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Abstract
Ocean heat content (OHC) anomalies typically persist for several months, making this variable a vital component of sea-
sonal predictability in both the ocean and the atmosphere. However, the ability of seasonal forecasting systems to predict 
OHC remains largely untested. Here, we present a global assessment of OHC predictability in two state-of-the-art and 
fully-coupled seasonal forecasting systems. Overall, we find that dynamical systems make skilful seasonal predictions of 
OHC in the upper 300 m across a range of forecast start times, seasons and dynamical environments. Predictions of OHC 
are typically as skilful as predictions of sea surface temperature (SST), providing further proof that accurate representation 
of subsurface heat contributes to accurate surface predictions. We also compare dynamical systems to a simple anomaly 
persistence model to identify where dynamical systems provide added value over cheaper forecasts; this largely occurs in 
the equatorial regions and the tropics, and to a greater extent in the latter part of the forecast period. Regions where system 
performance is inadequate include the sub-polar regions and areas dominated by sharp fronts, which should be the focus of 
future improvements of climate forecasting systems.

Keywords  Seasonal forecasts · Ocean heat content · Essential ocean variables, forecast skill · Coupled forecasting systems · 
Ocean reanalysis

1  Introduction

State-of-the-art seasonal forecast systems include a cou-
pled ocean–atmosphere (Stockdale et al. 1998, Baehr et al. 
2015; Batté et al. 2019; Johnson et al. 2019; MacLachlan 
et al. 2015; Saha et al. 2014; Sanna et al. 2017, Takaya et al. 
2018) because the main source of seasonal predictability 
in many climate variables, on a global scale, is the quasi-
periodic ocean–atmosphere interaction known as the El Niño 

Southern Oscillation (ENSO). ENSO alters the atmospheric 
circulation across the entire tropical Pacific and, as a result, 
causes knock-on effects (teleconnections) which change sea-
sonal climates across the world. The thermocline acts as a 
“memory bank” by providing long-term heat storage for the 
region (Neelin et al. 1998). The cycle of ENSO events, and 
therefore the teleconnections, are strongly influenced by the 
subsurface ocean heat content (OHC) in the tropical Pacific 
(Doblas-Reyes et al. 2013).

Because of this crucial role in global predictability, the 
initialization of the subsurface thermal structure is key for 
successful seasonal predictions. Initialising systems with 
accurate data about slowly varying regions in the subsurface 
improves sea surface temperature (SST) predictions (Alves 
et al.2004; Balmaseda & Anderson 2009; Alessandri et al. 
2010; McPhaden et al. 2020). Traditionally, the focus was on 
the initialization of the subsurface thermal structure in the 
tropics (Balmaseda 2017), but more recently it has emerged 
that the extratropics can also have an impact on seasonal 
forecasts. In particular, Tietsche et al. (2020) describes the 
influence of the Atlantic Meridional Overturning Circula-
tion (AMOC) on seasonal variations in North Atlantic SST. 
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OHC can also be used as a predictor of weather phenom-
ena at seasonal time scales using statistical techniques. For 
example, in the subtropical North Atlantic, there is a correla-
tion, with a lag of several months, between temperatures in 
the upper 150 m and hurricane activity (Scoccimarro et al. 
2018). The correlation between subsurface temperature and 
extreme weather activity is also used in sub-seasonal opera-
tional systems (Mainelli et al. 2008). Hobday et al. (2011) 
quantified the anomaly-detection skill of the upper 100 m 
OHC in the Tasman Sea, in the global ocean–atmosphere 
forecast system and up to four months lead time, due to the 
importance of this depth for the distribution of tuna and the 
spatial management of fisheries.

There is no extensive validation of ocean heat content in 
seasonal forecasting systems, despite its important role in 
seasonal predictability and the potential applications. Exist-
ing validation in the literature is often regional and does 
not include a range of measures (e.g. Hobday et al. 2011; 
Tietsche et al. 2020). Seasonal forecasting groups validate 
their systems often, for example at the launch of each new 
version or when new validation data become available. This 
essential work is typically performed for other variables such 
as SST, precipitation, sea-ice cover and 2 m air tempera-
ture (e.g. Baehr et al. 2015; Johnson et al. 2019). As in the 
validation work, the uses of seasonal forecasts have typi-
cally been focused on atmospheric, land-based or surface 
variables (e.g. for agriculture and energy generation) (Bruno 
Soares & Dessai 2015). Ocean heat content, or even tem-
perature at a particular depth below the surface, has not yet 
received the same level of validation or appreciation from 
potential uses.

Although there is some literature on the use of predictions 
of heat content (see references above), perhaps the poten-
tial applications are not yet widely appreciated. An exciting 
and urgent task for seasonal forecasting is the prediction of 
extreme heating events, which either occur at depth or are 
driven by subsurface heat anomalies. The average duration 
of such events is increasing globally and is crossing into the 
timescales of seasonal forecasts (Oliver et al. 2018; Darma-
raki et al. 2019). Fortunately, events driven by subsurface 
warming are expected to be more predictable than those pri-
marily driven by relatively abrupt atmospheric disturbances 
(Behrens et al. 2019; Holbrook et al. 2020). The early pre-
diction of subsurface heating could be of great economic and 
practical benefit to several industries such as aquaculture and 
fishing, and could aid marine conservation efforts against 
mass-mortality events (e.g. Caputi et al. 2016).

Meanwhile, there is good reason to expect predictabil-
ity to increase with depth; OHC anomalies are typically 
more persistent than SST and less responsive to daily/
weekly atmospheric disturbances, thus making predictions 
on seasonal timescales easier. However, throughout the 
ocean there are many regions where SST skill is inadequate 

and is subject to seasonal and inter-annual changes (e.g. 
Weisheimer et al. 2020). Skilful surface prediction is there-
fore not necessarily a sign of skilful subsurface prediction, 
and vice versa.

