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Characterization of optimal shapes and massesthrough Monge-Kantorovich equationGuy Bouchitt�e Giuseppe ButtazzoD�epartement de Math�ematiques Dipartimento di MatematicaUniversit�e de Toulon et du Var Universit�a di PisaBP 132 Via Buonarroti, 283957 LA GARDE Cedex 56127 PISA(FRANCE) (ITALY)bouchitte@univ-tln.fr buttazzo@dm.unipi.itAbstract. We study some problems of optimal distribution of masses, and we show thatthey can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar statefunctions, we show the equivalence with a mass transport probem, emphasizing its geometricalapproach through geodesics. The case of elasticity, where the state function is vector valued, is alsoconsidered. In both cases some examples are presented.1. IntroductionThe analysis of the behaviour of elastic structures has always been a central problem inMathematics and in Engineering. Since the beginning of the mathematical theory of elasticity itwas possible to consider from a rigorous point of view the problem of �nding the structure that,for a given system f of loads, gives the best resistance in terms of minimal compliance. In otherwords, an elastic structure is optimal if the corresponding displacement u is such that the totalwork R f � udx is minimal. However, even if the setting of the problem does not require particularmathematical tools, only in the last two decades there has been a deep understanding of shapeoptimization problems from a mathematical point of view. This was mainly due to the dramaticimprovement in the �eld impressed by the powerful theories of homogenization and �-convergencewhich have been developed meanwhile.What became clear soon was that in a large number of situations the optimal shape doesnot exists, and the existence of an optimal solution must be intended only in a relaxed sense. Theform of the relaxed optimization problem was �rst studied (see [], []) in the so called scalar casewhere the physical problem only involves state variables with value in R, like the problem of optimalmixtures of two given conductors. In this case the relaxed solutions have been completely studied,and identi�ed as symmetric matrices with bounded and measurable coe�cients, whose eigenvaluessatisfy some suitable bounds. A similar result was also obtained in the elasticity problem (see forinstance []) for optimal mixtures of two homogeneous and isotropic materials.Moreover, in almost all cases which have been considered, the optimal relaxed solution is notisotropic (i.e. the optimal matrix is not of the form a(x)I, being I the identity matrix), and this wasinterpreted by saying that an optimal shape does not exist and minimizing sequences are composedby laminates. 0



We want to emphasize that the case of optimal elastic structures, or also simply the studyof optimal shapes of a given conductor, seem to have an additional di�culty with respect to theproblem of optimal mixtures. Indeed, the �rst correspond to the case of optimal mixtures when oneof the two materials (or conductors) has the elasticity constants (or the conductivity coe�cient)equal to zero. In this case, due to a lack of uniform ellipticity, it is known that among all possiblerelaxed problems, obtained as limits of sequences of elliptic problems on classical domains, thereare some that are not of local type, and it is not clear if these nonlocal relaxed solutions could beoptimal. This interesting direction of research has been developed recently in [] and [], and has deepconnections with the theory of Dirichlet forms.Here we adopt a di�erent point of view and we consider, instead of the shape optimizationproblem, the mass optimization problem which consists in �nding the best distribution of a givenamount of elastic material, in order to achieve the minimal compliance. The unkown mass distri-bution is then a nonnegative measure which may vary in the class of admissible choices, with totalmass prescribed, and support possibly constrained in a given design region. Dealing with generalmeasures pushed us to develop in [] a general framework of variational calculus on measures, baseson a new notion of tangent bundle for a measure, which includes and uni�es the classical cases oflow dimensional manifolds (membranes, string, junctions, : : : ).The phenomenon of appearance of low dimensional network structures was already remarked(see []) in the cases of optimal mixtures of two materials, when the percentage of the strong onetends to zero. Moreover, because of capacitary arguments, concentrated loads are forbidden in theclassical framework, but they become admissible as soon as we allow the conductivity coe�cient tobe singular, or more generally a measure. Then in the framework of our mass optimization problems,we are allowed to consider the general case when for a load we take a given measure.A �rst result is that we obtain the existence of an optimal mass distribution for which theelastic compliance is minimal. This optimal measure may present the interesting feature to becomposed by terms of di�erent dimensions. Moreover, we characterize these optimal solutions bymeans of a generalized version of the Monge-Kantorovich partial di�erential equation which describesthe mass transfer problem. A �rst announcement of the results we obtained appeared in a shortnote [].The plan of the paper is the following. In Section 2 we present the mass optimization problemin a quite general framework and we show the existence of an optimal solution in the class ofmeasures. In Section 3 we deduce a necessary and su�cient condition for the optimality that wecall Monge-Kantorovich equation by analogy with the PDE which occurs in mass transportationproblems. Section 4 is fully devoted to the scalar case where an optimal measure can be constructedby means of geodesic transport rays. Finally, in Section 5 we treat some examples from elasticity aswell as some scalar cases; in this last situation we show how the equivalence with mass transportationproblems allows us to obtain the explicit construction of optimal measures also in cases whenDirichlet regions or obstacles are present.2. The mass optimization problemThe optimization problem we are going to describe consists in �nding the best distributionof a given total mass in order to minimize the elastic compliance under the action of a given force�eld. In order to take into account also forces which may concentrate on lower dimensional sets weconsider a force �eld f 2 M(Rn;Rn), the class of all Rn-valued measures on Rn with �nite totalvariation and with compact support.For a given displacement u : Rn ! Rn we denote by j(Du) the stored elastic energy densityassociated to u and we assume:(2.1) j is convex;(2.2) j is positively p-homogeneous, with p > 1;(2.3) j(z) = j(zsym) where zsym is the symmetric part of z;1



