
Soft Computing
https://doi.org/10.1007/s00500-020-05300-0

FOCUS

Characterization and computation of ancestors in reaction systems

Roberto Barbuti1 · Anna Bernasconi1 · Roberta Gori1 · Paolo Milazzo1

© The Author(s) 2020

Abstract
In reaction systems, preimages and nth ancestors are sets of reactants leading to the production of a target set of products in
either 1 or n steps, respectively. Many computational problems on preimages and ancestors, such as finding all minimum-
cardinality nth ancestors, computing their size or counting them, are intractable. In this paper, we characterize all nth ancestors
using a Boolean formula that can be computed in polynomial time. Once simplified, this formula can be exploited to easily
solve all preimage and ancestor problems. This allows us to directly relate the difficulty of ancestor problems to the cost of the
simplification so that new insights into computational complexity investigations can be achieved. In particular, we focus on
two problems: (i) deciding whether a preimage/nth ancestor exists and (ii) finding a preimage/nth ancestor of minimal size.
Our approach is constructive, it aims at finding classes of reactions systems for which the ancestor problems can be solved in
polynomial time, in exact or approximate way.

Keywords Reaction systems · Ancestor computation · Computational complexity · Causality relations

1 Introduction

Inspired by natural phenomena, many new computational
formalisms have been introduced to model different aspects
of biology. Basic chemical reactions inspired the reaction
systems, aqualitativemodeling formalism introducedbyBri-
jder et al. (2011), Ehrenfeucht and Rozenberg (2007). It is
based on two opposite mechanisms, namely facilitation and
inhibition. Facilitation means that a reaction can occur only
if all its reactants are present, while inhibition means that
the reaction cannot occur if any of its inhibitors is present.
A rewrite rule of a reaction system (called reaction) is hence
a triple (R, I , P), where R, I and P are sets of objects rep-
resenting reactants, inhibitors and products, respectively, of
the modeled chemical reaction. A reaction system is repre-
sented by a set of reactions having such a form, together with
a (finite) support set S containing all of the objects that can
appear in a reaction. The state of a reaction system consists
of a finite set of objects describing the biological entities that
are present in the real system beingmodeled. The presence of
an object in the state expresses the fact that the corresponding

Communicated by Miguel A. Vega-Rodriguez.

B Roberta Gori
gori@di.unipi.it

1 Dipartimento di Informatica, Università di Pisa, Pisa , Italy

biological entity, in the real system being modeled, is present
in a number of copies as high as needed. This is the threshold
supply assumption and characterizes reaction systems.

A reaction system evolves by means of the application
of its reactions. The threshold supply assumption ensures
that different reactions never compete for their reactants,
and hence, all the applicable reactions in a step are always
applied. The application of a set of reactions results in the
introduction of all of their products in the next state of the
system.

Themain advantages of investigating reaction systems are
that they have a clean computational model allowing for pre-
cise formal analysis, and they can be considered as reference
for other computing system (e.g., Barbuti et al. 2018b; For-
menti et al. 2014).

Computational complexity of some problems related to
the dynamics of reaction systems has been extensively stud-
ied (e.g., in Dennunzio et al. 2015a, b; Formenti et al.
2014; Salomaa 2013a, b). In Dennunzio et al. (2015a, b), the
authors introduced the concept of preimage and nth ancestor.
Roughly speaking, an nth ancestor is a set of objects that lead
to the production of a target set of objects after n evolution
steps, while a preimage is a 1st ancestor. The authors studied
the complexity of several problems related to nth ancestors
by defining reductions between well-known hard problems
and the corresponding nth ancestor problem. They proved

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05300-0&domain=pdf
http://orcid.org/0000-0002-7424-9576

R. Barbuti et al.

that finding a minimal size preimage or ancestor, computing
their size, or counting them are all intractable problems.

In this paper, we propose a constructive method to reason
on preimages and nth ancestors. Indeed, we define a formula
able to characterize all nth ancestors of a given set of objects.
Such a formula is obtained by revising the idea of formula-
based predictor introduced in Barbuti et al. (2016a, b, 2017,
2018c, d) for reaction systems that interact with an envi-
ronment. A formula-based predictor is a logic formula that
exactly characterizes all the states leading to a given product
in a given number of steps. It enables the study of all causal
dependencies of one object from the other objects provided
by the environment and therefore enhances previous works
on causality in reaction systems (Brijder et al. 2010), system
biology (Gori and Levi 2010; Bodei et al. 2013, 2015) and
natural computing (Busi 2007).

Following the same approach, here we define an nth
ancestor formula that fully characterizes all nth ancestors.
Moreover, we define an operator able to compute the formula
in polynomial time. The relevance of this complete character-
ization of all nth ancestors is twofold. Ancestors in a closed
reaction system express the causality relations between the
objects in the initial state and the products that we can obtain
after a given number of steps. Assume you are interested in
the production of a certain set of objects, ancestors model
all the different initial states that can lead to the production
of the set of products of interest. Minimal ancestors model
minimal states and our complete characterization is able to
detect which are the objects that are really necessary for the
production of the objects of interest. Moreover, the Boolean
formula can be used to give effective algorithms for solving
problems as deciding the existence of nth ancestors or the
computation of a minimal size preimage or ancestor. This
allows us to study the complexity of the preimage and nth
ancestor problems in a constructive way by precisely identi-
fying the step in the solving procedure that is the cause for
the exponential cost. In particular, in our context, the com-
putationally expensive step consists in the conversion of the
formula to disjunctive normal form (DNF) in order to easily
solve ancestor problems.An idea to avoid this step is to devise
cases in which the conversion into DNF is not necessary.

To this aim, our investigation proceeds in two different
directions. First, we identify classes of reaction systems for
which our nth ancestor formula is already in DNF; this is
obtained by imposing synctactic restrictions on the form of
reactions of the reaction system. Then, we define approxi-
mations of the nth ancestor formula that can be computed
in polynomial time and that are still useful to reason on nth
ancestor problems. This approach is validated by several bio-
logical examples of gene regulatory networks.

The present paper enhances and extends (Barbuti et al.
2018a). More precisely, the original contributions of the
paper are:

1. a new investigation leading to the formal definition of sets
of approximations of the original ancestor formula;

2. the definition of effective operators able to compute such
approximations in polynomial time;

3. the introduction of biological examples that show the
application of the ancestors and validate our approach
based on the computation of approximations.

The paper is organized as follows. Section 2 introduces
(closed) reaction systems, preimages and nth ancestors. Sec-
tion 3 presents some preliminary notions. The definition of
nth ancestor formulas is given in Sect. 4 together with an
effective operator to compute them. In Sect. 5, we bound the
complexity of the nth ancestor formula. Section 6 lists some
conditions under which the existence and minimal size of
ancestors can be computed in polynomial time. In Sect. 7,
we introduce two kinds of approximations of nth ancestor
formulas that can be computed in polynomial time. Section 8
reports some conclusions.

2 Closed reaction systems

In this section, we recall the basic definition of reaction sys-
tem (Brijder et al. 2011; Ehrenfeucht and Rozenberg 2007).
Let S be a finite set of symbols, called objects. A reaction is a
triple (R, I , P)with R, I , P ⊆ S, composed of reactants R,
inhibitors I and products P . Reactants and inhibitors R∪ I of
a reaction are collectively called resources of such a reaction,
andwe assume them to be disjoint (R∩ I = ∅), otherwise the
reaction would never be applicable. The set of all possible
reactions over a set S is denoted by rac(S). Finally, a reaction
system is a pair A = (S, A), where S is a finite support set
and A ⊆ rac(S) is a set of reactions.

The state of a reaction system is described by a subset T
of the set of objects S. Let a = (Ra, Ia, Pa) be a reaction
and T a subset of S. The result resa(T) of the application of
a to T is either Pa , if T separates Ra from Ia (i.e., Ra ⊆ T
and Ia ∩ T = ∅), or the empty set ∅ otherwise. The applica-
tion ofmultiple reactions at the same time occurs without any
competition for the used reactants (threshold supply assump-
tion). Therefore, each reaction which is not inhibited can be
applied, and the result of the application ofmultiple reactions
is cumulative. Formally, given a reaction systemA = (S, A),
the result of the application ofA to a set T ⊆ S is defined as
resA(T) = resA(T) = ⋃

a∈A resa(T).
An important feature of reaction systems is the assumption

about the non-permanency of objects: The objects carried
over to the next step are only those produced by reactions.
All the other objects vanish, even if they are not involved in
any reaction.

Given an initial set D0, the semantics of a closed reaction
system can be simply defined as the result sequence, δ =

123

Characterization and computation of ancestors in reaction systems

D1, . . . , Dn where each set Di , for i ≥ 1, is obtained from
the application of reactions of A to the state obtained at the
previous step Di−1 ; formally, Di = resA(Di−1) for all 1 ≤
i < n. The sequence of states of the reaction systemcoincides
with the result sequence δ = D1, . . . , Dn . InDennunzio et al.
(2015a, b), the authors introduced the idea of preimage and
nth ancestor. For simplicity, we first define them for a single
product s.

Definition 1 (nth Ancestors for s) LetA = (S, A) be a reac-
tion systems and s ∈ S. A set D0 is an nth ancestor of s if
s ∈ res(n)

A (D0). D0 is called a preimage of s if D0 is a 1st
ancestor of s.

The same concepts can be naturally extended to sets of prod-
ucts.

Definition 2 (nth Ancestors for {s1, . . . , sm}) Let A =
(S, A) be a reaction systems and consider{s1, . . . , sm} ⊆ S.
A set D0 is an nth ancestor of {s1, . . . , sm} if ∀i : 1 ≤ i ≤
m, si ∈ res(n)

A (D0). D0 is called a preimage of {s1, . . . , sm}
if D0 is a 1st ancestor of {s1, . . . , sm}.