A more practical reason for a lack of validation efforts 
could be a lack of OHC validation datasets, yet this is not 
the case. There exists a multitude of 3D ocean analysis and 
reanalysis which are already used for estimating ocean vari-
ability and for inter-annual to decadal subsurface forecast 
initialisation (e.g. Good et al. 2013; Balmaseda et al. 2015; 
Masina et al. 2017). Indeed, many studies report high levels 
of predictive skill for the OHC (or subsurface ocean tem-
peratures) at these longer timescales (e.g. Robson 1990; 
Msadek et al. 2014; Yeager et al. 2018; Bilbao et al. 2021). 
Whatever the reason, the capability of current systems to 
forecast upper ocean heat content should not be taken for 
granted.

This study compares the OHC, from 0 to 300 m, against 
an ensemble of ocean reanalysis products. This effort is the 
first to cover the global ocean (except the polar seas) and all 
seasons. The upper 300 m is chosen because it encompasses 
many diverse phenomena across the ocean which are either 
relevant for predictability or applications. In the tropics, 
the upper ocean heat content is an important element of the 
ENSO energy cycle and recharge-discharge mechanism (e.g. 
Mayer et al. 2018 and references within). In the North Atlan-
tic, Häkkinen et al. (2013) found that decadal variability of 
SSH is partially driven by heat transport in the upper 700 m; 
more generally, increasing heat content can lead to thermos-
teric sea level rise. Aerosol cooling from volcanic eruptions 
is known to cause an abrupt cooling and a later rebound in 
the upper 700 m temperature (Carton & Santorelli 2008), 
the latter of which could be predicted once aerosol data is 
assimilated. Tropical cyclones can induce large heat trans-
port anomalies in the upper 100 m (Scoccimarro et al. 2011), 
and marine heatwaves are known to occur below the mixed 
layer (Elzahaby & Schaeffer 2019); early prediction of OHC 
anomalies may aid mitigation of extreme events. Marine 
wildlife is also affected by habitat displacement and shrink-
ing occurring below the surface (Franco et al. 2020). Lastly, 
the ocean reanalysis products used in this study tend to agree 
on the upper 300 m heat content trends more than they do 
for deeper layers (Balmaseda et al. 2015).

There are a multitude of motivations, therefore, to include 
heat content in future forecasting work. This work highlights 
key differences between surface and upper ocean predic-
tive skill, and identifies where, and in which seasons, skill 
is high. We employ two seasonal forecasting systems, both 
of which are fully-coupled, high-resolution, operational and 
multi-component. The ocean components are eddy-permit-
ting; an uncommon trait for seasonal forecast systems yet 
one which is necessary to capture accurate processes such 
as air-sea exchanges and heat transport (Hewitt et al. 2017; 
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Roberts et al. 2020). We also use, as a validation dataset, 
a new ensemble of reanalysis products. The study of these 
products is very relevant for the next generation of forecast 
systems. To our knowledge, this is the first attempt to esti-
mate the predictive skills of OHC at seasonal time scales 
and for the global ocean. We aim to provide a benchmark 
for future validation efforts, to explore dynamical reasons for 
measured forecast capability, and to highlight where forecast 
systems need improvement.

2 � Forecast systems: CMCC‑SPS3 & 
ECMWF‑SEAS5

The two forecast systems used here are the Seasonal Predic-
tion System Version 3 from the Centro Euro-Mediterraneo 
sui Cambiamenti Climatici (CMCC-SPS3), and the fifth 
generation Seasonal Forecasting System from the European 
Centre for Medium-Range Weather Forecasts (ECMWF-
SEAS5). Both systems were created at the turn of the cen-
tury as research-only seasonal forecasting systems of the 
atmosphere and have undergone updates every 5–7 years 
since. CMCC-SPS3 became fully operational in 2016, and 
ECMWF-SEAS5 a year later. Since 2018 both systems have 
been contributing to the Copernicus Climate Change Ser-
vice (C3S), which makes seasonal forecasts of precipitation, 
2 m-temperature, and more, freely available online.

The model components of each system are detailed in 
Table 1. Both systems base their ocean model component 
on the eddy-permitting version 3.4 of NEMO, which has 
a horizontal resolution of 25 km at the equator. The ocean 
model grid is tripolar, introducing grid cell anisotropy north 

of 20 N towards the artificial poles over Canada and Sibe-
ria. The vertical resolution in ECMWF-SEAS5 is higher 
than in CMCC-SPS3; in the upper 300 m, there are 35 and 
29 vertical levels in ECMWF-SEAS5 and CMCC-SPS3 
respectively.

Both systems use versions of their respective in-house 
ocean reanalysis to create initial conditions. In CMCC-
SPS3, the initial conditions are based on C-GLORS (Storto 
& Masina 2016), while in ECMWF-SEAS5 they are based 
on ORAS5 (Zuo et al. 2019). Both reanalyses use identical 
horizontal resolutions (0.25°) and the same sea ice model 
(LIM2), while the number of vertical levels is 75 and 50 
for ECMWF-SEAS5 and CMCC-SPS3 respectively. Both 
use atmospheric forcing from ERA-Interim until 2016, and 
ECMWF’s NWP analysis thereafter. Both systems used a 
variant of the CORE bulk formulation, although ORAS5 
also includes wave forcing. Both systems assimilate tem-
perature and salinity profiles, and altimeter derived sea-level 
anomalies, but the assimilation methods and observational 
datasets also differ. C-GLORS uses the 3D-variational data 
assimilation scheme OceanVar (Dobricic and Pinardi 2008; 
Storto & Masina 2016), while ORAS5 uses NEMOVAR. 
Thus, within the ocean initial conditions alone there are sev-
eral factors which may contribute to differences in forecast 
output between the two systems.