(2.4) there exist two positive constants �1 and �2 such that�1jzsymjp � j(z) � �2jzsymjp 8z 2 Rn�n:For instance, in the case of a homogeneous isotropic linearly elastic material, the function j is givenby(2:5) j(z) = �jzsymj2 + �2 jtr(zsym)j2where � and � are the so called Lam�e constants.Thus, for a given mass distribution � the stored elastic energy of a smooth displacementu 2 D(Rn;Rn) is given by J(�; u) = Z j(Du) d�and the total energy is E(�; u) = J(�; u)� hf; ui:Sometimes we write e(u) instead of (Du)sym, so that the stored energy functional can be also writtenas J(�; u) = Z j�e(u)� d�:We consider mass distributions � which are nonnegative measures on Rn whose support is containedin the so called design region which is a given closed subset K of Rn. It should also be noticedthat the problem above is a variational model which describes the behaviour of light structures,where the force due to their own weight can be neglected. Finally, in order to take into accountpossibly prescribed Dirichlet boundary conditions, we denote by U the set of smooth admissibledisplacements, which we assume to be a given convex cone of D(Rn;Rn). Therefore, the in�mum(2:6) E(�) = inf �E(�; u) : u 2 U	can be considered as the energy associated to the mass distribution �. The compliance C(�) is thende�ned as C(�) = �E(�):It must be noticed that we may have C(�) = +1 for some measures �; this happens for instancein the case U = D(Rn;Rn) when the force �eld f concentrates on sets of dimension smaller thann � 1 and the mass distribution � is the Lebesgue measure. However, these \singular" measures� are ruled out from our discussion because we look for the minimization of the compliance C(�).Indeed, we consider the optimization problem(2:7) minnC(�) : � 2 M+(Rn); Z d� = m; spt� � Kowhere the total amount of mass m is prescribed, as well as the design region K. Our goal is toobtain an existence result for problem (2.7) and an equivalent formulation of it in terms of the socalled Monge-Kantorovich equation.We shall often use the theory of variational calculus on measures, which we developed recentlyin [] and in []; we refer to these papers for all needed properties and details.It is convenient to introduce the polar cone of distributionsU0 = �T 2 D0(Rn;Rn) : hT; ui � 0 8u 2 U	;then by standard duality arguments the compliance C(�) can be written in the form(2:8) C(�) = inf nZ j�(�) d� : � 2 Lp0� (Rn;Rn�n); f + div(��) 2 U0o:2



It is well known (see for instance []) that as soon as C(�) is �nite, the in�mum in (2.8) is actually aminimum.Let us introduce now the quantity(2:9) I(f;U ;K) = sup �hf; ui : u 2 U ; j(Du) � 1=p on K	which can be related to a locking material approach (see []).Proposition 2.1. For every nonnegative measure � with R d� = m and spt� � K we have(2:10) C(�) � �I(f;U ;K)�p0p0m1=(p�1) :Proof. If C(�) = +1 the inequality is trivial. If C(�) is �nite the in�mum in (2.8) is a minimum;let us denote by � a solution: then by Fenchel inequality we have for every u 2 UC(�) = Z j�(�) d� � Z � : Dud�� Z j(Du) d�:Therefore, since f + div(��) 2 U0, we obtainZ � : Dud� = �hdiv(��); ui � hf; uiso that C(�) � hf; ui � Z j(Du) d� 8u 2 U :Since U is a cone and j is positively p-homogeneous, we also haveC(�) � thf; ui � tp Z j(Du) d� 8u 2 U ; 8t � 0:Hence, taking the supremum over all u 2 U with j(Du) � 1=p on K we deduceC(�) � tI(f;U ;K)� tpmp :A further supremum over all t � 0 �nally gives the desired inequality (2.10). utWe want to show now that in (2.10) the equality is actually attained for some measure �; thiswill provide, as a consequence, an existence result for the mass optimization problem (2.7).Proposition 2.2. There exists a nonnegative measure � with R d� = m and spt� � K such thatC(�) � �I(f;U ;K)�p0p0m1=(p�1) :Proof. Since j is convex and positively p-homogeneous we can writej(z) = 1p��(z)�p3



where � is convex and positively 1-homogeneous. Moreover, we have(2:11) I(f;U ;K) = supnhf; ui : u 2 U ; �(Du) � 1 on Ko:Again by duality arguments we can write(2:12) I(f;U ;K) = inf nZ �0(�) : � 2 M(Rn;Rn�n); spt � � K; f + div � 2 U0owhere �0 is the polar function associated to �:�0(z) = sup �z : � : �(�) � 1	;and the integral is intended in the sense of convex functionals on the space of measures (see forinstance [], []). As before, as soon as I(f;U ;K) is �nite, the in�mum in (2.11) is a minimum. If wedenote by � a solution and set � = mI(f;U ;K)�0(�);by Radon-Nikodym theorem we obtain that � = �� for a suitable � 2 Lp0� (Rn;Rn�n). We havespt� � K, R d� = m, f + div(��) 2 U0, and �0(�) = I(f;U ;K)=m �-a.e., so that by (2.8)C(�) � Z j�(�) d� = 1p0 Z ��0(�)�p0 d� = �I(f;U ;K)�p0p0m1=(p�1) : utSummarizing, we have proved the following result.Theorem 2.3. Assume that I(f;U ;K) is �nite. Then the following facts hold:i) The mass optimization problem (2.7) admits a solution � and we haveC(�) = �I(f;U ;K)�p0p0m1=(p�1) :ii) If � is a solution of the mass optimization problem (2.7) then one hasI(f;U ;K) = minnZ �0(�) d� : spt� � K; Z d� = m;(2:13) � 2 L1�(Rn;Rn�n); f + div(��) 2 U0o;where the optimal � in (2.13) veri�es�0(�) = I(f;U ;K)m �-almost everywhere.iii) Converserly, if � is a solution for (2.12), then � := mI(f;U ;K)�0(�) is optimal for (2.7).We will discover in the next section that the �eld � solution of (2.13) is in fact related to thegradient of the optimal displacement u (for (2.6)) through a constitutive equation involving somenotion of tangent space to �. 4



3. The Monge-Kantorovich equationIn this section we discuss the existence of a relaxed solution for problem (2.9) and the relatednecessary and su�cient conditions of optimality. This will produce what we call Monge-Kantorovichequation. From now on, for simplicity, we assume that:- K is a closure of a smooth connected bounded open subset 
 of Rn;- U = �u 2 D(Rn;Rn) : u = 0 on �	 where � is a closed subset of 
.The quantity I(f;U ;K) will be then denoted by I(f;�;
). We remark that under the assumptionsabove the class U0 turns out to beU0 = �T 2 D0(Rn;Rn) : spt T � �	:It is convenient to introduce now the class Lip1;�(
;�) as the closure, in C(
;Rn), of the set�u 2 D(Rn;Rn) : �(Du) � 1 on 
; u = 0 on �	. It has to be noticed that when �(z) � jzj thenevery function in Lip1;�(
) is locally Lipschitz continuous on 
; on the other hand, if �(z) = jzsymjthis is no more true, due to the lack of Korn inequality for p = +1 (see for instance []).We de�ne the relaxed formulation of problem (2.9) as(3:1) sup �hf; ui : u 2 Lip1;�(
;�)	and the �nite dimensional linear space of all rigid displacements vanishing on �R� = �u(x) = Ax+ b : b 2 Rn; A 2 Rn�nskew ; u = 0 on �	:Proposition 3.1. Let 
 and � be de�ned as above. Then the supremum in problem (2.9) is �niteif and only if(3:2) hf; ui = 0 8u 2 R�:In this case, problem (3.1) admits a solution andsup (2:9) = max (3:1):Proof. The �rst assertion is a well known fact (see for instance []). To conclude the proof we justneed to prove the existence of a solution of problem (3.1) under condition (3.2). Let (uh) be amaximizing sequence for problem (2.9); denoting by P� the projection on the linear space R� theKorn's type inequality ku� P�ukW 1;q(
) � Chke(u)kLq(
) + Z� juj dxiholds for every 1 < q < +1. Thanks to assumption (3.2) we may assume that P�(uh) = 0 for everyh. Therefore we deduce, taking q > n, that (uh) is relatively compact in C(
) and so all its clusterpoints belong to Lip1;�(
;�), vanish on �, and solve (3.1). utIn order to well de�ne the optimality conditions for problem (2.7), we need to introduce thefunction space of displacements of �nite energy related to a general measure �. Following the schemealready used in [] and in [], given a measure � and an open subset U of Rn we de�neXp0� (U ;Rn) = n� 2 Lp0� (U ;Rn) : div(��) 2 M(Rn)oT�(x) = �� ess[��(x) : � 2 Xp0� (U ;Rn)	P�(x) = orthogonal projector on T�(x)M�(x) = �P�(x)E P�(x) : E 2 Rn�nsym	Xp0� (U ;Rn�nsym ) = n� 2 Lp0� (U ;Rn�nsym ) : �(x) 2M�(x) for �-a.e. xo:5