3 Causal predicates in reaction systems

In our formulas, we use objects of reaction systems as
propositional symbols. Formally, we introduce the set FS

of propositional formulas on S defined in the standard way:
S ∪ {true, f alse} ⊆ FS and ¬ f1, f1 ∨ f2, f1 ∧ f2 ∈ FS if
f1, f2 ∈ FS . The propositional formulas FS are interpreted
with respect to C a subset of objects S. Intuitively, s ∈ C
denotes the presence of element s and therefore the truth of
the corresponding propositional symbol. The complete defi-
nition of the formula satisfaction relation is as follows.

Definition 3 Let C ⊆ S for a given set of objects S. Given
a propositional formula f ∈ FS , the satisfaction relation
C |� f is inductively defined as follows:

C |� true,
C |� s iff s ∈ C,

C |� ¬ f ′ iff C �|� f ′,
C |� f1 ∨ f2 iff either C |� f1 or C |� f2,
C |� f1 ∧ f2 iff C |� f1 and C |� f2.

In the following, ≡ stands for the logical equivalence on
propositional formulas FS . Moreover, given a formula f ∈
FS , with atom(f)we denote the set of propositional symbols
that appear in f .

Given a formula f , a disjunctive normal form (DNF) of
f can be computed by applying the following procedure:

1. Put the negations next to the atomic objects using De
Morgan’s laws;

2. Put the conjunctions within the disjunctions using the dis-
tributive law;

3. Simplify the obtained formula using the idempotent,
negation, domination and negation laws.

Alternatively, we can construct the complete DNF of f by
constructing the truth table of f and representing with a con-
junction all rows that have a truth value 1. It is worth noting
that both methods are exponential in the worst case. Indeed,
in the first method the application of the distributive laws
(step 2) can be exponential, while in the second method the
construction of the truth table is exponential in the number
of variables of f .

Any DNF of the formula allows us to efficiently solve
problems such as determining the existence of a preimage
or of an nth ancestor (see Sect. 5 for more details) or to find
theminimum-cardinality preimage or nth ancestor. However,
although not strictly necessary, it can be convenient to con-
sider a compact DNF representation of f so that it can be
more easily verified. This requires a logic minimization step
that consists in further simplifying the formula, in exact or
heuristic way, in order to derive a DNF minimal with respect
to the number of terms (i.e., conjunctions) or to the number
of literals occurring in it or to any other given cost metric.

This last step is computationally expensive, as logic mini-
mization is an NP-hard problem1 (Hassoun and Sasao 2002;
Umans et al. 2006). However, since near-minimum solutions
are sufficient, the logic minimization step can be performed
applying heuristic methods to produce solutions that are near
to the optimum in a relatively short time. In particular, in our
setting, we are interested in deriving a compact logic expres-
sion containing only essential propositional symbols, i.e.,
symbols on which the expression actually depends. Thus,
in this context, we can apply heuristic techniques (e.g., the
ESPRESSO heuristic minimizer Brayton et al. 1984) to pro-
duce near minimal prime and irredundant DNF formulas,
i.e., DNF where each conjunction corresponds to a prime
implicant2 of the function represented by the expression (pri-
mality), and no conjunction can be deleted without changing
the function represented by the expression (irredundancy).
Indeed, nonessential propositional symbols cannot appear in
any prime implicant of a given Boolean function.

Let us denote with min(f) the DNF obtained after the
exact or heuristic logic minimization step. For any formula
f ∈ FS , min(f) is equivalent to f and is minimal with
respect to the number of terms (i.e., conjunctions) or to the

1 More precisely, the decision version of the problem of finding a min-
imal DNF representation of a Boolean function f starting from its truth
table is N P-complete, while it becomes N P N P -complete starting from
a DNF for f .
2 A prime implicant of a Boolean function f is a conjunction of literals,
that implies f and s. t. removing any literal results in a new conjunction
that does not imply f .

123

R. Barbuti et al.

number of literals occurring in it or to any other chosen cost
function. Thus, for any reasonable cost function we have
f ≡ min(f) and atom(min(f)) ⊆ atom(f) and there
exists no formula f ′ such that f ′ ≡ f and atom(f ′) ⊂
atom(min(f)).

The causes of an object in a reaction system are defined
by a propositional formula on the set of objects S. First of
all, we define the applicability predicate of a reaction a as a
propositional logic formula on S describing the requirements
for applicability of a; namely, all reactants have to be present
and inhibitors have to be absent. This is represented by the
conjunction of all atomic formulas representing reactants and
the negations of all atomic formulas representing inhibitors
of the considered reaction.

Definition 4 Let a = (R, I , P) be a reaction with R, I , P ⊆
S for a set of objects S. The applicability predicate of a,
denoted by ap(a), is defined as follows:

ap(a) =
⎛

⎝
∧

sr ∈R

sr

⎞

⎠ ∧
⎛

⎝
∧

si ∈I

¬si

⎞

⎠ .

The causal predicate of a given object s is a propositional
formula on S representing the conditions for the production
of s in one step; namely, at least one reaction having s as a
product has to be applicable.

Definition 5 Let A = (S, A) be a reaction systems and s ∈
S. The causal predicate of s in A, denoted by cause(s,A)

(or cause(s), when A is clear from the context), is defined
as follows3:

cause(s,A) =
∨

{(R,I ,P)∈A|s∈P}
ap ((R, I , P)) .

Moreover, we define the negation of the causal predicate
of s, called nocause(s), as the DNF formula equivalent to
¬cause(s).

Note that nocause(s) can easily be computed (once for
all) from cause(s) by putting the negations next to the atomic
objects using DeMorgan’s laws and then by putting the con-
junctions within the disjunctions using the distributive law.

We now introduce a simple reaction system as running
example.

Example 1 Let A1 = ({A, . . . , G}, {a1, a2, a3}) be a reac-
tion system with the following reactions,

a1 = ({A},∅, {B})
a2 = ({C, D},∅, {E, F})
a3 = ({G}, {B}, {E}).

3 We assume that cause(s) = f alse if there is no (R, I , P) ∈ A such
that s ∈ P .

The applicability predicates of the reactions are ap(a1) = A,
ap(a2) = C ∧ D and ap(a3) = G ∧ ¬B. Thus, the causal
predicates of the objects are

cause(A) = cause(C) = cause(D) = cause(G) = f alse,
cause(B) = A,

cause(F) = C ∧ D,

cause(E) = (C ∧ D) ∨ (G ∧ ¬B),

while

nocause(A) = nocause(C) = nocause(D)

= nocause(G) = true,
nocause(B) = ¬A,

nocause(F) = ¬C ∨ ¬D,

nocause(E) = (¬C ∧ ¬G) ∨ (¬C ∧ B)

∨ (¬D ∧ ¬G) ∨ (¬D ∧ B).

4 Characterizing the nth ancestors

We aim to define a formula characterizing all the initial sets
D0 that lead to the production of a given product s ∈ S after
exactly n steps. Note that the formula for the nth ancestor
of a set of products {s1, s2, . . . , sm} ⊆ S can be obtained by
combining in conjunction all the nth ancestor formulas for
each si with i ∈ {1, . . . , m} (see Corollary 1).

We base our new definitions on the notions of formula-
based and specialized formula predictors, originally pre-
sented in Barbuti et al. (2016a, b, 2018c), that characterize all
causes of an object in a given number of steps. Following this
approach, all nth ancestors of an object s are characterized
by a propositional formula f , i.e., they are all initial sets D0

that satisfy f according to the satisfaction relation defined in
Definition 3.

Definition 6 (nth Ancestor Formula) Let A = (S,A) be a
reaction systems, s ∈ S and f ∈ FS a propositional formula.
We say that formula f is a nth ancestor formula of s if it
holds that D0 |� f ⇔ s ∈ Dn .

Intuitively, formula f has to characterize all initial states
leading to the production of s in exactly n steps. Since the
evolution of closed reaction systems is deterministic, there
cannot exist two non-equivalent formulas f and f ′ both sat-
isfyingDefinition 6. However, if f is an nth ancestor formula
of s and f ′ ≡ f then also f ′ is an nth ancestor formula of s.
Among all the equivalent formulas, it is convenient to choose
the one containing theminimal number of propositional sym-
bols, so that they do not contain inessential objects. This is
formalized by the following approximation order on FS .

123

Characterization and computation of ancestors in reaction systems

Definition 7 (Approximation Order) Given f1, f2 ∈ FS we
say that f1 � f f2 if and only if f1 ≡ f2 and atom(f1) ⊆
atom(f2).

It can be shown that there exists a unique equivalence class
of nth ancestor formulas of s that is minimal with respect to
the order � f .

We now define an operator Anc that allows nth ancestor
formulas to be effectively computed.

Definition 8 Let A = (S, A) be a reaction systems and s ∈
S. We define a function Anc : S × IN → FS as follows:
Anc(s, n) = Anca(cause(s), n − 1), where the auxiliary
function Anca : FS × IN → FS is recursively defined as
follows:

Anca(l, 0) = l where l = s or l = ¬s
Anca(s, i), i > 0 = Anca(cause(s), i − 1)
Anca(¬s, i), i > 0 = Anca(nocause(s), i − 1)
Anca(f1 ∨ f2, i) = Anca(f1, i) ∨ Anca(f2, i)
Anca(f1 ∧ f2, i) = Anca(f1, i) ∧ Anca(f2, i)
Anca(true, i) = true
Anca(f alse, i) = f alse.

The function Anc(_, n) gives an nth ancestor formula that,
in general, is not in DNF form and may not be minimal with
respect to � f .

For this purpose, we could apply heuristic techniques to
produce prime and irredundant quasi-minimal DNF that are
guaranteed to be minimal with respect to � f .

Theorem 1 Let A = (S, A) be a reaction systems. For any
object s ∈ S,

– Anc(s, n) is the nth ancestor formula of s;
– min(Anc(s, n)) is the nth ancestor formula of s and is

minimal with respect to � f .

The proof of the previous result can be obtained by revis-
iting the proof of Theorem 4.4 and Corollary 4.7 in Barbuti
et al. (2016a). The previous result extends naturally to sets
as follows.