The atmospheric model components have in common 
only the initial conditions (Table 1). The configuration of 
IFS in ECMWF-SEAS5 provides higher vertical and hori-
zontal resolution than CAM in SPS3. CMCC-SPS3 uses the 
CPL7 coupler from the Community Earth System Model 
(CESM, Craig et al. 2012), while ECMWF-SEAS5 uses 
a single-executable (Mogensen et al. 2012). The coupling 

Table 1   Component, resolution 
and initialisation details for 
CMCC-SPS3 and ECMWF-
SEAS5 coupled forecast 
systems

ECMWF-SEAS5 CMCC-SPS3

Ensemble 51 40
Forecast period 7 months (first 6 used here) 6 months
Coupler Single-Executable CPL7
Atmosphere
 Model IFS CAM
 Horizontal Resolution 36 km 1°
 Vertical Resolution (top) 91 levels (0.01 hPa) 45 levels (0.3 hPa)
 Initialisation ERA-Interim ERA-Interim

Ocean
 Model NEMO v.3.4 NEMO v3.4
 Horizontal Resolution 0.25° tripolar grid 0.25° tripolar grid
 Vertical Resolution 75 levels 50 levels
 Initialisation ORAS5 C-GLORS

Sea Ice LIM2 CICE4
Waves 0.5° N/A
Land Embedded within IFS CLM 4.5 1°
Rivers Climatology River Transport Model (RTM)
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occurs every 90 min in CMCC-SPS3, every 60 min for 
ECMWF-SEAS5, with both capturing diurnal cycles. In 
both, ocean and sea-ice models are tightly coupled (i.e. they 
share a horizontal grid). Meanwhile, the atmosphere and 
wave models provide fluxes of heat, momentum, freshwater 
and turbulent kinetic energy to the ocean and sea ice com-
ponents, while the ocean and sea-ice models provide SST, 
surface currents and sea-ice concentration in return.

Both ECMWF-SEAS5 and CMCC-SPS3 ensembles 
sample the uncertainty in the initial conditions of the land, 
ocean and atmosphere (Table 1). The size of the ensemble 
(50 for ECMWF-SEAS5 and 40 for CMCC-SPS3) ensures a 
high signal-to-noise ratio in the ensemble mean. In CMCC-
SPS3, the ensemble is made by combining various pertur-
bations in each initial condition set: 10 perturbations of the 
atmospheric component, 4 of the ocean component and 3 of 
the land-surface component. Then, 40 scenarios are picked 
from the possible 120. ECMWF-SEAS5 instead applies 
stochastic physics perturbations to represent uncertainty 
arising from missing sub-scale processes. ECMWF-SEAS5 
produces 7-month forecasts, which is one more than CMCC-
SPS3; we therefore use 6-month forecasts in the analysis 
for consistency. Further details of the ensemble generation 
are given in Johnson et al. (2019) and Sanna et al. (2017) 
for ECMWF-SEAS5 and CMCC-SPS3 respectively. The re-
forecast period studied here is 1993–2016.

3 � Validation datasets and methods

3.1 � EN4

EN4 is an objective analysis of ocean temperature and salin-
ity derived from many profiling instruments and is provided 
on a 1° grid with 42 vertical levels (Good et al. 2013). Here, 
we do not use EN4 as a validation dataset, against which 
the seasonal forecasts are compared. Instead, we compare 
reanalyses (Sect. 3.3) to EN4 to highlight the geographical 
areas in which historical ocean records disagree (Sect. 3.3). 
This is not to say that ocean reanalyses are a better alterna-
tive to EN4 in the validation of seasonal forecasts. Although 
there is a lack of a widespread network of in-situ subsurface 
temperature observations, such data gaps also affect reanaly-
ses because they assimilate data.

3.2 � ESA CCI sea surface temperature

The European Space Agency Climate Change Initiative 
(ESA CCI) is a collection of climate data records for 26 
Essential Climate Variables (ECVs). The records include 
Essential Ocean Variables, including Version 2.1 of the SST 
product which is employed here (Good 2020). It is described 
as a “gap-filled, daily blend”. In practice, “blend” means the 

product is derived from several radiometers orbiting Earth 
since 1981 (Merchant et al.2019).

Given the diverse range of input into this product, there 
is some overlap with the data assimilated into the forecast 
systems’ initial conditions. Thus, it is not a truly independent 
validation dataset. Moreover, the quality of the data is not 
consistent throughout its availability period, although this 
could be said for many long-term climate datasets. None-
theless, the ESA CCI SST provides a high-resolution, long-
term product which allows for validation against 24 years 
of re-forecast data. Thus, interannual and, to a lesser extent, 
decadal variability will be included in our validations.

3.3 � Global ocean reanalysis ensemble product 
(GREP)

GREP is an ensemble of four global 3D ocean reanalysis 
products: C-GLORS v7 (CMCC: Storto & Masina 2016), 
FOAM (Met Office UK: Blockley et al. 2014), GLORYS2V4 
(Mercator: Garric et al. 2017) and ORAS5 (ECMWF: Zuo 
et al.2019). All products are built on version 3 of NEMO 
and are provided from 1993 to 2019 on the native ORCA025 
tri-polar curvilinear grid. There are 75 depth levels, 34 of 
which are shallower than 300 m. All use the same fluxes 
(CORE) and atmospheric forcing (ERA-I) (with the sub-
tle exception being ORAS5, as mentioned in Sect. 2). All 
products assimilate similar data streams, typically ARGO, 
XBT temperature profiles and AVISO Sea Level Anomaly. 
However, the products all have diverse assimilation schemes, 
observation quality control, model parameters, spin-up and 
surface constraints (Storto et al. 2019).

Ocean reanalyses are the unique choice for the task of 
global heat content validation because the ocean variables 
have coverage in space and time that is not matched by 
observations (Riser et al. 2016). Besides, ocean reanalyses 
integrate the observational information with that of atmos-
pheric reanalyses via a physical ocean model (Balmaseda 
et  al. 2013). An ensemble of ocean reanalyses, such as 
GREP, is more powerful than a single standalone reanalysis; 
the ensemble nature of the product accounts for a range of 
uncertainties represented by the diverse inputs and methods 
used in each member. Storto et al. (2019) found the ensem-
ble mean was a significant improvement on previous single-
member versions of reanalyses, across a range of marine 
variables.