It is immediate to see that for �-a.e. x 2 U the set T�(x) is a linear subspace of Rn that we callthe tangent space of � at x.Remark 3.2. Here are some simple examples of measures � where the tangent space T�(x) reducesto the classical one (see [] for details and further examples).a) Let U be a bounded open subset of Rn with a Lipschitz boundary, and let � = Hn U . Thenwe get T�(x) = Rn for a.e. x 2 U:b) Let S be a smooth compact manifold in Rn, of dimension k < n, with smooth boundary @S,and let � = Hk S. Then T�(x) = TS(x) for Hk-a.e. x 2 S:c) The example b) above can be generalized to the case of junctions between multi-dimensionalstructures, where S is a �nite union of smooth compact manifolds Si (i = 1; : : : ;N). Assumethat Si has dimension ki and that the corresponding measures �i = Hki Si are mutuallysingular. Then, setting � =Pi �i, we haveT�(x) = TSi(x) �i-a.e.For every function u 2 D(U ;Rn) we de�ne the tangential strain e�(u) ase�(u)(x) = P�(x) (Du)sym P�(x):We notice that for �-a.e. x 2 U we have e�(u)(x) 2M�(x).Proposition 3.3. The linear operatoru 2 D(U ;Rn) 7! e�(u) 2 Lp�(U ;Rn�n)is closable as an operator from C(U ;Rn) into Lp�(U ;Rn�n).Proof. Let (uh) be a sequence in D(U ;Rn) such that uh ! 0 uniformly on U , with e�(uh)! v inLp�(U ;Rn�n). We have to prove that v = 0. Since v is the strong limit of e�(uh) we have(3:3) v(x) 2M�(x) for �-a.e. x 2 U:On the other hand, for every � 2 Xp0� (U ;Rn�nsym )ZU v : � d� = limh!+1 Z e�(uh) : � d� = limh!+1huh;div(��)i = 0:Then by a localization argument (see proof of Proposition 2.1 of []) we deduce thatv(x) 2 �M�(x)�? for �-a.e. x 2 Uwhich, together with (3.3), implies that v = 0 �-almost everywhere. utIn the following we still denote by e� the closed operator from C(U ;Rn) into Lp�(U ;Rn�n)which extends the tangential strain, in the sense of proposition above.Now we can de�ne the Banach space of all �nite energy displacements D1;p0;�(U) as the domainof the operator e� endowed with the normkukD1;p0;�(U) = kukC(U) + ke�(u)kLp�(U):6



Remark 3.4. We notice that if (uh) is a bounded sequence in D1;p0;�(U) which converges to uuniformly, then by the closedness of the operator e� and the reexivity of Lp�(U ;Rn�n) we havethat u 2 D1;p0;�(U) and e�(uh)! e�(u) weakly in Lp�(U ;Rn�n).Since D1;p0;�(U) is also the completion of D(U ;Rn) with respect to the norm above, the inte-gration by parts formula(3:4) Z e�(u) : � d� = �hu;div(��)iholds for every u 2 D1;p0;�(U) and every � 2 Xp0� (U ;Rn�nsym ). Notice that for all such pairs (u; �) wehave(3:5) e�(u)(x) 2M�(x); �(x) 2 M�(x) for �-a.e. x 2 U:As a variant of the argument used in [] we obtain the relaxed form of the stored energy functionalJ(�; u) J(�; u) = inf n lim infh!+1 J(�; uh) : uh ! u uniformly, uh 2 D(U ;Rn)o(3:6) = �RU j��x; e�(u)� d� if u 2 D1;p0;�(U)+1 otherwisewhere j�(x; z) = inf �j(z + �) : � 2 �M�(x)�?	:Remark 3.5. Let us specify the spaces D1;p0;�(U) and the operators e� in some particular situations.a) If � is the Lebesgue measure over some regular open subset U of Rn, then T�(x) = Rn andj�(x; z) = j(z) for a.e. x 2 U . Moreover, thanks to Korn inequality, D1;p0;�(U) =W 1;p0 (U ;Rn),and e�(u) coincides with the usual strain tensor (Du)sym.b) If � is the 2-dimensional Hausdor� measure on a smooth surface S ofR3, then e�(u) representsthe usual tangential strain and j�(x; z) gives, in the case (2.5), the well known membranestored energy density (see []).c) In the case of a measure � given by the 1-dimensional Hausdor� measure on a smooth curve� with tangent versor � then e�(u) represents the tangential deformation Du� � � and j�(x; z)is, in the case (2.5), simply proportional to jDu� � � j2 (see []).Remark 3.6. We can actually de�ne the initial energy starting from displacements which belongto �u 2 C1(U ;Rn) : u = 0 on @U	 instead of D(U ;Rn). Indeed, by the same approximationprocedure of Lemma below, we can show that every such function belongs to D1;p0;�(U) and satis�es�-a.e. the equality e�(u) = P�(x) (Du)sym P�(x). Therefore we obtain the same expression (3.6)for the relaxed functional(3:7) J(�; u) = inf n lim infh!+1 J(�; uh) : uh ! u uniformly, uh 2 C1(U ;Rn); uh = 0 on @Uo:Let us now go back to the optimization problem (3.1).Lemma 3.7. For every measure � 2 M+(
) we have the inclusionLip1;�(
;�) � �u 2 D1;p0;�(Rn n�) : j�(x; e�(u) � 1=p �-a.e. on Rn n�	:7