Corollary 1 Let A = (S, A) be a reaction systems. Given a
set of objects {s1, . . . , sm} ⊆ S,

–
∧

i∈{1,...,m} Anc(si , n) is a nth ancestor formula of
{s1, . . . , sm};

– min
(∧

i∈{1,...,m} Anc(si , n)
)

is a nth ancestor formula

of {s1, . . . , sm} and it is minimal with respect to � f .

These constructive (minimal) characterizations of nth
ancestors can be exploited either for studying causal depen-
dences between objects or for solving the computational

problems studied in Dennunzio et al. (2015a, b). In partic-
ular, nth ancestor formulas can be exploited for studying
the complexity of checking the existence of preimages and
nth ancestors, and of computing minimal preimages and nth
ancestors, as we will discuss in the rest of this paper.

Example 2 Let us consider again the reaction system A1 of
Example 1. Assume we are interested in the 1st ancestor
formula of E . Hence, we calculate it by applying the function
Anc:

Anc(E, 1) = Anca
(
(G ∧ ¬B) ∨ (C ∧ D), 0

)

= (
Anca(G, 0) ∧ ¬Anca(B, 0)

)

∨(
Anca(C, 0) ∧ Anca(D, 0)

)

= (G ∧ ¬B) ∨ (C ∧ D).

An initial set D0 satisfies Anc(E, 1) iff the execution of
the reaction system starting from D0 leads to the production
of object E after 1 step. Furthermore, in this case the obtained
formula is also minimal given that min(Anc(E, 1)) =
Anc(E, 1) since Anc(E, 1) is already in minimal DNF. The
1st ancestors (or preimages) of E are the sets D0 satisfying
Anc(E, 1). They are all the possible sets containing either G
but not B or bothC and D. In this case, no object is really nec-
essary for the production of E in one step since we have two
alternative ways to produce E involving different objects.

The 2nd ancestor formula of E is equal to f alse,

Anc(E, 2) = Anca
(
(G ∧ ¬B) ∨ (C ∧ D), 1

)

= (
Anca(G, 1) ∧ ¬Anca(B, 1)

)

∨(
Anca(C, 1) ∧ Anca(D, 1)

)

= (Anca(f alse, 0) ∧ ¬Anca(A, 0))
∨(Anca(f alse, 0) ∧ Anca(f alse, 0))

= (f alse ∧ ¬A) ∨ (f alse ∧ f alse)
≡ f alse.

Thismeans that there does not exist any 2nd ancestor of E ,
that is, no initial state can lead to E in two steps. Of course,
also any nth ancestor formula of E with n > 2 is equal to
f alse. Therefore, we can conclude that there does not exist
any nth ancestor of E for any n ≥ 2.

Example 3 Let us consider now the reaction system
A2 = ({A, . . . , L}, {a1, . . . , a8})with the following reaction
rules:

a1 = ({A}, {B}, {C}) a2 = ({C},∅, {E, I })
a3 = ({G, B},∅, {D}) a4 = ({B},∅, {B})
a5 = ({H , B},∅, {D}) a6 = ({E, D},∅, {F})
a7 = ({I },∅, {G}) a8 = ({L},∅, {H}).

Assumewe are interested in the preimages of F .Weobtain
the 1st ancestor formula Anc(F, 1) = E ∧ D, expressing

123

R. Barbuti et al.

that any set containing {E, D} is preimage of F . Looking for
the 2nd ancestors of F , we obtain

Anc(F, 2) = Anca
(
(E ∧ D), 1

)

= (
Anca(E, 1) ∧ Anca(D, 1)

)

= Anca(C, 0)
∧Anca((G ∧ B) ∨ (H ∧ B), 0)

= C ∧ ((Anca(G, 0) ∧ Anca(B, 0))
∨(Anca(H , 0) ∧ Anca(B, 0)))

= C ∧ ((G ∧ B) ∨ (H ∧ B)).

Note that min(Anc(F, 2)) = (C ∧G ∧ B)∨ (C ∧ H ∧ B)

in this case is simply obtained by applying the distributive
law that gives an already minimized DNF.

The2ndancestor formula expresses that any set containing
either {C, G, B} or {C, H , B} is a 2nd ancestors of F . Note
that we can conclude that while C and B are necessary for
the production of F in two steps, G and H are not.

As regards the 3rd ancestors, we have

Anc(F, 3) = Anca
(
(E ∧ D), 2

)

= (
Anca(E, 2) ∧ Anca(D, 2)

)

= Anca(C, 1)
∧Anca((G ∧ B) ∨ (H ∧ B)), 1)

= Anca(C, 1)
∧((Anca(G, 1) ∧ Anca(B, 1)
∨(Anca(H , 1) ∧ Anca(B, 1)))

= Anca(A ∧ ¬B, 0)
∧(Anca(I , 0) ∧ Anca(B, 0)
∨(Anca(L, 0) ∧ Anca(B, 0)))

= A ∧ ¬B ∧ ((I ∧ B) ∨ (L ∧ B)).

This time min(Anc(F, 3)) = f alse; therefore, we can
be sure that it does not exist any nth ancestor of F for any
n > 2.

The concept of ancestor is very useful for reasoning on
reaction systemsmodeling gene regulatory networks. A gene
regulatory network can be easily translated into a reaction
system (Barbuti et al. 2018b). The dynamics of the reaction
system, then, precisely describes the evolution of the gene
regulatory network. In this context, the nth ancestors describe
initial configurations of active/inactive genes that lead to a
given final configuration after n steps.

Example 4 Consider the well-known repressilator network
(Elowitz and Leibler 2000) depicted in Fig. 1. It consists of
three genes connected in a feedback loop, where each gene
inhibits the expression of the next gene in the loop.

The repressilator network can be naturally expressed as a
the reaction system
ARepressillator = ({X , Y , Z}, {a1, a2, a3}) with the follow-

Fig. 1 Repressilator

ing reaction rules:

a1 = (∅, {Z}, {X})
a2 = (∅, {X}, {Y })
a3 = (∅, {Y }, {Z}).

This reaction system behaves differently depending on
whether the initial configuration is, for example, {X , Y , Z} or
simply {X}. However, in all cases the behavior is oscillatory.
This can be shown by computing the 3rd and 6th ancestors
of Z that turn out to be

Anc(Z , 3) = Anca(¬Y , 2) = Anca(X , 1)
= Anca(¬Z , 0) = ¬Z

and

Anc(Z , 6) = Anca(¬Y , 5) = Anca(X , 4) = Anca(¬Z , 3)
= Anca(Y , 2) = Anca(¬X , 1) = Anca(Z , 0)
= Z .

This shows that independently of the initial configuration,
the gene Z repeatedly appears and disappears, exhibiting an
oscillatory behavior.

5 Complexity of ancestor problems

In this section, we investigate the complexity of solving
ancestor problems using the new characterization computed
by the Anc operator. In order to achieve this goal, we first
study the

structure of the formula result of the Anc operator. The
idea is to give an upper bound both to the size and to the depth
of the formula, where depth means the number of nested
AND/OR levels.

To this aim, given a reaction system A = (S, A), we first
define some auxiliary notions. To give an upper bound to
the size of the obtained formula, we need to know: (i) the
maximum number of reactants and inhibitors in a rule of the
system, denoted by cp(A), and (ii) the maximum number of
rules that produce the same object, denoted mp(A).

123

Characterization and computation of ancestors in reaction systems

Definition 9 Given a reaction system A = (S, A), let

cp(A) = max{|R| + |I | | (R, I , P) ∈ A},
mp(A) = max{|{(R, I , P) ∈ A | s ∈ P}| | s ∈ S},
where |X | indicates the cardinality of the set X .

First observe that for each s ∈ S the size of the formula
cause(s) in terms of number of literals is at most cp(A) ×
mp(A). Computing the nth ancestor formula requires n steps.
At the first step, the formula computed by our operator is
cause(s), for some s, whosemaximal size is at most cp(A)×
mp(A). At the second step, each one of the cp(A) × mp(A)

literals of the previous formula has to be substituted with
its causes, obtaining a new formula whose size is at most
(cp(A)×mp(A))2 and so on. Hence, the size of the resulting
formula Anc(s, n) is at most (cp(A)×mp(A))n for each s ∈
S; namely, the size of Anc(s, n) is polynomial in cp(A) and
mp(A), as long as n has a constant value. Therefore, the size
of the nth ancestor formula for the set {s1, s2, . . . , sm} ⊆ S
is m × (cp(A) × mp(A))n which is polynomial in m, cp(A)

and mp(A) as long as n has a constant value.
Let us now evaluate the depth of the formula. To this aim,

the idea is to measure the level of nesting of ∧-∨ operators.
Intuitively, formula A is level 0, formulas A ∧ B ∧ C , A ∧
(B∧C) and A∨B are level 1, formulas A∧(B∧C)∨(C∧D)

and A ∨ (B ∧ C) are level 2, and so on.

Definition 10 Let f ∈ FS , we call nesting level of f the
maximum depth of its representation through a AN D–O R
tree.

In order to bound the nesting level of Anc(s, n), we define
the following:

Definition 11 Given a reaction system A = (S, A), we
define

c(A) =
{
1 if cp(A) > 1;
0 otherwise.

p(A) =
{
1 if mp(A) > 1;
0 otherwise.

The next result bounds the nesting level of the formula
Anc(s, n), for s ∈ S.

Theorem 2 Let A = (S, A) be a reaction system. For each
s ∈ S, the nesting level of the formula Anc(s, n), character-
izing the nth ancestors of s, is at most n × (c(A) + p(A)).

Proof Follows immediately from the definitions of Anc and
of cause and nocause. ��

For a set {s1, s2, . . . , sm} ⊆ S, we have the following
result.

Corollary 2 LetA = (S, A) be a reaction system. The nesting
level of the formula

∧
i∈{1,...,m} Anc(si , n), characterizing

the nth ancestors of {s1, s2, . . . , sm}, is at most1+n×(c(A)+
p(A)).