In most parts of the ocean, the reanalysis ensemble agrees 
on the climatological mean; the ensemble standard devia-
tion is typically lower than 0.02 × 1010 J/m2 (Fig. 1a) while, 
in contrast, the interannual variability is typically higher 
than this value (Fig. 1b, c). The tropical Pacific and Indian 
Oceans, for example, are marked by relatively high interan-
nual variability, but low ensemble spread (in agreement with 
Palmer et al. (2017)). Western boundary currents (WBCs) 
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and other frontal regions in the Antarctic Circumpolar Cur-
rent also display greater GREP uncertainty than natural vari-
ability (Fig. 1c). The correlation between individual GREP 
products and the ensemble mean is lowest in these same 
regions (Fig. 1d), as is the agreement between GREP ensem-
ble mean and the EN4 analysis product (Fig. 1e). Given 
the relatively large disagreement in the reanalyses in these 
regions, the forecast validation may be less reliable. While 
the tropical variability, being wind driven, is generally tem-
porally coherent among ocean reanalyses, the frontal region 
variability, on the other hand, is dominated by chaotic nature 
of the ocean and is consistently high throughout the year (not 
shown). In addition to the chaotic variability, inherent ocean 
model errors imply that fronts and WBCs remain difficult to 
recreate in current reanalyses.

From here on in, the term “GREP” will refer to the rea-
nalyses’ ensemble mean. As our forecast systems are ini-
tialised with a version of either ORAS5 or C-GLORS, the 
OHC0-300 m validation dataset is not truly independent. 
However, as for the ESA CCI SST, the spatial and temporal 
coverage is unparalleled and necessary for a comparison of 
long-term data.

Besides acting as the validation datasets, ESA CCI and 
GREP are also used to construct persistence re-forecasts 

for SST and OHC respectively. A persistence re-forecast 
assumes a chosen anomaly persists over the forecast time, 
thus acting as a very cheap forecast. The initial anomaly, 
here, is the anomaly of the monthly mean from the month 
prior to the start-date. For example, the persistence model 
for the May start date propagates the April anomaly forward 
6 months. Given the relative ease with which this forecast 
can be made, a computationally- and economically- expen-
sive forecast system cannot justify its existence if it is out-
performed by a persistence forecast. Thus, persistence fore-
casts are used to identify where dynamical forecast systems 
must be improved.

3.4 � Forecast skill measures

Four skill measures are used to quantify re-forecast 
performance:

•	 Bias: 1
Y
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•	 Normalised Root-Mean-Square-Error (N-RMSE): 
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•	 Anomaly Correlation Coefficient (between f  and v).

Fig. 1   Ocean Heat Content 0–300  m statistics for the 1993–2016 
period. a Standard deviation of annual climatologies across GREP 
members. b Inter-annual variability of GREP ensemble mean (EM). 
c Ratio of inter-annual variability to ensemble member variability. d 
Average correlation of GREP members with GREP EM. e Correla-

tion of GREP EM with EN4. White regions in the correlation plots 
indicate where correlations are statistically insignificant. All meas-
ures cover the 1993–2016 period. Grey boxes in a mark boundaries 
of regions of interest used in later Figures, and the coordinates of the 
bounding lines are found in the top right of the figure
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•	 Amplitude Ratio (r), which is constructed from individ-
ual ensemble member statistics:

•	 Cn =
1

Y

∑Y

y
Fy,n (ensemble member climatological 

mean)
•	 �n =

�

1
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�
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�2
 (ensemble member inter-

annual variability)
•	 �f =

1

N

∑N

n
�n (mean of ensemble members’ interan-

nual variability)
•	 r =

�f

�V

F represents the SST or OHC values from the forecast out-
put; specifically Fy represents the forecast ensemble mean 
values, while Fy,n (see Amplitude Ratio) represents an 
ensemble member n. N is the total number of re-forecast 
ensemble members. V is the corresponding variable output 
from the validation dataset (in the case of GREP, it is the 
ensemble mean). The variable anomalies are represented 
by (lower-case) f and v; each set of anomalies is calculated 
against its own corresponding climatology. Y represents the 
total number of years (24). Each skill measure is applied to a 
particular season (i.e. Fy and Vy correspond to seasonal aver-
ages of May–June-July values across the 24 years). σV and 
σv are the standard deviations of the validation dataset value 
and anomalies respectively. The climatological means used 
here are taken from the 1993–2016 period, for the relevant 
seasonal (three-monthly) average.

Bias is simply the difference in climatological mean val-
ues. RMSE, which measures the average error of re-forecast 
anomalies relative to the validation dataset, is normalised 
by the standard deviation (inter-annual variability) of the 
validation dataset. Correlation quantifies the agreement of 
year-to-year fluctuations. Amplitude ratio compares the 
inter-annual variabilities of model and verification datasets. 
For example, an amplitude ratio of one means the variability 
in each dataset is equal, though the anomalies may not be 
concomitant; the correlation coefficient would be required 
to decide if the anomalies were in phase. Therefore, using 
the four skill measures together provides a fuller picture 
of system capability. In the following section, we begin by 
highlighting regions with different skill measure levels and 
explore what this means for forecast skill across the global 
ocean.

In Sects. 4.2 and 4.3, we compare correlation scores of 
different forecast outputs (dynamical systems versus per-
sistence, and OHC versus SST) and include specific statis-
tical significance testing for this task. Comparing correla-
tion scores of OHC forecasts to SST forecasts (Sect. 4.2) 
involves 4 datasets: one forecast and one validation dataset 
for each variable. The correlations are therefore independent 
(note this is not the same as the datasets being independent), 
and the significance of the difference can be tested as such 

(Eq. 5 in Siegert et al.(2017)). On the other hand, comparing 
OHC skill in dynamical systems and persistence forecasts 
(Sect. 4.3) involves only 3 datasets, because both correla-
tions are calculated relative to the same validation dataset. 
The correlations, in this case, would not be independent. It is 
therefore necessary to use an adapted significance test which 
incorporates the correlation between the two forecasts (Eq. 7 
in Siegert et al. (2017)). In all statistical tests in the main 
body of this paper, statistical significance will be defined at 
a confidence level of 5%.