Proof. Let u 2 Lip1;�(
;�) and let (uh) be an approximating sequence in D(Rn;Rn) such thatuh ! u uniformly on 
; �(Duh) � 1 on 
; uh = 0 on �:Take vh = �huh where �h 2 C1(Rn; [0; 1]) satis�es:�h(x) = 0 if dist(x;�) < 1=h; �h " 1 on Rn n�; juhjjD�hj � C:This is possible because (uh) converges uniformly to uwhich vanishes on �. Then vh 2 D(Rnn�;Rn)and, since �h converges uniformly to 1 on every compact subset of Rn n �, we have vh ! u inC(
;Rn). In addition, from the equalitye(vh) = �he(uh) + (uh 
D�h)symwe deduce that �e�(vh)� is uniformly bounded in Lp�(Rn n�;Rn�n). The closedness of the operatore� implies (see Remark 3.4) that u 2 D1;p0;�(Rn n �) and that the weak limit of �e�(vh)� coincideswith e�(u).To prove that j�(x; e�(u) � 1=p �-a.e. on Rn n � we apply the relaxation formula (3.6) to thesequence (uh) and we use a localization argument to obtain thatZU j��x; e�(u)� d� � lim infh!+1 ZU j��x; e�(uh)�d� � 1p�(U)holds actually for every open subset U of Rn n�. This gives the inequalityj�(x; e�(u) � 1=p �-a.e. on Rn n �: utProposition 3.8. Let � be a solution of the mass optimization problem (2.7). Then � does notcharge the Dirichlet region �, i.e. �(�) = 0. Moreover, if u and � are solutions of problems (3.1)and (2.13) respectively, thenmI �(x) 2 @j��x; e�(u)� �-a.e. on Rn(3:8) j��x; e�(u)� = 1=p and j��(x;m�=I) = 1=p0 �-a.e. on Rn(3:9)where I = I(f;�;
) and @j�(x; �) denotes the subdi�erential of the convex function j�(x; �). Con-sequently, � is a solution of the dual problem (2.8) and the rescaled function (I=m)1=(p�1)u is asolution of the relaxed problem(3:10) min �J(�; v)� hf; vi : v 2 D1;p0;�(Rn n�)	where the functional J is de�ned in (3.6).Proof. By Lemma 3.7 the function u belongs to D1;p0;�(Rn n�). On the other hand, f +div(��) = 0on Rn n � and therefore � 2 Xp0� (Rn n �;Rn�nsym ). The integration by parts formula (3.4) togetherwith Fenchel inequality then gives(3:11) I = hf; ui = ZRnn� e�(u) : � d� � Im ZRnn� hj��x; e�(u)�+ j���x; m�I �id�:Noticing that j��(x; �) = j�(�) on M�(x) (see the de�nitions of j� and M�) and that �(x) 2 M�(x)(see (3.5)), by Theorem 2.3 we obtainj��(x; m�I ) = j�(x; m�I ) = 1p0�mI �p0 j�0(�)jp0 = 1p0 :8



On the other hand, by Lemma 3.7 we have j��x; e�(u)� � 1=p on Rn n �, so that, dividing by I in(3.11), we have 1 � 1m�(Rn n �) = 1m�m� �(�)�which implies �(�) = 0. Therefore (3.11) givesm = mI Z e�(u) : � d� � Z hj��x; e�(u)�+ j���x; m�I �i d� � mwhich implies (3.8) and (3.9). utSummarizing, we have proved that if � solves the mass optimization problem (2.7) and uand � are solutions of problems (3.1) and (2.13) respectively, then the triple (u;m�=I; I�=m) solveswhat we call Monge-Kantorovich equation(3:12) 8>>>><>>>>: i) f + div(��) = 0 on Rn n �ii) � 2 @j��x; e�(u)� �-a.e. on Rniii) u 2 Lip1;�(
;�)iv) j��x; e�(u)� = 1=p �-a.e. on Rnv) �(�) = 0:We shall now prove the vice versa. Notice that by conditions i) and iv) the �eld �(x) (as well ase�(x)) belongs to the subspace M�(x) for �-a.e. x.Lemma 3.9. Let h : Rd ! [0;+1] be a convex positively p-homogeneous function and let v;w 2 Rdbe such that h(v) = 1=p and w 2 @h(v). Then h�(w) = 1=p0 and v �w = 1.Proof. We have h�(w) = v �w � h(v) = supftv �w � tph(v) : t > 0g:Hence the supremum above is achieved for t = 1, which implies that v �w = ph(v) = 1. Thush�(w) = (1� p)h(v) = 1=p0: utTheorem 3.10. If the triple (u; �; �) solves the Monge-Kantorovich equation (3.12), then u is asolution of problem (3.1) and the measure m�=I is a solution of the mass optimization problem(2.7). Moreover, (I=m)1=(p�1)u is a solution of the relaxed displacement problem (3.10) and I�=mis a solution of the stress problem (2.8), both related to the measure m�=I.Proof. We prove �rst that u is a solution of (3.1) and that �(Rn) = I. Let (uh) be a sequence inD(Rn;Rn) converging to u uniformly on 
, with e(uh) uniformly bounded on 
, and vanishing on�. With an argument similar to the one used in the proof of Lemma 3.7 we may assume that everyuh actually vanishes in a neighbourhood of � (depending on h). Then we havehf; ui = limh!+1hf; uhi = � limh!+1hdiv(��); uhi= limh!+1Z � : e(uh) d� = limh!+1 Z � : e�(uh) d�= Z � : e�(u) d�where we have used the fact that e�(uh) converges to e�(u) weakly in Lp� (see Remark 3.4). There-fore, since � 2 @j��x; e�(u)�, we obtain(3:13) hf; ui = Z hj��x; e�(u)�+ j��(x; �)i d�:9



