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Abstract
Fibonacci numbers are the basis of a new geometric construction that leads to the definition of a family {Cn : n ∈ N} of
octagons that come very close to the regular octagon. Such octagons, in some previous articles, have been given the name of
Carboncettus octagons for historical reasons. Going further, in this paper we want to introduce and investigate some algebraic
constructs that arise from the family {Cn : n ∈ N} and therefore from Fibonacci numbers: From each Carboncettus octagon
Cn , it is possible to obtain an infinite (right) word Wn on the binary alphabet {0, 1}, which we will call the nth Carboncettus
word. The main theorem shows that all the Carboncettus words thus defined are Sturmian words except in the case n = 5.
The fifth Carboncettus word W5 is in fact the only word of the family to be purely periodic: It has period 17 and periodic
factor 00010010001001001. Finally, we also define a further word W∞ named the Carboncettus limit word and, as second
main result, we prove that the limit of the sequence of Carboncettus words is W∞ itself.

Keywords Approximate constructions ·Computing on words · Fibonacci numbers · Sturmian words ·Mechanical sequences ·
Limit of words · Isogonal polygons
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1 Introduction

In this paper, we associate with each Fibonacci number
Fn, n ≥ 1, a geometric construct Cn and then an alge-
braic object Wn , obtaining simultaneously three sequences
{Fn}n , {Cn}n and {Wn}n , where thefirst one is thewell-known
sequence of integers, but the last two are new sequences not
of numbers but of geometrical and algebraic objects, respec-
tively. In particular, {Cn}n is a sequence of octagons very
close to a regular one and {Wn}n is a sequence of infinite
right words on the binary alphabet {0, 1}. The reasons that
led us to give them the name of Carboncettus octagons and
words come, as we will see, from far away.

Prato is a Tuscan city located 17 km northwest of Flo-
rence. With its 200,000 inhabitants, Prato is the third largest
city in central Italy, after Rome and Florence. The Cathe-
dral of Prato, dedicated to the first Christian martyr Saint
Stephen, is a jewel of Romanesque architecture of interna-
tional appeal: It has ancient roots dating back to at least the
sixth century AD and has undergone numerous renovations
and modifications over the years, including, very important,
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those around the eleventh century. The current lateral portal
of the Cathedral (Fig. 1) seems to have been the main portal
at that time, and, in recent years, it has attracted the attention
of various scholars, including several mathematicians, in an
attempt to explain some figures inlaid in marble on the sides
of the portal. It seems that on the right jamb of the portal, the
regularity, symmetry and the subject of the figures recall the
divine perfection and completeness, while on the left jamb,
some almost regular figures seem to symbolize the limits of
human nature, which is made, yes, in the likeness of God, but
which is not divine, nor perfect as the divine one (for a deeper
study into the rich symbolisms behind the representations on
the sides of the portal, the reader can see Pirillo (2017a) and
the references therein).

G. Pirillo was fascinated by this portal and its typically
medieval symbolism from the first time he saw it in the 70s.
Above all, the two inlayswith octagonal (or apparently octag-
onal) symmetry placed at the top of each jamb attracted him
verymuch.Theoneon the right seems to be basedon aperfect
regular octagon, while the one on the left seems to allude to a
different geometric construction of an octagon that uses two
concentric circumferences. Pirillo recently noted that if the
radii of the circumferences are equal to two Fibonacci num-
bers with indices of the same parity and consecutive, then, by
means of a simple construction that uses two pairs of parallel
tangents to the internal circumference, and perpendicular to
each other, one obtains an octagon that is indistinguishable
from a regular one, but which is not itself perfectly regular.1

In fewwords, this can be viewed as the discovery of a beauti-
ful approximate method to construct a (not perfectly precise)
regular octagon.

It is also very important to note the following fact: The
Liber Abaci by Leonardo Pisano called Fibonacci, where the
{Fn}n series bearing his name appears for the first time, dates
back to 1202 AD, while the portal of the Cathedral of Prato,
for as seen today, dates back to the previous century and
seems to be the work of Carboncettus Marmoriarius, very
active in the twelfth century in those places. If the use of
Fibonacci numbers in the architecture of the portal in Prato
were to be confirmed by other studies, this would be a fact
of enormous importance for two main reasons:

1 That is, a couple of Fibonacci numbers of the kind (Fn, Fn+2) gives
rise to the Carboncettus octagon Cn , as better explained in Sect. 2 with
more geometric details. All the Carboncettus octagons are very close
to a regular one, with the exception of the first three or at most four
elements of the family {Cn : n ∈ N} (see, for instance, Fig. 4 which
displays the already not great difference between a regular octagon and
C2; see, moreover, Eqs. (2), (3), (4) and Table 1 which collect some
metric data of these initial, “special” elements, and see Pirillo’s papers
(Pirillo 2017a, 2018) for the first observations of such a (suspected)
construction by Carboncettus himself).

