, 8 hosts; b 1 reducer, 16 hosts; c 2 reducers, 8 hosts
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reduces the execution time by 15% with ECMP, compared to the same phase with 
STP (Fig.  10a). One can exploit the configurability of MaxHadoop by increasing 
the number of Hadoop hosts. As shown in Fig. 10b, ECMP reduces by 32% the exe-
cution time of shuffle phase with respect to STP. In this case, ECMP outperforms 
STP protocol due to the higher number of flows controlled by the SDN controller. 
Finally, in Fig. 10c we consider the scenario with 8 hosts and 2 reducers. In this case 
the execution time reduction achieved with ECMP is 36%. The significant difference 
of performance between ECMP and STP evident in Fig. 10c is explainable by the 
better capability of ECMP to manage the higher number of flows generated with 2 
reducers.

7  Conclusion

This document proposes MaxHadoop, a emulation framework to emulate Hadoop 
environments on SDN networks using commodity hardware. The strengths are: the 
scalability of the environment with the number of physical machines (workers) com-
posing the setup, that allows the simulation of large clusters with many nodes and 
complex data center infrastructure; the ease of network environment setup, because 
it is possible to emulate switches and routers according to different topologies with 
the same simplicity of MiniNet. With the same simplicity, it is possible to start 
Docker containers from previously archived images.

This tool will allow researchers to work on emulated data center infrastructures 
where algorithms and protocols can be tested easily and at low cost. Also, it is pos-
sible to test new network protocols or variants of existing ones and to test Hadoop 
ecosystem solutions, like e.g. Pig, Hive, Spark, etc. We validated the performance 
of MaxHadoop using two typical benchmarks. The test results show that the perfor-
mance of Hadoop can be improved by increasing memory allocated to nodes when 
memory is the bottleneck or by increasing the speed of network links. We have 
also seen that using QoS, centrally managed by the SDN controller, can improve 
Hadoop’s performance. From the same controller it is possible to manage the entire 
network and gather information to dynamically change the configuration to improve 
the performance of the hosted environments.

Finally, we provided a performance comparison of different SDN-based network 
protocol implementation, in order to show the potentiality of our emulator. In this 
direction we will work in the future. Since the Shuffle phase in Hadoop uses the net-
work very intensively, we expect that the SDN paradigm can guarantee the adequate 
flexibility in network configuration by providing sufficient redundancy and appropri-
ate alternative paths in case of network congestion due to the flows from Mappers to 
Reducers, leading to a reduction of the execution time of the Shuffle phase. To do 
this, we will use the REST API queries to the Hadoop environment in real time to 
provide the knowledge of the Jobs status to the SDN controller, which, along with 
the knowledge of the network topology and the employment status, can dynami-
cally manage the reallocation of resources to optimize the MapReduce job flows. 
In a future work we will also evaluate the execution of the same tests performed 
in this document with the Spark platform, perhaps using a cloud solution such as 
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Kubernetes in order to perform a large-scale simulation with an SDN network dis-
tributed on-premise and in cloud.
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