By Lemma 3.9 and condition iv) in (3.12), we have j��(x; �) = 1=p0 so that (3.13) yieldshf; ui = �(Rn):We can repeat the computation above by using in (3.13) the Fenchel inequality instead of theequality, and we obtain hf; vi � �(Rn) 8v 2 Lip1;�(
;�):This proves that u solves problem (3.1) and therefore hf; ui = I(f;�;
) = �(Rn).Let us show now that � is optimal for problem (2.7). Indeed, setting t = (I=m)1=(p�1), we haveC(�) � hf; tui � J(�; tu) = hf; tui � Z j��x; e�(tu)� d� = tI � tpmp = Ip0p0m1=(p�1)and so the optimality of � follows from Theorem 2.3. To conclude the proof it is now enough toapply the last statement of Proposition 3.8. ut4. The scalar caseIn this section we particularize the results obtained in Sections 2 and 3 to the scalar case.We recall that in this framework the mass optimization problem turns out to be a model for theproblem of �nding the best distribution � of a given conductor in a given design region 
 in orderto maximize the energyE(�) = inf nZ j(Du) d�� hf; ui : u 2 D(Rn); u = 0 on �oamong all admissible �, constrained to have a prescribed total mass, that is R d� = m, and a supportinto the design region, that is spt� � 
. Here the term f represents a given heat sources density,which we assume to be a given signed measure on 
 with �nite total variation. The term scalarcomes from the fact that the state variable u (the temperature in the thermic model above) takesits values in R. This allows to simplify the Monge-Kantorovich equation (3.12) and to interpret itas the optimality condition for a problem of mass transport. Consequently, we will �nd in somecases explicit solutions to the mass and shape optimization problems through the study of optimaltransport rays.We assume here that the design region 
 is a connected bounded open subset of Rn with aLipschitz boundary and that � is a closed subset of 
. Moreover, for simplicity we assume thatj(z) = 1p jzjp with p > 1, which gives, with the notation of Section 2, �(z) = jzj. In this case, insteadof Lip1;�(
;�) we simply write Lip1(
;�). Applying Theorem 2.3, iii) in the case m = I(f;
;�), weobtain that � is optimal for problem (2.7) if and only if there exists a unit vector �eld � 2 L1� (
;Rn)such that � = �� solves (2.12). As the optimal measure � depends of the total mass m through amutiplicative factor, we will go further assuming this normalization condition on m. In this case,any solution u of (2.9) will satisfy � = D�u (see ii) in (3.12)) and the system of optimality conditions(3.12) becomes as stated in []:(4:1) 8><>: i) � div(D�(u)�) = f on Rn n�ii) u 2 Lip1(
;�)iii) ��D�(u)�� = 1 �-a.e. on Rniv) �(�) = 0:Our aim is to derive an explicit expression for solutions � of the mass optimization problem interm of optimal transport measures  associated to the Monge-Kantorovich mass transport problem.10



We begin by showing (this is speci�c to the scalar case) that the class Lip1(
;�) can be completelycharacterized through the geodesic semi-distance de�ned on 
�
 by(4:2) d
;�(x; y) = sup �j'(x)� '(y)j : ' 2 Lip(Rn); jD'j � 1 on 
; ' = 0 on �	Proposition 4.1. The following facts hold for the semi-distance d
;�.i) d
;�(x; y) = jx� yj whenever x; y 2 
 n� and jx� yj is small enough;ii) d
;�(x; y) � Cjx� yj for all x; y 2 
, where C is a suitable constant which depends only on
;iii) if � is empty, then d
;� coincides with the usual geodesic distance�
(x; y) = minnZ 10 j0(t)j dt :  2 Lip([0; 1];
); (0) = x; (1) = yo;iv) if � is nonempty, thend
;�(x; y) = inf n�
(x; y) ^ ��
(x; �1) + �
(y; �2)� : �1; �2 2 �o:Proof. The only nontrivial part is the proof of iv). The inequality � in iv) follows immediatelyfrom iii) and from the triangle inequality for d
;�. In order to prove the opposite inequality denoteby c(x; y) the right-hand side in iv) and, given x; y 2 
, consider the function'(z) = 12�c(x; z) � �
(x;�)� c(y; z) + �
(y;�)�:It is easy to see that it satis�es ' = 0 on �, jD'j � 1 on 
, and j'(x)�'(y)j = c(x; y). Therefore,by the de�nition (4.2) we obtain d
;�(x; y) � c(x; y) which concludes the proof. utNotice that the minimum in iii) is always achieved, but in general, due to the presence ofthe obstacle 
, it can be nonunique, (see Example 5.7 and Figure 6). We denote by G(x1; x2) theset of all curves ([0; 1]) where  minimizes the geodesic distance �
(x1; x2) in iii), and we call theelements of G(x1; x2) geodesic rays. If � is nonempty, we have to modify the de�nition of geodesicsin order to �t with the semi distance d
;�. In view of iv), we denote by D�(x1; x2) the followingset of two components curves:D�(x1; x2) = [(�1;�2)2�2 �S1 [ S2 : S1 2 G(x1; �1); S2 2 G(x2; �2)	;and de�ne(4:3) G�(x1; x2) = 8<:G(x1; x2) if d
;�(x1; x2) < �
(x1; x2);D�(x1; x2) if d
;�(x1; x2) > �
(x1; x2);G(x1; x2) [D�(x1; x2) if d
;�(x1; x2) = �
(x1; x2).Then by the assertion iv) of Proposition 4.1, we obtain H1(S) = d
;�(x1; x2) and H1(S \ �) = 0for every S 2 G�(x1; x2).Proposition 4.2. The following facts hold.i) We have u 2 Lip1(
;�) if and only if u = 0 on � and(4:4) ju(x)� u(y)j � d
;�(x; y) 8x; y 2 
:11