Seasonal re-forecasts from 1993 to 2016 are used in this 
study (November forecasts cover Feb-Mar-Apr of 2017). The 
considered forecast period is 6 months from initialisation 
and the output used here is monthly-averaged. Four start 
dates are used to focus the validation: February, May, August 
and November. “Lead” refers to the time in advance that the 
prediction is made; for example, for a May start, lead season 
0 refers to a prediction of May–June-July, while lead season 
1 refers to a prediction of August–September-October.

4 � Forecast skill

4.1 � Global assessment of forecasting skill

There is a diverse range of OHC forecast skill levels across 
the global ocean. Figure 2 shows three such examples: the 
Equatorial Pacific, where inter-annual variability is high and 
so is the skill; the Tropical Indian Ocean, which is marked 
by warming trends, negligible variability, and good skill; the 
Southern Ocean, where dynamical forecast skills are very 
low. Despite biases in the forecast of the Equatorial Pacific 
(warm in ECMWF-SEAS5, cool in CMCC-SPS3), large 
ENSO-driven anomalies are predicted with high skill in both 
systems (low errors, high anomaly correlation and amplitude 
ratio close to 1). The Tropical Indian Ocean, meanwhile, 
does not experience the sharp inter-annual variability that 
the Equatorial Pacific does, and displays good predictability 
in both systems. The correlation of the detrended time series 
for this region is 0.3–0.4 lower in both systems, highlighting 
the importance of capturing the warming trend. However, as 
demonstrated by the wide confidence intervals in the ensem-
ble mean, even the individual GREP products disagree on 
the trend value (from 0.26 to 0.36 J/m2 per decade).

The Southern Ocean area-average is, according to the 
skill measures (low correlation, forecast variability double 
the reanalysis variability), poorly predicted by CMCC-SPS3 
yet well predicted by ECMWF-SEAS5. Although there is 
large uncertainty in the GREP ensemble mean (large confi-
dence intervals, Fig. 2), CMCC-SPS3 is outside this range 
from 1993 to 2000, and then at the lower bound for the 
remainder of the period. More notably, there is an abrupt 
change in OHC bias in 2000; this behaviour in CMCC-SPS3 
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has previously been noted and is still being explored, but 
reassuringly is restricted to limited regions (parts of the 
Southern Ocean, and the Labrador Sea). It is related to the 
ingestion of observational data and how initialisation tech-
niques respond to the introduction of Argo data in the early 
2000s. ECMWF-SEAS5, on the other hand, uses an extrapo-
lation of Argo data into the past, which renders the initial 
conditions less sensitive to Argo-induced changes. Thus, 
data sparsity is not the sole issue here; the use of initialisa-
tion methods to deal with this sparsity also has knock-on 
effects on forecasts.

Looking now at the global scale, as well as across the 
forecast period, it is important to first note that the two fore-
cast systems produce very similar pictures of skill across the 
ocean (Figs. 3 & 4). Recall that the systems use the same 
ocean model component and horizontal resolution, albeit 
with different vertical resolutions and initialisations, as well 
as different atmospheric component resolutions. Biases are 
typically larger and of higher magnitude in lead season 1, 
although this degradation is more pronounced in CMCC-
SPS3. What is a “large” OHC bias? First, we consider bias 

relative to the background variability; bias magnitude is 
lower than the GREP interannual variability in 79% and 
65% of the ocean surface area between 70S and 70 N, for 
the first and last half of the May forecast period respectively 
in CMCC-SPS3. We can also compare to the validation 
dataset uncertainty; bias magnitude is lower than the GREP 
ensemble variability (uncertainty) in only 40% and 29% of 
the ocean. In terms of magnitude, the largest biases appear 
in the WBCs, the Maritime Continent and the Antarctic Cir-
cumpolar Current (reaching 3–4 × 109 J/m2).

Encouragingly, there are many regions where OHC 
re-forecasts perform well. Specifically, these are regions 
marked by relatively high (close to 1) and significant corre-
lations, accurate variability (amplitude ratio near 1) and low 
errors. Many regions retain this level of performance into the 
latter half of the forecast period: the Equatorial Pacific, the 
subpolar Atlantic, the North-East Pacific and even the Medi-
terranean Sea. Besides the bias, the skill measures largely 
“agree” with one another in the sense that low N-RMSE 
typically corresponds with high anomaly correlation and 
amplitude ratio near one. Given that each skill measures 

Fig. 2   Examples of OHC 0–300 m re-forecast skill measures applied 
to regional averages. Time series’ of August-September-October 
seasonally-averaged values, for the GREP reanalysis and the ensem-
ble mean of re-forecasts initialised in May. Shading shows 95% con-
fidence intervals in the ensemble means. The corresponding forecast 

skill measures are shown to the right. The units of the bias are 1010 J/
m2. The bracketed correlation values refer to detrended time series. 
The boundaries for the three regions—Equatorial Pacific, Tropical 
Indian Ocean, and the Atlantic Southern Ocean—are shown in Fig. 1



	 R. McAdam et al.

1 3

different forecast properties, this is even more encouraging. 
In particular, the Pacific tropics and extratropics are con-
sistently among the best-scoring regions; anomaly correla-
tion remains above 0.8 into the second lead season, even in 
CMCC-SPS3 where there is cool bias (below −2 × 109 J). 
In contrast, the Atlantic basin displays comparatively lower 
anomaly correlation (< 0.4) over the tropics, but high skill 
over large areas of the North Atlantic, even in the second 
season.