– Thiswouldmean that the Fibonacci numberswere known
at least a few decades before 1202;2

– The use of mathematical languages or tools in architec-
ture to express concepts and ideas related tomedieval (not
only religious) symbolism seems not to have precedents
before the twelfth century.

In the last two years, Pirillo has discussed many times
the content of Pirillo (2017c) with the other authors of this
work, and this has led to the article Caldarola et al. (2020c)
on “The sequence of Carboncettus octagons.” In this paper
instead, the main novelty is represented by the definition of
an algebraic object for each octagon Cn and, hence, for each
Fibonacci number Fn , it is the right infinite word Wn on the
binary alphabet {0, 1} that will be precisely defined in Sect. 3
as a lower cutting sequence related to the extension of the
height of a triangle which constitutes the octagonCn andwill
be named the nth Carboncettus word. Such an idea to intro-
duce these algebraic objects follows an intuition of the first
author about a peculiarity of thewordW5 as expressed inThe-
orem 1: All the wordsWn result to be Sturmian words except
just in the single case W5 where we obtain a periodic word
with period 17 and periodic factor 00010010001001001.

After the present introduction, this paper is organized into
three central sections: the first two ofwhich take up their titles
from and deal with the mentioned geometric and algebraic
aspects, respectively. In Sect. 2, we will introduce the geo-
metric constructions, arising from Fibonacci numbers, that
lead us to the family of Carboncettus octagons. In Sect. 3
instead, we will define, give some examples of and inves-
tigate the algebraic constructs obtained through the {Cn}n
family from the Fibonacci series as well: They are the Car-
boncettuswordsWn , andTheorem1,mentioned above, states
our first main result on them. Finally, in Sect. 4 we will intro-
duce the Carboncettus limit word W∞ and, as second main
result of the paper, we will prove in Theorem 2 that the limit
of the sequence of Carboncettus words is the Carboncettus
limit word.

We inform the reader that we have tried to make this
text self-contained and therefore suitable for reading even by

2 We notice that P. Armienti and A. Albano, in Armienti (2016) and
Albano (2015), respectively, investigated a lunette decoration of the
church of San Nicola in Pisa (Tuscany, IT), and they found the use
of the first Fibonacci numbers until to F10 = 55 and of the golden
section. The dating of the decoration and the building is controversial:
According to some sources, it dates back to 1281AD, according to other
opinions, to the first decades of the thirteenth century. For completeness
of information, we point out that G. Pirillo has recently proposed an
audacious thesis about the real discovery of Fibonacci numbers: He
argues that some members of the Pythagorean School, very active in
Kroton (today’s city of Crotone, in southern Italy) and inMagnaGraecia
in the sixth, fifth and fourth centuries BC,must have necessarilymet and
considered the sequence {Fn}n during their mathematical speculations
(see, for example, Pirillo 2017b, c, 2018).
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Fig. 1 The side portal of the
Cathedral of Prato, dating back
to the twelfth century AD. The
comparison between the two
tarsias located at the top of the
jambs inspired the (hypothesis
on the) construction of the
Carboncettus octagon

those who are not specialists in the field. Only in the proof
of Theorem 1, in fact, we do use three results that are not
proven here.

As for notations, we use N for the set of positive inte-
gers and N0 for N ∪ {0}. A sequence is denoted by {an}n∈N,
{an}n , or sometimes simply {an}. If A, B,C are three points
on the plane, we let AB denote the line segment with end-
points A, B, by |AB| its length and by �ABC the measure
(in radians or degrees) of the angle with vertex in B.3

3 We follow the usual convention of plane geometry that 0 ≤ �ABC =
�CBA ≤ π is always meant.

2 New geometric constructions from
Fibonacci numbers: the Carboncettus
family of octagons

We recall that Fibonacci numbers are defined by F0 :=
0, F1 := 1, and

Fn := Fn−2 + Fn−1 (1)

for all n ∈ N, n ≥ 2; in this way, we obtain the well-known
sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

144, 233, 377, 610, 987, 1597, 2584, etc.
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Fig. 2 The construction of the
first Carboncettus octagon C1