In particular, by Proposition 4.1 ii), every function in Lip1(
;�) is Lipschitz continuous.ii) For a function u 2 Lip1(
;�) and two points x; y 2 
, we have ju(x)� u(y)j = �
;�(x; y) ifand only if jDSuj = 1 H1-a.e. on S, for every S 2 G�(x; y):iii) The multifunction (x; y) 7! G�(x; y) de�ned on 
�
 and ranging into the family of compactsubsets of 
 embedded with the Hausdor� metric topology is upper semicontinuous (hence Borelregular).Proof. Let u 2 Lip1(
;�) and let (uh) be an approximating sequence in D(Rn) converging to uuniformly on 
 and such that uh = 0 on � and jDuhj � 1 on 
. Then by the de�nition (4.2) ofd
;� we obtain for all x; y 2 
 juh(x)� uh(y)j � d
;�(x; y)and (4.4) follows as h! +1.Conversely, let u verify (4.4) with u = 0 on �. By Proposition 4.1 ii), u is Lipschitz continuous on
, and by Proposition 4.1 i), jDuj � 1 Lebesgue a.e. on 
. By a procedure similar to the one usedin Lemma 3.7 we may construct a sequence (uh) in D(Rn) which approximates u uniformly, suchthat uh = 0 on � and jDuhj � 1 on 
.To prove the second assertion, take u 2 Lip1(
;�) and x; y 2 
 such that ju(x)�u(y)j = d
;�(x; y).Let S 2 G�(x; y) and assume �rst that S is a geodesic curve  joining x to y, so that d
;�(x; y) =�
(x; y) = H1(S). In this case, we haveju(x)� u(y)j = ��u�(0)�� u�(1)��� = ��� Z 10 Du�(t)� � 0(t) dt���� ZS jDSuj dH1 � H1(S) = d
;�(x; y) :Thus previous ineqality becomes an equality and so jDSuj = 1 must hold H1-a.e.on S. In the othercase, S = S1 [ S2 where S1; S2 are geodesic curves joining x to x0, y to y0 where x0; y0 are suitablepoints in �. In the same way as above the conclusion follows from the following inequalitiesju(x)� u(y)j � ju(x)� u(x0)j+ ju(y)� u(y0)j � ZS1[S2 jDSuj dH1 � H1(S) = d
;�(x; y):In order to prove assertion iii), in view of (4.3) and by the continuity of �
 � d
;�, it is enoughto prove separately the upper semicontinuity for the multifunctions G and D�. Let us consider asequence f(xh; yh)g converging to (x; y) in 
 � 
. Let Sh be a geodesic curve between xh and yhand assume that fShg (or a subsequence fShkg) Hausdor� converges to some S. By Proposition 4.1ii), the length of Sh is majorizes uniformly by some constant L. Then there exists a parametrizationh : [0; 1] 7! Rn of Sh with h(0) = xh and h(1) = yh, such that j0hj � L. Therefore, fhg isbounded in W 1;1(0; 1) and any uniform limit point  will satisfy ([0; 1]) = S, (0) = x, (1) = yand H1(S) = Z 10 j0j(t) dt � lim infh!1 Z 10 j0hj(t) dt � lim suph!1 �
(xh; yh) = �
(x; y):Thus S belongs to G(x; y) and the upper semicontinuity property of G is proved. The case of D�can be treated in a similar way by considering Sh = S1;h [ S2;h where S1;h (respectively S2;h) isa geodesic curve joining xh to �1;h (respectively yh to �2;h) with (�1;h; �2;h) 2 �2. Then, as �is compact, we may assume, possibly passing to subsequences, that (�1;h; �2;h) converges to some(�1; �2) and that (S1;h; S2;h) converges to a pair of curves (S1; S2) joining x to �1 and y to �2. Thenwe apply the previous step to conclude that each Si is a geodesic curve, so that S1 [ S2 belongs toD�(x; y). utLet us now consider the mass transport problem associated to the cost function d
;�. Giventwo measures �1; �2 2 M+(
) such that �1(
) = �2(
) we de�ne the distance(4:5) �(�1; �2) = minnZ d
;�(x; y) (dx; dy) :  2 �(�1; �2)o12



where �(�1; �2) is the class of measures of M+(
� 
) whose marginals are �1 and �2, i.e.�1(B) = (B �
) and �2(B) = (
�B) for every Borel set B � 
:Remark 4.3. By the continuity of d
;� on the compact set 
�
, we �nd easily that the minimumin (4.5) is achieved. Moreover, thanks to the �rst assertion of Theorem 4.5 below, it turns out that� de�nes a homogeneous semidistance on probability measures on 
: indeed�(�1; �2) = supfZ 'd�1 � Z 'd�2 : ' 2 Lip1(
;�)gis a 1-homogeneous subadditive function of �1 � �2 vanishing if and only if the support of �1 � �2is contained in �. We may extend � by setting �(�1; �2) = +1 if �1(
) 6= �2(
).Remark 4.4. In the case � = ; and 
 = Rn the function � in (4.5) is the Kantorovich distancebetween �1 and �2. A celebrated result is that in this case the distance �(�1; �2) can be expressedby(4:6) inf nZ jx� T (x)j d�1(x) : T#(�1) = �2owhenever this last is �nite, where the in�mum is taken over all transport mappings T : Rn ! Rnand T# is the push-forward operator. For the conditions on �1 and �2 which imply the existenceof an optimal transport map T in (4.6) we refer to the recent books [], []. For variants of this resultin case of di�erent cost functionals appearing in (4.6) we refer to [].The next result makes the link between the semidistance � and the quantity I(f;�;
) de�nedin (2.9) which is directly related to the Monge-Kantorovich problem of Section 3 .Theorem 4.5. The following facts hold.i) If two measures �1; �2 2 M+(
) are such that �1(
) = �2(
), then setting f = �1 � �2 wehave �(�1; �2) = �(f+; f�) = I(f;�;
):ii) Let f 2 M(
) and let c = R df . We denote by � any probability measure on � in case it isnot empty. We haveI(f;�;
) = inf ��(�1; �2) : �2 � �1 = f on 
 n �	= 8<:�(f+; f�) if � = ; (+1 if c 6= 0)�(f+; f� + c�) if � 6= ; and c � 0�(f+ � c�; f�) if � 6= ; and c � 0.Proof. First we notice that, for elements of M+(
) such that �1(
) = �2(
), �01(
) = �02(
), wehave(4:7) �(�1; �2) = �(�01; �02) whenever �01 � �02 = �1 � �2 on 
 n �.Indeed, as d
;� vanishes on � � � and on the diagonal, without changing the cost functional, wemay add (or substract) to every competitor  in (4.5) the measure � given byh�; 'i := Z
n� '(x; x) �i(dx) + 1m Z��� '(x; y) �1 
 �2(dx; dy)where �i := �0i � �i and m := R� �i (i = 1; 2), without changing the cost functional.13