Focusing on the poorly performing regions (the Southern 
Ocean and the WBCs), we see they are afflicted by over-
estimation of variability (amplitude ratios above 2), very 
low correlation and warm biases (above 3 × 109 J/m2). Cor-
relation values lower than a certain value are deemed sta-
tistically insignificant, depending on the test used (here, the 

threshold is approximately 0.4). Thus, the sample size is 
not large enough to provide confidence in interpreting these 
regions. Nonetheless, there are important lessons to learn 
from the differences across the forecast period and between 
systems. The magnitude and the geographical spread of 
poor skill measures in such regions are greatly reduced in 
ECMWF-SEAS5 compared to CMCC-SPS3 (Figs. 3, 4). 
In ECMWF-SEAS5, the worst-performing regions specifi-
cally match the patterns made by fronts (diagonal bands in 
the amplitude ratio maps throughout the Southern Ocean 
and along the paths of the WBCs), highlighting these fea-
tures as problematic. CMCC-SPS3 displays the same level 
of poor skill over the wider Southern Ocean. Despite this 
difference, it is intriguing that both systems excessively over-
estimate variability in the same regions. Whether this is a 

Fig. 3   Skill measure maps for CMCC-SPS3 re-forecasts of OHC 
0–300  m initialised in May:  Bias, Normalised-RMSE, Anomaly 
Correlation Coefficient and Amplitude Ratio. Left column: First 
lead season (May–June-July). Right column: Second lead season 

(August-September-October). Bias values in the range [− 0.25 × 109, 
0.25 × 109] are shown in white. White regions in the correlation maps 
indicate where correlations are not statistically significant
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common problem in either the ocean initial conditions or in 
the dynamical modelling of either system remains an open 
question.

Poor skill scores in the Southern Ocean and the WBCs 
have also been found in the SST re-forecasts, suggesting 
that the drivers of poor skill affect the entire upper 300 m 
in a similar way (Supplementary Figs. 1, 2; Johnson et al. 
2019; Sanna et al. 2017). The Southern Ocean in particular 
is less well covered by sub-surface in-situ observations 
than the rest of the global ocean (Riser et al. 2016), render-
ing the initial conditions less accurate. However, SST skill 
measures are equally poor despite SST being much better 
sampled in the reanalysis products used for initialisation. It 
may be that inaccurate sub-surface initial conditions lead 
to degradation of both SST and OHC. Another possibil-
ity is that the horizontal resolution in the ocean is insuf-
ficient to maintain the sharp isopycnal fronts associated 

with the WBCs or edge of the Antarctic Circumpolar Cur-
rent, although other errors related with air-sea interaction 
processes cannot be discarded. The current generation of 
coupled-models still struggles to accurately resolve the 
myriad of processes and atmosphere–ocean-ice couplings 
which occur both at the surface and throughout the water 
column (Meijers 2014).

Meanwhile, in the North Atlantic, the transition from 
subtropical to subpolar gyres (North-Eastern Atlantic) is 
marked by good skill measures while, in contrast, the Lab-
rador Sea suffers from the same inadequate skill measures 
as the Gulf Stream (in both systems). The Labrador Sea 
appears to fall inside the field of influence of whatever is 
driving Gulf Stream overheating (Figs. 3, 4), while the 
North-Eastern Atlantic does not. Previous validation work 
has linked SST forecast errors, in the North-Western part 
of the basin, with inaccurate representation of meridional 

Fig. 4   Skill measure maps for ECMWF-SEAS5 re-forecasts of OHC 0–300 m initialised in May. See Fig. 3 caption for details
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transport (Tietsche et al. 2020). It is important to note 
also that there is a contrast in GREP ensemble variability 
between the Gulf Stream (high variability) and the Lab-
rador Sea (low) (Fig. 1). Neither C-GLORS nor ORAS5 
(the reanalyses used to initialise the dynamical systems) 
correlate well with the GREP EM OHC (not shown but 
both resemble Fig. 1d); this is a sign that neither set of 
initial conditions is more similar to the validation dataset 
than the other. The low skill, then, seems to be an issue 
with dynamical modelling. Nonetheless, accurate predic-
tions in the WBCs and the Southern Ocean, despite their 
importance in global heat transport, remain an elusive tar-
get, even below the surface.

There is a greater difference between the two forecasting 
systems in the normalised RMSE than there is in the other 
skill measures. The errors in both forecasts systems are nor-
malised with respect to the same validation dataset (GREP). 
The patterns in N-RMSE are mirrored by amplitude ratios 
(both high and low), which is expected as both provide a 
measure of variability. Outside of the Atlantic, ECMWF-
SEAS5 errors are encouragingly within the range of natural 
variability (N-RMSE < 1). Meanwhile, normalised errors in 
CMCC-SPS3 are typically 1–2 times the natural variability. 
In the Southern Ocean and WBCs, CMCC-SPS3 errors can 
worryingly reach 5 times the natural variability, induced by 
the problem with initialization described at the beginning 
of this section.

4.2 � Comparison of OHC and SST skills

The promising skill in OHC prediction indicates that it is 
generally more predictable than SST (Figs. 3, 4, Supplemen-
tary Figs. 1, 2). Subsurface anomalies are thought to persist 
longer than surface anomalies, making subsurface seasonal 
predictions inherently easier. To test this, we compare the 
skills of OHC and SST persistence forecasts (see Sect. 3.2 
for details on constructing the persistence model). The skill 
of a persistence model is used as a proxy for the persistence 
(duration) of anomalies in time (i.e. persistence skill is high 
if the anomalies in the validation dataset do not decay). In 
the interest of brevity, anomaly correlation coefficient is used 
as the comparison skill measure. As expected, we find that 
OHC persistence correlation is higher than SST persistence 
correlation in 70% of the ocean surface area between 70S 
and 70 N (in both lead seasons) (Fig. 5, top; Supplementary 
Fig. 3). However, this difference is statistically significant 
in only 20% of the ocean (in both lead seasons); if a p-value 
threshold of 0.1 is used instead of 0.05, the area covered only 
increases to 30%. It is possible, then, that OHC anomalies 
simply do not persist for significantly longer on the seasonal 
timescales than SST anomalies do. It is also possible that 
the common time period of each product (24 years) is too 
small a dataset to detect significant differences between 

surface and subsurface anomaly persistence (Fig. 5, top). 
Datasets stretching further back (or forward) in time would 
be required to confirm this point.

Nonetheless, there are regions where OHC is (signifi-
cantly) more persistent than SST (on seasonal timescales), 
and they are the Equatorial Pacific, north-east Atlantic and 
parts of the North Pacific (Fig. 5, top). In such regions, it 
is expected that the OHC re-forecast skill in our forecast 
systems would be higher than the SST re-forecast skill. This 
is shown to be true, as the improvements in OHC skill over 
SST skill in the dynamical systems match the geographi-
cal extent and magnitude of the differences in persistence 
(Fig. 5). In fact, at longer lead times the improvement of 
OHC forecasts over SST increases, again as a result of the 
longer persistence.