For every real number r > 0, we let Γr denote the circumfer-
ence in the planeR2, centered at the origin and with radius r .
For every n ∈ N, we consider the couple of Fibonacci num-
bers (Fn, Fn+2) and the circumferences ΓFn , ΓFn+2 , with
radii Fn and Fn+2, respectively. In the following, we will
often refer to ΓFn as the internal circumference and to ΓFn+2

as the external one. When n = 1, ΓF1 = Γ1 and ΓF3 = Γ2

appear in green in Fig. 2, instead Fig. 3 depicts the case for
general n ≥ 1. We then draw a pair of horizontal tangents to
the internal circumference ΓFn through the two intersection
points with the y-axis and a pair of vertical tangents through
the two intersectionpointswith the x-axis. These four straight
lines, pairwise parallel or orthogonal, intersect the external
circumference ΓFn+2 at eight points that we denote, starting
from the first quadrant and proceeding counterclockwise, by
Bn, Dn, En, In, Jn, Pn, Qn, An (Fig. 3). The nth Carbon-
cettus octagon, denoted by Cn (n ≥ 1), is the one obtained
by drawing the polygonal through the points

An, Bn, Dn, En, In, Jn, Pn, Qn, An,

and it is represented in red in Fig. 3.

Remark 1 Every Carboncettus octagon Cn is obviously a
cyclic polygon, that is, a polygon whose vertices all lie on

the same circumference. But not only, Cn is, more precisely,
an isogonal octagon for all n ≥ 1. An isogonal or vertex-
transitive polygon is a polygon whose symmetry group acts
transitively on the set of all its vertices. Therefore, an isogonal
polygon is equiangular, cyclic and has at most two different
alternating side lengths.

A very interesting property of the Carboncettus sequence
{Cn}n∈N is that all its elements, with the exception of the first
three or at most the first four, are completely indistinguish-
able from a regular octagon. See, for instance, Fig. 4 which
compares the octagon C2 with a regular one inscribed in the
same circumference ΓF4 = Γ3: They are yet not too far one
from the other.

Example 1 (The octagon C1) The first Carboncettus octagon
is obtained starting from the circumferences ΓF1 = Γ1 and
ΓF3 = Γ2 (Fig. 2), and the resulting isogonal octagon C1 has
very particular characteristics. For instance, all the angles
appearing in Fig. 2 are commensurable, because their mea-
sures are integer multiples of

�B1ON1 = π

12
= 15◦.

Moreover, C1 results composed of four equilateral triangles
congruent to A1OB1 and four isosceles triangles congruent
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Fig. 3 The construction of the
nth Carboncettus octagon Cn for
a general n ≥ 1. In the picture,
to avoid small and hard to read
nested subscripts, we write Γ ′
and Γ ′′ instead of ΓFn and
ΓFn+2 , respectively

to B1OD1. The lengths of their sides and heights are

|A1B1| = |OA1| = 2, |OH1| = |K1D1| = √
3,

|B1D1| = √
6 − √

2, |ON1| =
√
6 + √

2

2
,

(2)

and the widths of the involved angles trivially are

�A1OB1 = �OB1A1 = π

3
= 60◦,

�B1OD1 = �H1OB1 = π

6
= 30◦, (3)

�D1B1O = 5
π

12
= 75◦.

Note, for example, that, unlike the widths of the angles, all
the lengths expressed in (2) are incommensurable in pairs.
Lastly, perimeter and area of C1 are as follows:

Perim(C1) = 8 + 4
√
6 − 4

√
2,

(4)
Area(C1) = 4 + 4

√
3.

Example 2 (The octagons C2, C3 and C4) The construction
of the second Carboncettus octagon is based on the circum-
ferences Γ1 and Γ3, whose radii are F2 = 1 and F4 = 3,
respectively. The obtained octagon C2 is drawn in black

in Fig. 4, where it is compared with a red regular octagon
inscribed in the same circumference Γ3. Some metric data
concerning the octagon C2 are listed in the second column
of Table 1. Then, the third and the fourth column of the table
do the same for theCarboncettus octagonsC3 andC4, respec-
tively.

Much can be said, and there is much to study and inves-
tigate on the Carboncettus family of octagons {Cn : n ∈ N},
but we will do it elsewhere because, as anticipated in the
Introduction, we must now move on to the next section to
introduce new algebraic constructs.

3 New algebraic constructs from Fibonacci
numbers: the Carboncettus wordsWn

The main reference for the general setting of this section is
Lothaire (2002), but the reader can also see Lothaire (1983)
andBerstel and Perrin (2007) for an essay on the recent origin
of the field called combinatorics on words.