Then the �rst equality of i) is deduced from (4.7) by taking �01 = f+, �02 = f�. In fact, if �is nonempty, we may start with a non balanced signed measure f (c = R df), and replace in (4.7)�01 by f��c� if c < 0 (respectively �02 by f� + c� if c > 0) where � is a probabilty measure on �.In this case, we obtain �(�1; �2) = ��(f+; f� + c�) if c > 0�(f+ � c�; f�) if c < 0,whenever �2 � �1 = f on 
 n �. Hence the second equality of i) and ii) are consequences of thefollowing claim: for every signed measure f on 
(4:8) I(f;�;
) = inf ��(�1; �2) : �2 � �1 = f on 
 n �	:We introduce the following function G de�ned on C(
�
):G(p) := inf'2C(
)�� hf; 'i : ' = 0 on �; '(y)� '(x) + p(x; y) � d
;�(x; y) on 
�
	:It turns out that G is convex and, by the characterization of Lip1(
;�) given in Proposition 4.2, wehave G(0) = �I(f;�;
) (here p plays the role of a perturbation parameter). Let us compute theMoreau-Fenchel conjugate of G in the duality �M(
�
);C(
�
)�. Given  2 M(
�
) whosemarginals are denoted by �1; �2, we haveG�() = supnZ p d �G(p) : p 2 C(
�
)o= supnZ
�
 p d + Z
 'df : ' = 0 on �; '(y)� '(x) + p(x; y) � d
;�(x; y) on 
2o= (Z
�
 d
;�(x; y) d + sup'=0 on �nZ
�
('(x)� '(y)) d + Z
 'dfo if  � 0+1 otherwise= (Z
�
 d
;�(x; y) d if  � 0 and �2 � �1 = f on 
 n�+1 otherwise.Thus claim (4.8) amounts to show that G(0) = � inf G� = G��(0). The inequality G��(0) � G(0)being always true, we have to prove that G(0) � G��(0). We may assume that G(0) > �1 (i.e.I(f;�;
) < +1). As G is convex and �nite at 0, the claim (4.8) will be a consequence of the lowersemicontinuity of G at 0. Let fphgh2N be a sequence in C(
�
) such that ph converge uniformlyto 0. Then there exists a sequence f'hg in C(
) such that(4:9) G(ph) > �Z
 'h df � 1h ; 'h = 0 on �; 'h(y)� 'h(x) + ph(x; y) � d
;�(x; y) on 
2:Then by the assertion ii) of Proposition 4.1, there holds for every (x; y) 2 
2 and for a suitableconstant C:(4:10) j'h(x)� 'h(y)j � Cjx� yj+ kphk1:As kphk1 tends to 0, (4.10) implies that the sequence f'hg is equicontinuous on 
. Then, settingch := 'h(x0) for a �xed x0 2 
, we deduce the boundedness of the set f'h(x)� chg for every x 2 
.By Ascoli-Arzel�a's theorem, the set f'h � ch : h 2 Ng is precompact in C(
).In the case � 6= ;, we may take x0 2 �; then ch = 0 and by (4.9) any cluster point ' of f'h : h 2 Ngsatis�es ' = 0 on � and '(y)� '(x) � d
;�(x; y) on 
2. Thus, for a suitable subsequence hk, weobtain lim infh G(ph) = limk G(phk ) � lim infk Z
�'hk df � �Z
 'df � G(0):14



The case � = ;, can be concluded in the same way noticing that, by the assumption �G(0) =I(f;�;
) < +1, the measure f has average zero and then R ('h � ch) df = R 'h for every h. utWe are now able to reconstruct optimal mass distributions � from the optimal transportmeasures  for (4.5). This means that the optimal � is �brated by the subset of geodesics alongwhich the transport takes place.Theorem 4.6. Let f 2 M(
) and let  be a solution of (4.5) being (�1; �2) any pair such that�2 � �1 = f on 
 n �. Then for every Borel selection (x; y) 7! Sxy of the multifunction G�, themeasure � de�ned by(4:11) h�;'i = Z
�
 �ZSxy 'dH1� d(dxdy); ' 2 C(
)is optimal for problem (2.7) with m = I(f;
;�). Moreover, denoting by �Sxy the unit tangentvector to Sxy (oriented from x to y), the �eld � := D�u given in (4.1) can be represented as theRadon-Nikodym derivative with respect to � of the vector measure(4:12) h��;	i := Z
�
 �ZSxy 	 � �Sxy dH1� d(dxdy);  2 C(
;Rn):Proof. As all curves S 2 G�(x; y) lie in 
 and satisfy H1(S \ �) = 0, it is clear that the measure� de�ned by (4.11) is supported in 
 and that �(�) = 0. According to our observations preceeding(4.1), we may assume that I = I(f;
;�) = m. Then, since the density � given by (4.12) satis�esj�j = 1 �-a.e., we have by (4.11) and Proposition (4.2)Z
 j�j d� = Z
 � = Z
�
H1(Sxy) (dxdy) = Z
�
 d
;�(x; y) (dxdy) = I(f;
;�) = m:Therefore � := �� solves (2.12) provided � satis�es the condition �div �� = f on Rn n �. Let usapply (4.12) to 	 = D' where ' is a test function in D(Rn). We obtainh�div ��;'i = Z
�
 �ZSxy D�xy'dH1� (dxdy)= Z
�
 �'(y)� '(x)�(dxdy)= h�2 � �1; 'i:Thus the measure �div �� = �2 � �1 agrees with f on Rn n �. The optimality of � follows byapplying to � := �� the assertion iii) of Theorem 3.3. utRemark 4.7. A meaningful consequence of this result is that there exists optimal measures �supported by the geodesic hull of K := spt f [�, that is by the set [fG�(x; y) : (x; y) 2 K �Kg.An interesting question is the validity of the converse implication: does the optimality of � implyits representation under the form (4.11), being  an optimal transport measure? This question hasbeen solved in [] in the case of a Lipschitz source term f verifying the condition spt f+\ spt f� = ;,
 = Rn and � = ; (then K is the convex hull of spt f), by using a quite involved approximationprocedure and by solving an ODE along geodesic rays.15



5. Some examplesIn this section we present some examples of optimal structures both in the scalar case as wellas in the case of elasticity. The optimality of the described structures will be tested through theMonge-Kantorovich conditions (3.12).Example 5.1. We start with the following problem in elasticity: distribute in R2 a given amountof mass in order to minimize the elastic compliance related to the force �eld f = �A�1+ �B�2+ �C�3described in �gure below.
Figure 1 | the force f .A �rst natural guess for the optimal measure �, when we deal with the usual stored energiesof the linear isotropic elasticity, consists in choosing any of the two one-dimensional structures of�gure below, where the total mass is prescribed, and the one-dimensional density of � on bars isconstant.

Figure 2 | two structures that are not optimal.By the results of Section 3 we know that a mass distribution � is optimal if and only if amultiple of it satis�es the Monge-Kantorovich equation (3.12) which reads in this case:(5:1) 8>><>>: i) � div(��) = f on R2ii) � 2 @j��x; e�(u)� �-a.e. on R2iii) u 2 Lip1;�(R2)iv) j��x; e�(u)� = 1=p �-a.e. on R2Let us consider the case of a linear isotropic stored energy(5:2) j(z) = �2 jtr(zsym)j2 + �jzsymj216