There are also many regions where OHC skill is less than 
or insignificantly different to SST skill in the dynamical 
models, particularly in the first season (Fig. 5). The dynami-
cally active ENSO region over the Central Equatorial Pacific 
stands out as the area where the dynamical model compari-
sons differ the most from the persistence forecast compari-
son. The widespread similarity of scores is a sign that SST 
dynamical forecasts either exploit the thermal and dynamical 
memory of the subsurface, or benefit from improved initial 
conditions relative to the OHC (as a result of denser obser-
vations at the surface e.g. satellites). It is likely that both 
play a role, and the details of that role depend on the den-
sity of observations as well as the particular benefits created 
by these observations in particular regions. However, the 
differences (between OHC and SST in dynamical forecasts 
compared to persistence) indicate that, in places such as 
the equatorial band, SST forecasts from dynamical models 
implicitly include the predictive skill of OHC.

4.3 � Comparison of dynamical systems 
and persistence

We now evaluate the added-value of dynamical seasonal 
forecasts of OHC by comparing their skill with the skill 
of an OHC persistence model. As before, the two systems 
used here agree on the key points (Fig. 6, Supplementary 
Fig. 4). In lead season 0 (of May start times), considering 
only where differences are significant, persistence outper-
forms the dynamical systems in 24% and 12% of the ocean 
area, for CMCC-SPS3 and ECMWF-SEAS5 respectively; 
this decreases to 10% and 4% in lead season 1. Dynamical 
systems outperform persistence in 21% (CMCC-SPS3) and 
35% (ECMWF-SEAS5) of the ocean in lead season 1; this 
increases to 27% and 40% respectively in lead season 1. In 
other words, in the majority (over 50% in each case) of the 
ocean, there is no significant difference between persistence 
forecasts and the dynamical systems.
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The relatively small pockets of the ocean where there is 
persistence skill in OHC that the dynamics systems fail to 
capture include the Labrador Sea and parts of the Southern 
Ocean. These are also regions where there is large uncer-
tainty in the temporal variations of the ocean initial condi-
tions and the validation dataset, as indicated in Fig. 1. This 
indicates that there is room for improvement in seasonal 
forecasts of OHC in these regions, either through improve-
ments to the forecasting systems or in the quality and avail-
ability of the observations which are assimilated into initial 
conditions.

It is still reassuring, however, that the dynamical re-
forecasts match or outperform persistence across the vast 
majority of the ocean, especially given that persistence skill 
is high in many regions (Fig. 7). The dynamical forecasts 
provide added-value over the less computationally expensive 
method (see Fig. 7 and following discussion for region-spe-
cific quantification), in the Equatorial regions (lead season 
0) and into the tropics (lead season 1). Moreover, the areas 
in which the systems outperform persistence grow as the 

forecast period continues. In the southern tropical Pacific, 
for example, the systems begin with skill less than or equiva-
lent to persistence but then show improved performance by 
the latter half of the period. Likewise, the regions where 
dynamical systems are outperformed by persistence shrink 
in the latter period of the forecast period. The added value 
of the dynamical forecasts is therefore greater for longer 
lead times.

To synthesise the findings on OHC skill across the sea-
sons, Fig. 7 shows the anomaly correlation coefficients for 
the two systems (SPS3 and SEAS5), for four start dates, in 
several regions. The re-forecasts in the Equatorial Pacific 
have high levels of skill throughout the year and across the 
forecast period. They consistently beat persistence fore-
casts; in particular, the improvement is statistically signifi-
cant and of a greater value in the latter half of the forecast 
period. Dynamical forecasting therefore adds most value 
on long lead times (i.e. a season or more in advance). The 
North-Eastern Pacific is a region where persistence skill 
is high throughout the forecast period and seasons, yet the 

Fig. 5   Difference in anomaly correlation coefficients for OHC 
0–300  m and SST in three different models: Persistence (top), 
CMCC-SPS3 (middle) and ECMWF-SEAS5 (bottom). Positive 
values show where OHC skill is greater than SST skill in the corre-

sponding model. Re-forecasts and the persistence model are initial-
ised in May, and the seasonal averages of Lead 0 and Lead 1 seasons 
are shown. White regions indicate where differences in correlations 
are not statistically significant



	 R. McAdam et al.

1 3

dynamical systems are as skilful. In the Tropical Indian 
Ocean, both dynamical systems display year-round improve-
ment over persistence, although not always large enough 
to be a significant improvement. Likewise, in the Tropical 
Atlantic, dynamical systems beat persistence in the latter 
half of the forecast period, although by an insignificant 
margin.

The forecast system skills differ in the North-Western 
Atlantic and the Southern Ocean, where, as mentioned, the 
reanalysis products show greater uncertainty (Sect. 3.2). 
ECMWF-SEAS5 performs better than CMCC-SPS3; the 
former often beats persistence in the second lead season of 
re-forecasts, while the latter is typically worse. Despite this, 
and due to the relatively poor skill in both the dynamical 
systems and the persistence, the differences are not signifi-
cant. It should be noted that, given the large geographic area 
used to define the Southern Ocean (Atlantic), there is more 
than one issue with the systems in this region. Namely, there 
appear to be discrepancies in both the position of the many 
fronts present, as well as the temperature biases further 
south (shown by warm biases throughout the year, Figs. 3, 
4). These performance features may be due to inaccurate 
representation of dynamics, in specific regions, in the cur-
rent generation of models, as well as poor initial conditions.

5 � Summary and discussion

This paper presents an assessment of the predictive skill 
of ocean heat content in the upper 300 m in two state-of-
the-art seasonal forecasting systems. Here, for the first time, 
re-forecasts of the global ocean from a range of start-dates 
have been validated against high-resolution satellite data and 
a multi-model reanalysis ensemble. The global scope of this 
study provides a quantification of errors and skill measures 
for OHC that complement the more traditional assessment 
of SST skill. While it is premature to state that these find-
ings apply to other forecast systems, the quantification of 
predictability provided can serve as a benchmark for future 
endeavours in seasonal forecasting.