First of all, we need to recall a generalization of (1): A
sequence {Gn}n∈N0 of integers (but also real or complex num-
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Fig. 4 The octagon C2, the second element of the Carboncettus
sequence, is drawn in black starting from the circumferences ΓF2 = Γ1
and ΓF4 = Γ3. A regular octagon inscribed in the same circumference
Γ3 is instead represented in red

bers) such that

Gn := Gn−2 + Gn−1 for all n ≥ 2

is said a generalized Fibonacci sequence, and the couple
(G0,G1) is called the seed of the sequence. For example,
the generalized Fibonacci sequence with seed (2, 1) is called
Lucas sequence and denoted by {Ln}n∈N0 . Hence, we have

L0 = 2, L1 = 1, L2 = 3, L4 = 4,

L5 = 7, L6 = 11, L7 = 18, etc.

Now, we begin to talk about words, i.e., finite or infinite
sequences of symbols from a finite alphabet A, starting with
some definitions that we need for our purposes.

For any real numbers β, ρ with β > 0, consider the line

L : y = βx + ρ (5)

in the plane R
2, the grid G := {(x, y) ∈ R

2 : x or y ∈
Z, and x ≥ 0} in the right half plane H := {(x, y) ∈ R

2 :
x ≥ 0}, and the sequence of intersection points of L ∩ G

T0 = (x0, y0) = (0, ρ), T1 = (x1, y1),

T2 = (x2, y2), T3 = (x3, y3), etc.,

where 0 = x0 < x1 < x2 < . . . and L ∩G = {Tn : n ∈ N0}.

Definition 1 (i) From the sequence {Tn}n∈N0 , we define an
infinite word Kβ,ρ by writing 0 for T0 and continuing in
succession for all Tn, n ≥ 1, by writing

• 0 if xn ∈ Z and yn /∈ Z;
• 1 if yn ∈ Z and xn /∈ Z;
• 10 if xn ∈ Z and yn ∈ Z too.

Kβ,ρ is called the lower cutting sequence attached to the
line L .

(ii) Similarly, we define an infinite word K ′
β,ρ called the

upper cutting sequence attached to the line L , by writ-
ing 1 if y0 ∈ Z or 0 if y0 /∈ Z, and continuing for all
Tn, n ≥ 1, by writing

• 0 if xn ∈ Z and yn /∈ Z;
• 1 if yn ∈ Z and xn /∈ Z;
• 01 if xn, yn ∈ Z.

For the previous definitions, the reader can also see
(Lothaire 2002, Remark 2.1.12). We now give a very easy
example.

Example 3 Considering the line y = 2x/5, we trivially find

K2/5, 0 = 0001001 0001001 0001001 . . . (6)

Hence, the lower cutting sequence relative to the line y =
2x/5 is an infinite periodic word with period 4 7 and periodic
factor 0001001.

We are now ready to give the central definition of the sec-
tion. Recalling the construction of the Carboncettus octagon
Cn in the previous section, let

y = βnx (7)

be the line through the origin and the point Bn, n ≥ 1 (Fig. 3).

Definition 2 (The Carboncettus word Wn) For every n ∈ N,
we set

Wn := Kβn ,0

and we callWn the nth Carboncettus infinite word or, simply,
the nth Carboncettus word.

Remark 2 Looking at Fig. 3, we can easily note that

|OHn| =
√

|OBn|2 − |HnBn|2 =
√
F2
n+2 − F2

n ;

hence,

βn = tan(�HnOBn) = Fn√
F2
n+2 − F2

n

(8)

4 If the reader want to read more on the notion of period for finite and
infinite word, we refer him/her to Lothaire (2002).
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Table 1 Some metric data
relative to the three
Carboncettus octagons
C2, C3, C4, in the second, third
and fourth column, respectively.
Recall that the letters with the
subscript n are displayed in the
general construction of Cn
shown in Fig. 3

n = 2 n = 3 n = 4

|OKn | 1 2 3

|OAn | 3 5 8

|An Bn | 2 4 6

|BnDn | 4 − √
2

√
42 − 2

√
2

√
110 − 3

√
2

|OHn | 2
√
2

√
21

√
55

|ONn | 2 + √
2/2

√
2 + √

42/2 (3
√
2 + √

110)/2

�AnOBn ≈ 38.942◦ ≈ 47.156◦ ≈ 44.049◦

�BnODn ≈ 51.058◦ ≈ 42.844◦ ≈ 45.951◦

�Bn AnO ≈ 70.529◦ ≈ 66.421◦ ≈ 67.976◦

Perim(Cn) 24 − 4
√
2 16 + 4

√
42 − 8

√
2 24 + 4

√
110 − 12

√
2

Area(Cn) 14 + 8
√
2 34 + 8

√
21 92 + 12

√
55

for all n ∈ N.