We can then conclude that for a set {s1, s2, . . . , sm} ⊆ S
our operator computes a 1+n×(c(A)+ p(A)) depth formula
with at most m × (cp(A) × mp(A))n literals in polynomial
time.

The formula that we obtain with our operator completely
characterizes all nth ancestors, but it can be very complex
to read because of the nesting levels of AND–OR operators.
While checking whether a given set D0 is an nth ancestor
can be done in linear time in the size of the formula obtained
by Anc, finding whether an nth ancestor exists or compute
one of the minimal sizes requires some further manipulation
of the formula. This is the expensive step, since putting the
formula inDNF is in general exponential in the size of the for-
mula. However, it is worth noting that once the formula is in
DNF both problems of establishing whether an nth ancestor
of a given product exists, and finding an nth ancestor with
a minimal number of objects can be solved in polynomial
time. Indeed, the satisfiability of a formula in DNF can be
checked in a time that is linear in the size of the formula4;
analogously, an ancestor of minimal size can be found in
linear time scanning the DNF formula in order to select the
conjunction with the minimal number of positive literals.

Therefore,we can conclude that the expensive step is to put
the formula in DNF. Whenever this is not necessary because
the formula resulting from our operator is already in DNF,
then the complexity of the ancestor problems boils down to
be polynomial.

This is the case of preimages of single objects as stated by
the following result.

Theorem 3 Let A = (S, A) be a reaction system. For an
object s ∈ S, to establish if there exists a preimage and
finding one of the minimal sizes can be done in polynomial
time.

Proof The formula Anc(s, 1) is, by definition, in DNF. ��

This is not, in general, the case for preimages of {s1, . . . sm}
with m > 1 and for nth ancestors where n > 1. To handle
efficiently these problems, our investigation proceeds in two
different directions. On the one hand (see Sect. 6), we define
conditions on the reaction system rules so that our operator
computes a formula that is already in DNF. On the other hand
(see Sect. 7), we explore approximations of the nth ancestor
formula that can be computed in polynomial time and are
useful to address ancestor problems.

4 A formula in DNF is satisfiable if and only if at least one of its
conjunctions is satisfiable; a conjunction is satisfiable if and only if it
does not contain both a symbol x and its complement ¬x .

123

R. Barbuti et al.

6 Synctactic restrictions on reactions
systems

We now investigate syntactic conditions under which the
existence and the minimal size nth ancestor, with n > 1,
can be computed in polynomial time. The first condition we
introduce is linear dependency.

Definition 12 Let A = (S, A) be a reaction systems. The n-
linear dependency of an object s2 from an object s1, denoted

s1
n

↪→ s2, is recursively defined as follows:

1. s1
0

↪→ s1

2. s1
1

↪→ s2 iff
|{(R, I , P) | (R, I , P) ∈ A and s2 ∈ P}| = 1 and |R| +
|I | = 1;

3. s1
n

↪→ s2 with n > 1 iff

there exists s3 ∈ S such that s1
1

↪→ s3 and s3
n−1
↪→ s2.

Intuitively, s2 is n-linearly dependent from s1 if it can be
produced from s1 in n steps in a uniqueway and by producing
a single element at each step. Moreover, we say that s2 is n-
linearly produced if there exists a s1 such that either s2 is
n-linearly dependent from s1 or s2 is n′-linearly dependent
from s1 with n′ < n and s1 does not appear as product of any
reaction. Formally,

Definition 13 Let A = (S, A) be a reaction system. An
object s2 is n-linearly produced inA iff one of the following
conditions holds:

1. there exists s1 such that s1
n

↪→ s2 or

2. there exists 0 ≤ n′ < n, s1 ∈ S such that s1
n′
↪→ s2 and

|{(R, I , P) | (R, I , P) ∈ A and s1 ∈ P}| = 0 .

We are now ready to prove that for reaction systems that
have at most one rule producing each object and such that all
inhibitors are n-linearly produced, the nth ancestor problems
are much easier to be solved.

Theorem 4 Let A = (S, A) be a reaction system satisfying
the following conditions:

1. ∀s ∈ S, |{(R, I , P) | (R, I , P) ∈ A and s ∈ P}| ≤ 1
and

2. for every object si ∈ I with (R, I , P) ∈ A, si is n-linearly
produced.

Then, for any s ∈ S, the existence and minimal size of the
nth ancestors of s can be solved in polynomial time.

Proof In order to prove the claim, we prove that in this case
the operator Anc of Definition 8 gives a formula which is
already in DNF.

Since for every object s ∈ S Condition 1 is satisfied, we
know that for each s ∈ S the formula causes(s) is a con-
junction of literals. Moreover, every object used as inhibitor
is n-linearly produced; thus, every negated object ¬s′, in the
computation of n steps, is replaced by nocause(s′) which
consists of a single literal. As a consequence the disjunction
operator is never introduced. Hence, the nth ancestor formula
of s will be simply a conjunction of literals (objects or non-
negated objects) of nesting level 1 which is a particular case
of DNF. ��
The next result extends the previous one to sets of objects.

Corollary 3 Let A = (S, A) be a reaction system. If all
the conditions of Theorem 4 are satisfied, then, for any set
{s1, s2, . . . , sm} ⊆ S, the existence and minimal size of the
nth ancestors can be solved in polynomial time.

Proof As before, also in this case, we prove that the operator
Anc of Definition 8 gives a formula which is already in DNF.
The nth ancestor formula of a set of objects is, by definition,
a conjunctive formula of nesting level 1. Hence, the whole
nth ancestor formula of {s1, s2, . . . , sm} is still a conjunctive
formula of nesting level 1. ��
Example 5 Let A3 = ({A, . . . , G}, {a1, . . . , a6}) be a reac-
tion system with

a1 = ({A, B},∅, {C}) a2 = ({D, E}, {F}, {A})
a3 = ({G},∅, {F}) a4 = ({B},∅, {G})
a5 = ({C, B},∅, {D}) a6 = ({E},∅, {E})
a7 = ({B},∅, {B}).

Since every object is produced by at most one rule, we have
that condition 1 of Theorem 4 is satisfied. Moreover, the
inhibitors B and F are (linearly) produced by a reaction with
a single reactant which, in turn, is (linearly) produced by a
reactionwith a single reactant; then, also the second condition
of Theorem 4 and Corollary 3 is satisfied for all n. Now
Anc(A, 2) = C ∧ B ∧ E ∧ ¬G , while Anc(A, 3) = A ∧
B ∧ B = A ∧ B and Anc(A, 4) = f alse. Note that as stated
in the proof of Theorem 4, all ancestors computed by Anc
for the reaction system A3 are formulas already in DNF.

Consider now a reaction system where reaction a4 is
substituted by reaction a′

4 = ({B},∅, {G}). In this case,
Anc(A, 2) = C ∧ B ∧ E ∧ ¬G, but Anc(A, 3) = A ∧
B ∧ E ∧ ¬B = f alse.

Conditions expressed by Theorem 4 and Corollary 3 are not a
characterization of all reaction systems having an nth ances-
tor formula in DNF. Weaker conditions can be found as, for
instance, in the following proposition. The idea in this case

123

Characterization and computation of ancestors in reaction systems

is to allow one single object to be produced by more than one
reaction.

Proposition 1 et A = (S, A) be a reaction system satisfying
the following conditions:

1. there exists s ∈ S such that
|{(R, I , P) | (R, I , P) ∈ A and s ∈ P}| > 1 and

2. ∀s ∈ S\{s}.
|{(R, I , P) | (R, I , P) ∈ A and s ∈ P}| ≤ 1 and

3. for every object si ∈ I with (R, I , P) ∈ A, si is n-linearly
produced.

Then, for any s ∈ S, the existence and minimal size of the
nth ancestors of s can be solved in polynomial time.

Proof Even in this case, we prove that the operator Anc
of Definition 8 gives a formula which is already in DNF.
Since there is only s ∈ S that is produced by more than
one rule, only cause(s) can contain the OR operator. More-
over, s cannot appear as reactant in any rule. Thus, it cannot
be introduced in the computation of the nth ancestor for-
mula of any other object. Further, every object used as
inhibitor is n-linearly produced; thus, every negated object s′,
in the computation of n steps, is replaced by nocause(s′)
which is a single literal. Then, the nth ancestor formula of s
is a DNF. ��

6.1 A biological application: the lac operon

We consider the regulation process of the lactose operon in
E. coli (Escherichia coli, see Wong et al. 1997; Vilar et al.
2003). E. coli is a bacterium often present in the intestine
of many animals. As most bacteria, it is often exposed to a
constantly changing physical and chemical environment, and
reacts to changes in its environment through changes in the
kinds of proteins it produces.

In general, in order to save energy, bacteria do not syn-
thesize degradative enzymes unless the substrates for these
enzymes are present in the environment. For example, E. coli
does not synthesize the enzymes that degrade lactose unless
lactose is in the environment. This phenomenon is called
enzyme induction or, more generally, gene regulation since
it is obtained by controlling the transcription of some genes
into the corresponding proteins.

Let us consider the lactose degradation example in E. coli.
Two enzymes are required to start the breaking process: the
lactose permease, which is incorporated in the membrane
of the bacterium and actively transports the sugar into the
cell (without this enzyme lactose can enter the bacterium
anyway, but much more slowly), and the beta galactosi-
dase, which splits lactose into glucose and galactose. The
bacterium produces also the transacetylase enzyme, whose
function is marginal.

Fig. 2 Lac operon

Fig. 3 Regulation process

The sequence of genes in the DNA of E. coli which pro-
duces the described enzymes is known as the lactose operon
(seeFig. 2). It is composedby six genes:Thefirst three (i, p, o)
regulate the production of the enzymes, and the last three (z,
y, a), called structural genes, are transcribed (when allowed)
into the mRNA for beta galactosidase, lactose permease and
transacetylase, respectively.