Skill measures for OHC remain higher further into the 
forecast period than for SST, confirming its potential for 
long-range forecasting. However, in much of the ocean, dif-
ferences between dynamical forecast skill of OHC and SST 
are not significant. This is due to either the inadequate sam-
ple size for the differences found, or that both variables are 
predicted with similar accuracy anyway. We interpret this as 
an indicator that dynamical seasonal forecasting systems are 
indeed taking advantage of the thermo-dynamical memory 
in the ocean initial conditions. The extent of this advantage 
depends on the differences in surface and sub-surface obser-
vations which serve as the input for the systems.

Fig. 6   Difference in anomaly correlation coefficients for OHC 
0–300  m re-forecast and persistence models. Positive values show 
where OHC skill is greater in the forecast system than in the persis-
tence model. Re-forecasts and the persistence model are initialised 

in May, and the seasonal averages of Lead 0 and Lead 1 seasons are 
shown. Top: CMCC-SPS3; Bottom: ECMWF-SEAS5. White regions 
indicate where differences in correlations are not statistically signifi-
cant
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Meanwhile, there are many regions which display high 
OHC skill measures across the forecast period, and which 
play key roles in local and global climate: sub-polar Arctic, 
semi-enclosed seas, centres of subtropical gyres, equatorial 
Pacific (as well as large part of the north and south basins) 
and the Maritime Continent. Generally, the regions of high 
OHC skill are independent of forecast start time. Confidence 
in OHC predictability has been gained by using multiple 
skill measures and employing a range of statistical signifi-
cance measures designed specifically for correlation compar-
ison. The four measures used—bias, normalised root-mean-
square-error, anomaly correlation coefficient and amplitude 
ratio—all detail a different aspect of system behaviour. The 
use of several measures allows us to see where predictability 
in some regions is not overly affected by a poor value in one 
score alone (e.g. there are large SST biases in the north-east 
Pacific, but anomaly correlation remains high), and therefore 
provides a truer sense of which regions are predictable.

Dynamical systems are shown to beat persistence mod-
els across a range of areas, dynamical environments, sea-
sons and start-times. We find that dynamical forecasts can 
be improved in the Western Boundary Currents and the 
Southern Ocean. Specifically, the re-forecast skill measures 

indicate warm biases and overestimation of the inter-annual 
variability compared to the validation datasets in these 
regions. However, in these regions there are also large 
uncertainties in the GREP product, between other ocean 
analysis and reanalysis products (Balmaseda et al. 2015), 
and in coupled models in general (Meijers 2014). It is not 
yet known whether an imprecision in seasonal forecasting 
in these regions comes from the dynamical modelling or a 
lack of constraint on the initial conditions (both surface and 
sub-surface).

There would also be great benefit in using a larger 
ensemble of seasonal forecasting systems, as differences 
in skill can be attributed to resolution, initialisation strat-
egies, assimilation techniques, coupling mechanisms and 
model components (e.g. Latif et al. 1998; Balmaseda and 
Anderson 2009). Such a study could potentially explain the 
poor performance in certain regions (e.g. due to inaccurate 
initial conditions or insufficient ocean-model resolution). 
For example, the new version of CMCC-SPS3 (version 
3.5) includes a higher resolution atmospheric component 
(0.5°) and early validation tests on CMCC-SPS3.5 indicate 
an improvement of SST/OHC skill (not shown) akin to the 
improvement of ECMWF-SEAS5 over CMCC-SPS3. These 

Fig. 7   Anomaly Correlation Coefficient scores for OHC re-forecasts 
across all start times. OHC persistence model skill is shown by bar 
charts. Re-forecast skill is represented by symbols. Green symbols 
indicate statistically-significant improvement (at the 5% confidence 

level) in the correlation of a dynamical system over the persistence 
model (there are no cases where the dynamical systems are signifi-
cantly worse). The boundaries for the regions are listed in Fig. 1
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models still display some warm biases and exaggerated vari-
ability in the WBCs and Southern Ocean, so the reasons 
behind poor forecast capabilities require more attention.

Nonetheless, this validation work shows there is great 
potential for OHC forecasts to provide accurate predictions 
of marine conditions with several months lead time. An 
interesting question is whether subsurface forecast skill is 
the result of either enhanced forecast system quality below 
the surface or of inherent predictability of more persistent 
subsurface anomalies. By comparing the persistence models 
of both variables, we show that there is, in places, greater 
inherent predictability for OHC 0–300 m than for SST. 
Nonetheless, it will be crucial to study the change, if any, in 
initial condition uncertainty with depth. Improvements to 
SST forecasting may arise from a better understanding of 
OHC initialisation.

Our study has shown that there is potential to make accu-
rate predictions of sub-surface warming up to two seasons 
in advance, and we believe that this gives sufficient impetus 
to the application of marine seasonal forecasting. For exam-
ple, seasonal lead times would provide an early prediction 
of ocean conditions which render extreme heat events more 
likely, and therefore provide fisheries, aquaculture farms and 
marine protects areas ample time to prepare for mass mortal-
ity events (e.g. Caputi et al. 2016).

Because of the potential role such forecasts could play in 
socio-economic decision making, transparency about fore-
cast error is an ethical requirement (Hobday et al. 2016). 
Thus, based on a validation of anomalies alone, we can-
not state that the forecast systems used here are suitable 
for prediction of, for example, marine heat waves at depth; 
this would require validation of specific indices (such as the 
number/intensity of extreme events) in specific regions. The 
next step in marine seasonal forecasting work is therefore the 
validation of indices which have socio-economic relevance; 
steps are already being taken in this direction (Payne et al. 
2019). Any validation of this kind will require context on 
how key variables, such as OHC, behave in seasonal forecast 
systems. Here, we have provided this first step on a global 
scale.
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