where � and � are the Lam�e constants in dimension two. A straightforward calculation shows thatfor a given total mass m the compliances of the two structures �1 and �1 of Figure 2 coincide; weshall now prove that none of them is optimal, that isinf �C(�) : � 2 M+(R2); Z d� = m	 < C(�1) = C(�2):By rescaling the mass we may take for instance the case � = �1 = H1 S and we argueby contradiction that is we assume the existence of some u 2 Lip1;�(R2) such that (u; �) satis�es(5.1). Equations i), ii), iv) determine the tangent component of u on S = OA [ OB [ OC up to aconstant that we �x in order to have u(0) = 0. We have j��e�(u)� = 1=2 H1-a.e. on S, and settingc = 2j�(�i 
 �i) (which by isotropy does not depend on the index i), we deduce(5:3) j�(� 
 �) = 12c for every unit vector �:Moreover, we obtain for the tangential component v(s) = u(s�i) � �i on S12 j�(�i 
 �iv0) = jv0j2 c2which gives(5:4) v(s) = sc�1=2:Since u is de�ned on the whole R2 and satis�es (5.1) iii) by applying Lemma 3.7 with the twodimensional Lebesgue measure,we must have(5:5) j�e(u)� � 1=2 a.e. on R2:Let us now consider the matrix�0(x) = ( e1 
 e1 on triangle AOBe+ 
 e+ on triangle AOCe� 
 e� on triangle COBwhere e1 = AB=jABj, e+ = AC=jACj, e� = BC=jBCj. We have for every t 2 R1=2 � j�e(u)� � t�0 : e(u)� t2j�(�0) = t�0 : e(u)� t22cwhere we have used (5.3) in the last equality. By integration, denoting by � the triangle ABC, byn(x) a versor normal to S and to @�, and by [�] the jump across S, we obtainj�j2 � tZ� �0 : e(u) dx� t2j�j2c(5:6) = tZS[�0n] � udH1 + tZ@�(�0n) � udH1 � t2j�j2c :By construction �0n = 0 on @�, and the jump [�0n] is purely tangential:[�0n] = p32 �i on Si:Thus, (5.4) and (5.5) yield1 � tp3j�jpc ZS jxj dH1 � t2c = tp3j�jpc jSj26 � t2c17



and so, taking the supremum with respect to t,1 � 148 jSj4j�j2 :Since 12j�j = p3jSj2 the last inequality is an equality, which implies that all previous inequalitiesare actually equalities. In particular we obtain for a suitable t 2 Rj�e(u)�+ j�(t�0) = t�0 : e(u)which gives e(u) = @j�(t�0) = t2� �0 � t�4�(�+ �)IFrom this last relation we deduce that the three matrices e1 
 e1, e+ 
 e+, e� 
 e� must be rankone connected and have to satisfy the equalities8<: (e1 
 e1)�1 = (e+ 
 e+)�1(e1 
 e1)�2 = (e� 
 e�)�2(e+ 
 e+)�3 = (e� 
 e�)�3which is impossible.Remark 5.2. By repeating the argument above for a stored energy density j(z) which is p-homogeneous, isotropic and convex, we can show that if the structures of Figure 2 are optimal,then there exist three matrices A1 2 @j�(e1
 e1), A+ 2 @j�(e+
 e+), A� 2 @j�(e�
 e�) such that(A1�1 = A+�1A1�2 = A��2A+�3 = A��3:Remark 5.3. If we consider the so called two-dimensional Michell energy density(5:7) j0(z) = 12 jjjzsymjjj2where jjj � jjj denotes the operator norm on symmetric matrices, the corresponding stress potentialis given by j�0 (�) = 12(jt1j+ jt2j)2where t1 and t2 denote the eigenvalues of the symmetric matrix �. Then we have for every unitvector � j0(I) + j�0 (� 
 �) = 1that is I 2 @j�0 (� 
 �) for every � 2 R2. Therefore the structures of Figure 2 solve the Monge-Kantorovich equation (5.1) with u(x) = x, hence they are optimal.Remark 5.4. The structures of Figure 2 turn out to be optimal among all one-dimensional struc-tures; indeed for a one-dimensional structure � the two energies j and j0 of (5.2) and (5.7) coincideand so, by Remark 5.3 the optimum is reached on the ones of Figure 2. As a consequence, we canassert that for the case (5.2) of linear elasticity, no one-dimensional structure gives the optimum.A numerical computation by F. Golay and Seppecher (see []) shows for the case (5.2) the followingoptimal mass distribution. 18



Figure 3 | the two-dimensional optimal mass distribution.We consider now some examples for optimal conductivity problems where the state functionu is scalar, and so the Monge-Kantorovich conditions (3.12) reduce to (4.1). In each of the followingthree examples we shall specify the optimal transport measure  and the optimal mass distribution� given by (4.11).Example 5.5. Let us consider a continuous plane curve S in polar coordinates, r = h(�), withlength L, and let f be the heat sources density made by a one-dimensional constant density on thecurve S and a point concentration at the origin, that isf = H1 S � L�O:Then, the unique admissible transport  is given by = H1 S 
 L�Oso that the optimal pair (�0; u0) is given by�0 = crph2(�) + jh0(�)j2H2 R ; u0 = rcfor a suitable constant c > 0, where R is the set 0 � r � h(�). In case h is a BV functionpresenting a jump [h�; h+] at some �0, then the additional concentration c(h+ � r _ h�)H1 occurson the corresponding ray, which shows that optimal measures may have terms of lower dimension.In �gure below we display the optimal density �0 for a particular plane curve.
Figure 4 | the optimal mass distribution.19



Example 5.6. We consider now the case of a rectangle R = [0; L]�[0; 1] in R2, we take the Dirichletregion � = [L=3; 2L=3]�f1g and the source term f given by the one-dimensional densities 2 on theleft side and �1 on the right side, that isf = 2H1 �f0g � [0; 1]��H1 �fLg � [0; 1]�:Note that in this example the average of f is not zero, so that some measure on � must be consideredin the mass transport problem as a compensation term. The problem speci�ed in Theorem 4.5 issolved if we take, with the same notation used there: = 2H1 �f0g � [0; x0]�
H1 �fLg � [0; 2x0]�+ 2H1 �f0g � [x0; 1]�
 kA�A + kB�B 
H1 �fLg � [2x0; 1]�where A = (L=3; 1), B = (2L=3; 1), kA = 2(1� x0), kB = 1� 2x0. Here the point x0 depends on Laccording to the formula x0 = �9�p9 + 28L212 �+:The optimal measure � is then deduced from  through (4.11). Figure below represents the optimalmeasure � in the case L = 1.
Figure 5 | the optimal mass distribution for L = 1.Example 5.7. We consider now a case when the design region is not convex; the geodesic rays willthen no longer be unique and rectilinear. We take for 
 the complement of the unit disk in R2 and wetake for the source term a one-dimensional constant density on the segment S = �(�2; t) : jtj � 1	and a point concentration at the point A = (1; 0), that isf = H1 S � 2�A:The optimal transport measure  is in this case simply = H1 S 
 2�Abut, due to the nonconvexity of 
, and hence to the presence of an obstacle for geodesic rays, theoptimal mass distribution � is of the form� = �(x)H2 
+ �(x)H1 @
for suitable densities �(x) and �(x). Figure below gives a representation of the optimal measure �.20
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