The regulation process is as follows (see Fig. 3): Gene i
encodes the lac Repressor, which, in the absence of lactose,
binds to gene o (the operator). Transcription of structural
genes into mRNA is performed by the RNA polymerase
enzyme, which usually binds to gene p (the promoter) and
scans the operon from left to right by transcribing the three
structural genes z, y and a into a single mRNA fragment.
When the lac Repressor is bound to gene o, it becomes an
obstacle for the RNA polymerase, and transcription of the
structural genes is not performed. On the other hand, when
lactose is present inside the bacterium, it binds to the Repres-
sor and this cannot stop any more the activity of the RNA
polymerase. In this case, transcription is performed and the
three enzymes for lactose degradation are synthesized.

At a high level of abstraction, the previous complex
mechanism can be described by considering only the influ-
ences that each gene has on the other genes. This is the
usual approach in gene regulatory networks, which focus on
positive and negative influences (promotion and inhibition)
between pairs of genes, by abstracting away the biochemical
details of the interaction. We follow this approach now in
order to define a reaction system modeling the lac operon.

In the lac operon, the repressor R has a negative influence
on the transcription and synthesis of the three enzymes for

123

R. Barbuti et al.

lactose degradation. Since such three enzymes are always
synthesized together, we describe them with the single sym-
bol Z in the reaction systemmodel. The repressor R is in turn
subject to the negative influence of lactose (denoted L ACT).
In addition to these influences, we model the activity of the
RNApolymerase (denoted P O L), which can bind to the pro-
moter gene p. We denote the result of such binding as Pp.
As a result, we obtain the following simple reaction system:
AOperon = ({L ACT , p, P O L, Pp, R, Z}, {a1, . . . , a6})

a1 = ({p},∅{p})
a2 = ({P O L},∅, {P O L})
a3 = ({L ACT },∅, {L ACT })
a4 = ({P O L, p},∅, {Pp})
a5 = ({Pp}, {R}, {Z})
a6 = (∅, {L ACT }, {R}).

Rules a1, a2 and a3 describe the persistence of the pro-
moter gene, of the RNA polymerase and of lactose. Rules a4
and a5 describe the activity of the RNA polymerase, namely
the binding with the promoter gene and the transcription of
the structural genes. The latter rule has R as inhibitor in
order to model the negative influence of the repressor on the
transcription and synthesis of the three enzymes denoted Z .
Finally, rule a6 models the negative influence of lactose on
the repressor.

In this example, we are interested in the production of the
three enzymes for lactose degradation, denoted Z . In partic-
ular, we are interested in knowing whether a 2nd (or higher)
ancestor exists, which is the minimal set of genes that has
to be active for the production of Z . This would tell us what
are the minimal conditions leading to the production of the
three enzymes. Since the reaction system AOperon satisfies
Theorem 4, we can be sure that the computation of the DNF
of the ancestor formula will take polynomial time. For n ≥ 2,
we obtain Anc(Z , n) = p ∧ P O L ∧ L ACT , which tells us
that L ACT is necessary in order to produce Z .

7 Approximations of the nth ancestor
formula

In the previous section, we have established some syntactic
restrictions that guarantee us that the formula result of our
Anc operator is already in DNF. This allowed us to address,
for those cases, nth ancestor problems in polynomial time.
However, the syntactic restrictions of Theorem 4 are quite
strong, and therefore, they allow to address only a small set
of reaction systems. An alternative way to keep the com-
plexity low is to consider approximations of the nth ancestor
formula. In particular, given a Boolean formula f which is
the nth ancestor formula of an object s, we want to effec-

tively compute two DNF formulas f ⊗ and f ⊕ such that the
following logical implications are satisfied

f ⊗ → f → f ⊕. (1)

It is worth noting that the properties in (1) guarantee that any
initial set D0 satisfying a f ⊗ formula is an nth ancestor of
s. Therefore, if a formula

f ⊗ is satisfiable5, then there exists at least an nth ancestor
of s. Moreover, scanning a f ⊗ formula and selecting the con-
junction with the minimal number of positive literals gives
an upper bound to the minimal size of an nth ancestor of s.
On the other hand, if the formula f ⊕ ≡ false, then we can
be sure that there are no nth ancestors of s. Moreover, if an
initial D0 does not satisfy the formula f ⊕, then we can be
sure that D0 cannot be an nth ancestor of s.

Both kinds of formulas can be computed by effective oper-
ators in polynomial time. Such operators can be obtained as
different approximations (in the sense of abstract interpre-
tation Cousot and Cousot 1977, 1979) of the original Anc
operator. In the next sections, we will show how to compute
the formulas f ⊗ and f ⊕. The idea is then to use both kinds
of approximation for reasoning on nth ancestor problems.

7.1 The approximation f⊗

Our aim is to computeDNF formulas implying the nth ances-
tor formula for an object s using approximations of the
Anc(s,n) operator. Since we require that the approxima-
tions f ⊗ imply the nth ancestor formula, it follows that each
f ⊗ formula we obtain will be satisfiable only by a subset of
the nth ancestors of s. Roughly speaking, in order to obtain
such formulas, the idea is to rewrite each positive literal using
the conjunctionof literals froma single reaction that produces
s.

By changing the combinations of the chosen conjunctions,
we obtain different f ⊗ formulas. Indeed, the idea is to com-
pute f ⊗ formulas defining a new operator that mimics the
operator Anc where at each rewriting step, each positive lit-
eral is replaced by just one possible conjunction of the DNF
cause, while each negative literal is replaced with just one
conjunction of the DNF of nocause. It is worth noting that
this corresponds to exploring the derivation tree for s in n
steps with a depth first search rather than a breath first search.

Formally, since there are many different f ⊗ approxima-
tions of the nth ancestor formula, one for each possible
conjunction choice, we define the operator computing f ⊗
by means of a relation Anc⊗ as follows.

Definition 14 Let A = (S, A) be a reaction systems and
s ∈ S. We define a relation Anc⊗ : S × IN × FS where

5 Remember that this check for a formula in DNF can be done in linear
time.

123

Characterization and computation of ancestors in reaction systems

Anc⊗(s, n, f ⊗) if Anc⊗
a (cause(s), n − 1, f ⊗), where the

auxiliary relation Anc⊗
a : FS ×IN× FS is recursively defined

as follows,

Anc⊗
a (l, 0, l), if l = s or l = ¬s

Anc⊗
a (s, i, f ⊗), i > 0 if Anc⊗

a (t, i − 1, f ⊗),

t ∈ ChooseC(cause(s))
Anc⊗

a (¬s, i, f ⊗), i > 0 if Anc⊗
a (t, i − 1, f ⊗),

t ∈ ChooseC(nocause(s))
Anc⊗

a (f1 ∨ f2, i, f ⊗
1 ∨ f ⊗

2) if Anc⊗
a (f1, i, f ⊗

1)

and Anc⊗
a (f2, i, f ⊗

2)

Anc⊗
a (f1 ∧ f2, i, f ⊗

1 ∧ f ⊗
2) if Anc⊗

a (f1, i, f ⊗
1)

and Anc⊗
a (f2, i, f ⊗

2)

Anc⊗
a (true, i, true)

Anc⊗
a (f alse, i, f alse)

where ChooseC(f) = {C1, C2, . . . , Cr } if f = ∨
i∈{1,...,r} Ci , and

∀i ∈ {1 . . . r}, Ci is a conjunction of literals.

All formulas f ⊗ in relation Anc⊗ with s and n approxi-
mate the nth ancestor formula of s in the sense of Eq. (1). It is
worth noting that, given an object of interest s, for any n, each
f ⊗ formula such that Anc⊗(s, n, f ⊗) is a DNF formula that
implies Anc(s, n).

Theorem 5 Let A = (S, A) be a reaction systems. Let f ⊗
such thatAnc⊗(s, n, f ⊗) and f = Anc(s, n), for any object
s ∈ S. Then

– f ⊗ is a formula in disjunctive normal form,
– f ⊗ → f .

Proof Let us prove first that, if a generic formula f is a con-
junction of literals, where, we recall, a literal is either an
object or a negated object, and Anc⊗(f , n, f ⊗) holds, then
f ⊗ is a conjunction of literals.
Weprove this assert by induction on the pair of the first two

arguments of the relation Anc⊗
a . The induction is based on

the following well-founded ordering. We assume that a pair
(f , n) is less than a pair (f ′, n′), denoted (f , n) ≺ (f ′, n′)
iff either n < n′ or n = n′ and f is a subformula of f ′.

The minimal elements of ≺ are the pairs (l, 0) where l
is a literal. Thus, because we know that Anc⊗

a (l, 0, l), when
l = s or l = ¬s, the base case is obvious.

For the inductive cases, we have:

1. If Anc⊗
a (f1, i, f ⊗

1) and Anc⊗
a (f2, i, f ⊗

2) have the prop-
erty that f1, f2, f ⊗

1 and f ⊗
2 are conjunctions of literals,

then, by the definition of Anc⊗ we have Anc⊗
a (f1 ∧

f2, i, f ⊗
1 ∧ f ⊗

2) where both f1 ∧ f2 and f ⊗
1 ∧ f ⊗

2 are
conjunctions of literals.

2. If Anc⊗
a (t, i, f ⊗)where t ∈ ChooseC(cause(s)), for an

object s, we know that t is a conjunction of literals. Sup-
pose f ⊗ is a conjunction of literals, then, by the definition
of relation Anc⊗

a , we have Anc
⊗
a (s, i + 1, f ⊗). Because

s is a single object, the property is still true.

3. The case in which we have Anc⊗
a (t, i, f ⊗) where t ∈

ChooseC(nocause(s)) is analogous to the previous one.

Note that the property is trivially preserved by the two
cases Anc⊗

a (true, i, true) and Anc⊗
a (f alse, i, f alse). Let

us remark that, for our assumption, we never apply the case
Anc⊗

a (f1 ∨ f2, i, f ⊗
1 ∨ f ⊗

2) because we start with a formula
which is a conjunction of literals and the operator ∨ is never
introduced.

Finally, to prove that f ⊗ is in DNF, we notice that
Anc⊗(s, n, f ⊗) if Anc⊗

a (cause(s), n − 1, f ⊗). Because
cause(s) is in DNF, cause(s) = ∨

i∈{1,...m} Ci , where each
Ci is a conjunctionof literals.Bydefinition,Anc⊗

a (
∨

i∈{1,...m}
Ci , n −1, f ⊗ = ∨

i∈{1,...m} f ⊗
i) if Anc⊗

a (Ci , n −1, f ⊗
i) for

i ∈ {1, . . . , m}. Since Ci is a conjunction of literals, we can
apply the above result to conclude that each f ⊗

i is a con-
junction of literals. This allows us to conclude that f ⊗ is in
disjunctive normal form.

The proof of f ⊗ → f is trivial. If in a formula f we
substitute a disjunction of subformulas with just one subfor-
mula in the disjunction, we obtain a stronger formula which
implies the original one, and this is what this approximation
does by substituting a disjunction of conjunctions of literals
in cause(s) or in nocause(s) with just one conjunction of
literals. ��

Example 6 Let us consider the simple reaction systemA2 of
Example 3.

One approximation f ⊗ of the 2nd ancestors of F is C ∧
(H ∧ B) and it can be computed as follows.

Anc⊗(F, 2, f ⊗) if Anc⊗
a

(
(E ∧ D), 1, f ⊗ = f ⊗

1 ∧ f ⊗
2

)

if Anc⊗
a (E, 1, f ⊗

1) and Anc⊗
a (D, 1, f ⊗

2)

if Anc⊗
a (C, 0, f ⊗

1 = C)

and Anc⊗
a ((H ∧ B), 0, f ⊗

2 = f ⊗
3 ∧ f ⊗

4)

if Anc⊗
a (H , 0, f ⊗

3 = H)

and Anc⊗
a (B, 0, f ⊗

4 = B)

Note that in Anc⊗(F, 2, f ⊗), f ⊗ = C ∧ (H ∧ B) is
already in DNF and C ∧ (H ∧ B) → Anc(F, 2), since
Anc(F, 2) = C ∧ ((G ∧ B) ∨ (H ∧ B)).

The approximation of the 2nd ancestor formula that we
computed assures us that any set containing {C, H , B} is
a 2nd ancestors of F . So, if one is interested in finding a
2nd ancestor, one can obtain one in polynomial time by just
rewriting a single branch of the tree.

Of course, also C ∧ (G ∧ B) can be computed for the
relationAnc⊗(F, 2, f ⊗) by choosing the other possible con-
junction in the DNF causes(D) formula.

This is not the case for the 3rd ancestor formula of F .
Indeed, for the f ⊗ approximations of the 3rd ancestor for-
mula for F we can derive the formula A ∧ ¬B ∧ (I ∧ B) as

123

R. Barbuti et al.

follows

Anc⊗(F, 3, f ⊗) if Anc⊗
a

(
(E ∧ D), 2, f ⊗ = f ⊗

1 ∧ f ⊗
2

)

if Anc⊗
a (E, 2, f ⊗

1) and Anc⊗
a (D, 2, f ⊗

2)

if Anc⊗
a (C, 1, f ⊗

1)

and Anc⊗
a ((G ∧ B), 1, f ⊗

2 = f ⊗
3 ∧ f ⊗

4)

if Anc⊗
a (A ∧ ¬B, 0, f ⊗

1 = f ⊗
5 ∧ f ⊗

6)

and Anc⊗
a (G, 1, f ⊗

3),Anc⊗
a (B, 1, f ⊗

4)

if Anc⊗
a (A, 0, f ⊗

5 = A),Anc⊗
a (¬B, 0, f ⊗

6 = ¬B)

and Anc⊗
a (I , 0, f ⊗

3 = I),Anc⊗
a (B, 0, f ⊗

4 = B)

The approximation formula is f ⊗ ≡ f alse, it is in DNF
and implies Anc(F, 3) = A ∧ ¬B ∧ ((I ∧ B) ∨ (L ∧ B)) ≡
f alse as stated by Theorem 5. Note, however, that in general
f ⊗ ≡ f alse does not allow us to conclude that there exist
no 3rd ancestors of F .

7.2 The approximation f⊕

In this section, we define the computation of DNF formulas
that are implied by the nth ancestor formula of an object
s. Once again, the idea is to use approximations of the
Anc(s,n) operator. Since we require that the approxima-
tions f ⊕ are implied by the nth ancestor formula, it follows
that each f ⊕ formula we obtain will be satisfiable only by a
superset of the nth ancestors of s. Roughly speaking, in order
to obtain such formulas the idea is to rewrite each literal using
a disjunction of literals obtained by choosing a single literal
in each conjunction.

By changing the combinations of the chosen literals, we
obtain different f ⊕ formulas. Indeed, the idea is to derive the
f ⊕ formulas defining anewoperator thatmimics the operator
Anc where at each rewriting step, each positive literal is
replaced by a simple disjunction obtained starting from the
DNF cause or nocause.

Formally, since there are many different f ⊕ approxima-
tions of thenth ancestor formula, one for each possible choice
of one literal in the conjunction, we define the operator com-
puting f ⊕ by means of a relation Anc⊕ as follows.

Definition 15 Let A = (S, A) be a reaction systems and
s ∈ S. We define a relation Anc⊕ : S × IN × FS
where Anc⊕(s, n, f ⊕) if Anc⊕

a (s, n, f ⊕), where the aux-
iliary relation Anc⊕

a : FS × IN × FS is recursively defined
as follows:

Anc⊕
a (l, 0, l) if l = s or l = ¬s

Anc⊕
a (s, 1, f ⊕) if Anc⊕

a (cause(s), 0, f ⊕),

Anc⊕
a (s, i, f ⊕), i > 1 if Anc⊕

a (
∨

i∈{1,...,s} ti , i − 1, f ⊕),

cause(s) = ∨
i∈{1,...,s} Ci ,

ti ∈ Choose(Ci)

Anc⊕
a (¬s, 1, f ⊕) if Anc⊕

a (nocause(s), 0, f ⊕),

Anc⊕
a (¬s, i, f ⊕), i > 1 if Anc⊕

a (
∨

i∈{1,...,s} ti , i − 1, f ⊕), ,

nocause(s) = ∨
i∈{1,...,s} Ci ,

ti ∈ Choose(Ci)

Anc⊕
a (f1 ∨ f2, i, f ⊕

1 ∨ f ⊕
2) if Anc⊕

a (f1, i, f ⊕
1)

and Anc⊕
a (f2, i, f ⊕

2)

Anc⊕
a (f1 ∧ f2, i, f ⊕

1 ∧ f ⊕
2) if Anc⊕

a (f1, i, f ⊕
1)

and Anc⊕
a (f2, i, f ⊕

2)

Anc⊕
a (true, i, true)

Anc⊕
a (f alse, i, f alse)

where Choose(
∧

i∈{1...r} li) = {l1, l2, . . . , lr } and ∀i ∈ {1 . . . r}, either
li = s or li = ¬s.

All formulas f ⊕ in relation Anc⊕ with s and n approximate
the nth ancestor formula of s in the sense of Eq. (1). It isworth
noting that, given an object of interest s, for any n, each f ⊕
formula such that Anc⊕(s, n, f ⊕) is a DNF formula that is
implied by Anc(s, n).

Theorem 6 Let A = (S, A) be a reaction system. Let f ⊕
such thatAnc⊕(s, n, f ⊕) and f = Anc(s, n), for any object
s ∈ S,

– f ⊕ is a formula in disjunctive normal form,
– f → f ⊕.

Proof Let us consider the following definition of the rela-
tion Anc⊕

b which differs from Anc⊕
a only for the case

Anc⊕
a (s, 1, f ⊕). Indeed,

Anc⊕
b (l, 0, l) if Anc⊕

a (l, 0, l)
Anc⊕

b (s, i, f ⊕), i > 0 if Anc⊕
a (s, i, f ⊕)

Anc⊕
b (¬s, 1, f ⊕), i > 0 if Anc⊕

a (¬s, 1, f ⊕)

Anc⊕
b (f1 ∨ f2, i, f ⊕

1 ∨ f ⊕
2) if Anc⊕

a (f1 ∨ f2, i, f ⊕
1 ∨ f ⊕

2)

Anc⊕
b (f1 ∧ f2, i, f ⊕

1 ∧ f ⊕
2) if Anc⊕

a (f1 ∧ f2, i, f ⊕
1 ∧ f ⊕

2)

Anc⊕
b (true, i, true)

Anc⊕
b (f alse, i, f alse)

By using the same well-founded ordering of Theorem
5, we can prove that if f is a disjunction of literals and
Anc⊗

b (fb, n, f ⊕
b) then f ⊕

b is a disjunction of literals. The
proof is analogous to the one of Theorem 5.

Nowfirst observe that prove ifAnc⊕
b (s, n, f ⊕

b)holds, then
f ⊕
b is in DNF, since s is a literal. Nowwewant to prove that if

Anc⊕
a (s, n, f ⊕) holds, then also f ⊕ is in disjunctive normal

form. The definition of Anc⊕
a differs from the one of Anc⊕

b
only in one step, when i = 1. In this single step, literals can
be replaced by a disjunction of conjunctions of literals. But
if in a disjunction of literals we replace each literal with a
disjunction of conjunctions of literals, we still obtain a for-
mula in DNF. Thus, we can conclude that if Anc⊕(s, n, f ⊕)

holds, then f ⊕ is in DNF.

123

Characterization and computation of ancestors in reaction systems

The proof of f → f ⊕ is trivial. If in a formula f we
substitute some conjunction of subformulas with just one
of the subformulas in the conjunction, we obtain a weaker
formula which is implied by the original one, and this is what
this approximation does by substituting each conjunction of
literals in cause(s) or in nocause(s) with just one literal of
the conjunction. ��
Example 7 Consider again the simple reaction systemA2 of
Example 3. One approximation f ⊕ of the 2nd ancestors of
F is (G ∧ B) ∨ (H ∧ B), and it can be computed as follows.

Anc⊕(F, 2, f ⊕) if Anc⊕
a

(
F, 2, f ⊕)

if Anc⊕
a (D, 1, f ⊕))

if Anc⊕
a ((G ∧ B) ∨ (H ∧ B), 0, f ⊕ = f ⊕

1 ∨⊕
2))

if Anc⊕
a (G ∧ B, 0, f ⊗

1 = f ⊕
3 ∧ f ⊕

4)

and Anc⊗
a (H ∧ B, 0, f ⊗

2 = f ⊕
4 ∧ f ⊕

5)

if Anc⊕
a (G, 0, f ⊗

3 = G) and Anc⊕
a (B, 0, f ⊗

4 = B)

and Anc⊗
a (H , 0, f ⊗

4 = H)

and Anc⊗
a (B, 0, f ⊗

5 = B)

Note that in Anc⊕(F, 2, f ⊕), f ⊕ = (G ∧ B) ∨ (H ∧ B) is
already a DNF and that Anc(F, 2) = C ∧ ((G ∧ B) ∨ (H ∧
B)) → (G ∧ B) ∨ (H ∧ B). This approximation of the 2nd
ancestor formula that sets not containing B and containing
neither G nor H cannot be 2nd ancestors of F . In particular,
in this case, it assures us that the presence of B is necessary
for a set to be the 2nd ancestors of F .

Of course, also C can be computed for the relation
Anc⊕(F, 2, f ⊕) by choosing the other possible literal in
the DNF cause(F) formula. In that case, the approximation
f ⊕ assures us that the presence of C is necessary for a set to
be the 2nd ancestors of F .

7.3 A biological application: discoveringminimal
ancestors for yeast cell cycle Boolean network

The cell cycle process by which a cell grows and divides
into two cells is a vital process the regulation of which is
conserved among the eukaryotes (Murray and Hunt 1993).
The process mainly consists in the four phases depicted in
Fig. 4.

In phase G1, the cell grows and, under appropriate condi-
tions, commits to division; in phaseS, theDNA is synthesized
and chromosomes replicated: G2 is the phase where the cell
checks the duplicated chromosomes; and finally, in the M
(Mitosis) phase the cell is divided into two. After the Mitosis
phase, the cell enters the G1 phase again, hence completing
a “cycle.” There are about 800 genes involved in the cell
cycle process of the budding yeast (Spellman et al. 1998).
However, the number of key regulators that are responsi-
ble for the control and regulation of this complex process
is much smaller. Based on extensive literature studies, the
authors in Li et al. (2004) constructed a network of key reg-

Fig. 4 Complete cell cycle

Fig. 5 Boolean network (MCell , ECell)

ulators involving 11 genes. The relations between genes are
described by the Boolean network (MCell , ECell) depicted
in Fig. 5, where the positive influence of a gene on another
one is depicted in green, while the negative influence of a
gene on another one is depicted in red. The Boolean network
was used to study the time evolution of the protein states.
Starting from the 211 = 2048 possible initial states describ-
ing a configuration for gene activation, they discover that all
of them flow into one of the seven attractor stationary states.
In particular, among the seven fixed points there is one big
attractor that attracts 1764 initial states.

In Barbuti et al. (2018b), some of these authors translated
the Boolean network (MCell , ECell) of Fig. 5 into the follow-
ing reaction system,
Acell = ({Cellsi ze, Cln3, Clb1, 2, Clb5, 5, SB F, M B F,

Sic1, Swi5, Mcm1, Cdc20, Cdh1}, {a1, . . . , a50}),
where the reactions a1 − a50 are listed in Fig. 6.

The execution of the reaction systems is able to mimic the
12 steps of evolution of activation/inactivation of genes of
the Boolean network as it can be observed in nature and it is
depicted in Fig. 7, where the activation of a gene is indicated
with a dark circle.

At the beginning, the cell stays in a stationary state where
only genes Sic1 and Cdh1 are active, while all the other
genes are inactive. This is a stationary states and the cell
waits for the external stimulus (the grow of the cell, here

123

R. Barbuti et al.

a1 = ({Cln3}, {Clb1, 2}, {SBF,MBF})
a2 = ({SBF}, {Clb1, 2}, {SBF})
a3 = ({SBF,Cln3}, ∅, {SBF})
a4 = ({MBF}, {Clb1, 2}, {MBF})
a5 = ({MBF,Cln3}, ∅, {MBF})
a6 = ({SBF}, ∅, {Cln1, 2})
a7 = ({Cdc20}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
a8 = ({Swi5}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
a9 = ({Sic1}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
a10 = ({Cdc20, Swi5}, {Clb1, 2, Cln1, 2}, {Sic1})
a11 = ({Cdc20, Swi5}, {Clb5, 6, Cln1, 2}, {Sic1})
a12 = ({Cdc20, Swi5}, {Clb5, 6, Clb1, 2}, {Sic1})
a13 = ({Sic1, Cdc20, Swi5}, {Cln1, 2}, {Sic1})
a14 = ({Sic1, Cdc20, Swi5}, {Clb5, 6}, {Sic1})
a15 = ({Sic1, Cdc20, Swi5}, {Clb1, 2}, {Sic1})
a16 = ({Sic1, Cdc20, Swi5}, {Clb1, 2}, {Sic1})
a17 = ({Sic1, Cdc20}, {Clb1, 2, Cln1, 2}, {Sic1})
a18 = ({Sic1, Cdc20}, {Clb5, 6, Cln1, 2}, {Sic1})
a19 = ({Sic1, Cdc20}, {Clb5, 6, Clb1, 2}, {Sic1})
a20 = ({Sic1, Swi5}, {Clb1, 2, Cln1, 2}, {Sic1})
a21 = ({Sic1, Swi5}, {Clb5, 6, Cln1, 2}, {Sic1})
a22 = ({Sic1, Swi5}, {Clb5, 6, Clb1, 2}, {Sic1})
a23 = ({Cdc20}, {Clb5, 6, Cln1, 2, Clb1, 2}, {Cdh1})
a24 = ({Cdh1}, {Clb5, 6, Cln1, 2, Clb1, 2}, {Cdh1})
a25 = ({Cdh1Cdc20}, {Clb5, 6, Clb1, 2}, {Cdh1})
a26 = ({Cdh1Cdc20}, {Cln1, 2, Clb1, 2}, {Cdh1})
a27 = ({Cdh1Cdc20}, {Clb5, 6, Cln1, 2}, {Cdh1})
a28 = ({MBF}, {Sic1, Cdc20}, {Clb5, 6})
a29 = ({MBF,Clb5, 6 }, {Cdc20}, {Clb5, 6})
a30 = ({MBF,Clb5, 6 }, {Sic1}, {Clb5, 6})
a28 = ({Clb5, 6}, {Sic1, Cdc20}, {Clb5, 6})
a29 = ({Clb5, 6}, ∅, {Mcm1})
a30 = ({Clb1, 2}, ∅, {Mcm1})
a31 = ({Clb1, 2}, ∅, {Cdc20})
a32 = ({Mcm1}, ∅, {Cdc20})
a33 = ({Cdc20}, {Clb12}, {Swi5})
a34 = ({Mcm1}, {Clb12}, {Swi5})
a35 = ({Cdc20,Mcm1}, ∅, {Swi5})
a36 = ({Mcm1}, {Sic1, Cdh1, Cdc20}, {Clb1, 2})
a37 = ({Clb5, 6}, {Sic1, Cdh1, Cdc20}, {Clb1, 2})
a38 = ({Clb1, 2}, {Sic1, Cdh1, Cdc20}, {Clb1, 2})
a39 = ({Mcm1, Clb5, 6}, {Cdh1, Cdc20}, {Clb1, 2})
a40 = ({Mcm1, Clb5, 6}, {Cdh1, Sic1}, {Clb1, 2})
a41 = ({Mcm1, Clb5, 6}, {Sic1, Cdc20}, {Clb1, 2})
a42 = ({Mcm1, Clb1, 2}, {Cdh1, Cdc20}, {Clb1, 2})
a43 = ({Mcm1, Clb1, 2}, {Cdh1, Sic1}, {Clb1, 2})
a44 = ({Mcm1, Clb1, 2}, {Sic1, Cdc20}, {Clb1, 2})
a45 = ({Clb1, 2, Clb5, 6}, {Cdh1, Cdc20}, {Clb1, 2})
a46 = ({Clb1, 2, Clb5, 6}, {Cdh1, Sic1}, {Clb1, 2})
a47 = ({Clb1, 2, Clb5, 6}, {Sic1, Cdc20}, {Clb1, 2})
a48 = ({Clb1, 2, Clb5, 6,Mcm1}, {Cdh1}, {Clb1, 2})
a49 = ({Clb1, 2, Clb5, 6,Mcm1}, {Sic1}, {Clb1, 2})
a50 = ({Clb1, 2, Clb5, 6,Mcm1}, {Cdc20}, {Clb1, 2})

Fig. 6 Reactions of Acell

indicated with the activation of gene Cellsi ze) to arrive.
When also Cellsi ze becomes active, this triggers the acti-
vation sequence of the genes, as shown in Fig. 7. After 12
steps, the cell completes its cycle and divides, going back to
the initial stationary state waiting for another external stim-
ulus to arrive and to make it divide again.

In this context, consider the (last) stationary state, that we
will call S, where Sic1 and Cdh1 are active, while all the

other genes are inactive. This can easily be done by adding
the reaction
({Sic1, Cdh1}, {Cellsi ze, Cln3, Clb1, 2, Clb5, 5, SB F,

M B F, Swi5,
Mcm1, Cdc20}, {S}).
Thus, we can obtain all the alternative ways to reach the
stationary state S in n steps simply by computing the n +1th
ancestor formula of S. For example,

Anc(S, 2) = Cdh1 ∧ Swi5 ∧ ¬Cdc20 ∧ ¬Clb1, 2 ∧ ¬Clb5, 6
∧¬Cln1, 2 ∧ ¬Cln3 ∧ ¬M B F ∧ ¬Mcm1
∧¬SB F

.

Note that in the previous formula positive literals corre-
spond to genes that have to be active, while negative literals
correspond to genes that have to be inactive for the stationary
state S to be reached after one step. Of course, the last but one
state of Fig. 7, which describes the yeast cell cycle that can
be observed in nature, satisfies the formula Anc(S, 1). The
interesting point is that actually the stationary state S could
be reached even if gene Sic1 was not active at the previous
step. Indeed, the minimal 1st ancestor of S is {Cdh1, Swi5}
which does not contain Sic1. Computing the nth ancestor
formula of S, we can discover all the (minimal) configura-
tions of active/inactive genes that lead to the stationary state
S. For example, computing the 2nd ancestor formula of S, we
can discover that there are 16 alternative states (configura-
tions) that lead to the stationary state S. However, increasing
the number of steps increases the nesting level of AND–OR
operators in the ancestor formula, and therefore, its conver-
sion in DNF becomes more and more expensive. In these
cases, it can be extremely useful to use the approximations
introduced in the previous section since they allow the con-
struction of approximation formulaswith a lower complexity.
Indeed, looking for a pair f ⊗ and f ⊕ such that the relations
Anc⊗(S, 3, f ⊗) andAnc⊕(S, 3, f ⊕) hold allows us to com-
pute the following approximations

f ⊗ = Cdh20 ∧ Cdh1 ∧ ¬Clb12 ∧ ¬Clb1, 2 ∧ ¬Clb5, 6
∧¬Cln1, 2 ∧ ¬Cln3 ∧ ¬M B F ∧ ¬Mcm1
∧¬SB F

f ⊕ = Cdh20 ∨ Cdh20.

The approximation f ⊗ tells us that there is at least a 2nd
ancestor of size 2; that is, if we start with both Cdh20 and
Cdh1 active we can reach the S state in two steps. Note that
this implies that neither the activation of Sic1 nor the one
of Swi5 are really necessary for reaching the state S. From
f ⊕, on the contrary, we can conclude that the activation of
Cdh20 is necessary for leading to the state S in two steps. A
similar reasoning can be repeated for each backward step.

123

Characterization and computation of ancestors in reaction systems

Fig. 7 Cell cycle evolution

Finally, computing a pair f ⊗ and f ⊕ such that the rela-
tions Anc⊗(S, 13, f ⊗) and Anc⊕(S, 13, f ⊕) hold will give
us some information on the initial state that triggers all yeast
cell cycle.

f ⊗ = Cln3 ∧ Sic1 ∧ ¬Clb1, 21 ∧ ¬Clb5, 6 ∧ ¬Cln1, 21
∧¬Mcm1 ∧ ¬SB F

f ⊕ = ¬Mcm1.

From f ⊗, we can observe that the cell cycle could start even
if Cdh1 is not active, while from f ⊕ we can conclude that
it is necessary that Mcm1 is not active.

8 Conclusions

In this paper, we have proposed a theory of ancestors for
reactions systems, based on previously proposed notions of
preimage/nth ancestors. An nth ancestor of a set of objects
s1, . . . , sm is a set of objects that leads to the production of

s1, . . . , sm in n evolution steps of reaction system. A preim-
age corresponds to a 1st ancestor.

Our theory is based on the new notion of nth ancestor
formula, which is a logic formula that characterizes all the
possible nth ancestors of a given object (or set of objects).We
have defined an operator that computes nth ancestor formu-
las in polynomial time. This formula can be used to solve n
ancestors problems in exponential time.The exponential time
is actually due to the transformation of the formula into DNF.
In order to tackle this problem, we proposed: (i) a syntactic
restriction on the reaction system that ensures that the oper-
ator gives directly a formula in DNF and (ii) approximated
notions of nth ancestor formulas that are directly computed
in DNF and that provide a under- and a over-approximation
of the set of all the nth ancestor of a given set of objects.

We have validated our approach by showing some real
biological examples of gene regulatory networks where
ancestors can provide useful information about the dynamics
of the networks, even when the syntactic restrictions and the
approximations we proposed are used.

As future work, we plan to apply our theory to investigate
dynamical properties of more complex case studies of gene
regulatory networks.

123

R. Barbuti et al.

Acknowledgements Open access funding provided by Università di
Pisa within the CRUI-CARE Agreement. This study was funded by the
University of Pisa (grant PRA 2017_44, project “Metodologie infor-
matiche avanzate per l’analisi di dati biomedici”).

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Barbuti R, Gori R, Levi F, Milazzo P (2016a) Investigating dynamic
causalities in reaction systems. Theor Comput Sci 623:114–145

Barbuti R, Gori R, Levi F, Milazzo P (2016b) Specialized predictor for
reaction systems with context properties. Fundamenta Informati-
cae 147(2–3):173–191

Barbuti R, BernasconiA,Gori, R,Milazzo P (2018a) Computing preim-
ages and ancestors in reaction systems. In: Theory and practice of
natural computing—7th international conference (TPNC 2018),
Dublin, Ireland, December 12–14, 2018, Proceedings, pp 23–35

Barbuti R, Bove P, Gori R, Levi F, Milazzo P (2018b) Simulating gene
regulatory networks using reaction systems. In: Proceedings of
the 27th international workshop on concurrency, specification and
programming, Berlin, Germany, September 24–26, 2018

Barbuti R, Gori R, Levi F, Milazzo P (2018c) Generalized contexts for
reaction systems: definition and study of dynamic causalities. Acta
Informatica 55(3):227–267

Barbuti R, Gori R, Milazzo P (2018d) Predictors for flat membrane
systems. Theor Comput Sci 736:79–102

Barbuti R, Gori R, Milazzo P (2017) Multiset patterns and their
application to dynamic causalities in membrane systems. In:
18th International conference on membrane computing (CMC18).
LNCS 10725. Springer, pp 54–73

Bodei C, Gori R, Levi F (2013) An analysis for causal properties of
membrane interactions. ElectronNotes TheorComput Sci 299:15–
31

Bodei C, Gori R, Levi F (2015) Causal static analysis for Brane calculi.
Theor Comput Sci 587:73–103

Brayton RK, Sangiovanni-Vincentelli AL, McMullen CT, Hachtel
GD (1984) Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, Norwell, MA, USA

Brijder R, Ehrenfeucht A, Main MG, Rozenberg G (2011) A tour of
reaction systems. Int J Found Comput Sci 22(7):1499–1517

Brijder R, Ehrenfeucht A, Rozenberg G (2010) A note on causalities in
reaction systems. In: ECEASST, vol 30

Busi N (2007) Causality in membrane systems. In: Membrane com-
puting, 8th international workshop (WMC 2007), Thessaloniki,
Greece, June 25–28, 2007 Revised Selected and Invited Papers,
pp 160–171

Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approx-
imation of fixpoints. In: Conference record of the fourth ACM
symposium on principles of programming languages, Los Ange-
les, California, USA, January 1977, pp. 238–252

Cousot P, Cousot R (1979) Systematic design of program analysis
frameworks. In: Conference record of the sixth annual ACM sym-
posium on principles of programming languages, San Antonio,
Texas, USA, January 1979, pp 269–282

Dennunzio A, Formenti E, Manzoni L, Porreca AE (2015a) Ancestors,
descendants, and gardens of EDEN in reaction systems. Theor
Comput Sci 608:16–26

Dennunzio A, Formenti E, Manzoni L, Porreca AE (2015b) Preim-
age problems for reaction systems. In: International conference
on language and automata theory and applications (LATA 2015).
Springer, pp 537–548

Ehrenfeucht A, Rozenberg G (2007) Reaction systems. Fundamenta
informaticae 75(1–4):263–280

Elowitz MB, Leibler S (2000) A synthetic oscillatory network of tran-
scriptional regulators. Nature 403(6767):335

Formenti E, Manzoni L, Porreca AE (2014) Fixed points and attractors
of reaction systems. In: Conference on computability in Europe,
pp 194–203

Gori R, Levi F (2010) Abstract interpretation based verification of tem-
poral properties for bioambients. Inf. Comput. 208(8):869–921

Hassoun S, Sasao T (eds) (2002) Logic Synthesis and Verification.
Kluwer Academic Publishers, Dordrecht

Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle
network is robustly designed. Proc Natl Acad Sci 101(14):4781–
4786

Murray A, Hunt T (1993) The Cell Cycle. Oxford Univ. Press, New
York

Salomaa A (2013) Functional constructions between reaction systems
and propositional logic. Int. J. Found. Comput. Sci. 24(1):147–160

Salomaa A (2013) Minimal and almost minimal reaction systems. Nat
Comput 12(3):369–376

Spellman P, Sherlock G, Zhang M, Iyer V, Anders K, Eisen M, Brown
P, Botstein D, Futcher B (1998) Comprehensive identification of
cell cycle-regulated genes of the yeast saccharomyces cerevisiae
by microarray hybridization. Mol Biol Cell 9(12):3273–3297

Umans C, Villa T, Sangiovanni-Vincentelli AL (2006) Complexity of
two-level logicminimization. IEEETransCAD IntegCircuits Sys-
tems 25(7):1230–1246

Vilar JM, Guet CC, Leibler S (2003) Modeling network dynamics: the
lac operon, a case study. J Cell Biol 161(3):471–476

Wong P, Gladney S, Keasling JD (1997) Mathematical model of the
lac operon: inducer exclusion, catabolite repression, and diauxic
growth on glucose and lactose. Biotechnol Prog 13(2):132–143

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Characterization and computation of ancestors in reaction systems
	Abstract
	1 Introduction
	2 Closed reaction systems
	3 Causal predicates in reaction systems
	4 Characterizing the nth ancestors
	5 Complexity of ancestor problems
	6 Synctactic restrictions on reactions systems
	6.1 A biological application: the lac operon

	7 Approximations of the nth ancestor formula
	7.1 The approximation fotimes
	7.2 The approximation foplus
	7.3 A biological application: discovering minimal ancestors for yeast cell cycle Boolean network

	8 Conclusions
	Acknowledgements
	References