Example 4 (The first Carboncettus word W1) From Defi-
nition 2, the first Carboncettus word is the lower cutting
sequence relative to the line obtained as extension of the seg-
ment OB1 in Fig. 2. Using (8) or recalling from Example 1
that �H1OB1 = π/6, we have

β1 = 1√
3

≈ 0.577 350 269.

Then, we can easily compute the first digits ofW1 as follows:

W1 = K1/
√
3, 0

= 001 001 001 010 010 010 010 100 100 100

101 001 001 010 010 010 010 100 100 100

101 001 001 001 010 010 010 100 100 100 (9)

101 001 001 001 010 010 010 010 100 100

101 001 001 001 010 010 010 010 100 . . .

Example 5 (The Carboncettus words W2,W3 and W4)

(i) Using (8), we obtain

β2 = F2√
F2
4 − F2

2

=
√
2

4
≈ 0.353 553 390;

hence, by some simple computations, we find the first
digits of the Carboncettus word W2 as follows:

W2 = K√
2/4, 0

= 000 100 010 001 000 100 010 010 001 000

100 010 001 000 100 100 010 001 000 100

010 001 001 000 100 010 001 000 100 010 (10)

010 001 000 100 010 001 000 100 100 010

001 000 100 010 010 001 000 100 010 . . .

(ii) Using (8) as before, we find

β3 = F3√
F2
5 − F2

3

= 2
√
21

21
≈ 0.436 435 780

and, by simple computations, we get the first digits of
the Carboncettus word W3 as follows:

W3 = K2
√
21/21, 0

= 000 100 100 100 010 010 010 001 001 001

001 000 100 100 100 010 010 010 010 001

001 001 000 100 100 100 100 010 010 010 (11)

001 001 001 000 100 100 100 100 010 010

010 001 001 001 001 000 100 100 100 . . .

(iii) Using (8) as in (i) and (ii), we get

β4 = F4√
F2
6 − F2

4

= 3
√
55

55
≈ 0.404 519 917

and then the following first 147 digits of the Carbon-
cettus word W4

W4 = K3
√
55/55, 0

= 000 100 100 010 010 001 001 000 100 100

010 010 001 001 000 100 100 010 010 001

001 001 000 100 100 010 010 001 001 000 (12)

100 100 010 010 001 001 000 100 100 010

010 010 001 001 000 100 100 010 010 . . .

Thedefinitionofmechanicalwordormechanical sequence
is similar toDefinition 1. As usual, we let �x and �x� denote,
respectively, the floor and the ceiling of a real number x .
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Definition 3 For any α, ρ ∈ R with 0 ≤ α ≤ 1, we define
two infinite words

sα,ρ : N0 −→ {0, 1}, s′
α,ρ : N0 −→ {0, 1}

by setting

sα,ρ(n) := �α(n + 1) + ρ − �αn + ρ

and

s′
α,ρ(n) := �α(n + 1) + ρ� − �αn + ρ�

for all n ∈ N0. The word sα,ρ [s′
α,ρ , respectively] is called

the lower [upper, resp.] mechanical word with slope α and
intercept ρ. Moreover, a mechanical word sα,ρ or s′

α,ρ is said
rational if α ∈ Q and irrational if α /∈ Q.

There are several equivalent definitions of Sturmian word
related to different properties, for whichwe refer to (Lothaire
2002, Section 2). The simplest way to define it is the follow-
ing.

Definition 4 A Sturmian word is an infinite word w over an
alphabet A which contains exactly n + 1 factors of length n
for all n ∈ N0.

For instance, considering factors of length 1, the definition
above implies that every Sturmian word must necessarily
be over two letters of A, i.e., a binary word. The following
theorem establisheswhichCarboncettuswords are Sturmian.

Theorem 1 All Carboncettus words Wn are Sturmian words
except when n = 5; in this case, we have an infinite
purely periodic word with period 17 and periodic factor
000 100 100 010 010 01.

Proof rom Theorem 2.1.13 of Lothaire (2002), a lower
mechanical word sα,ρ is a Sturmian word if and only if it
is irrational or, equivalently, if and only if the slope α is
irrational. The Carboncettus word Wn is equal to Kβn ,0 by
definition, and it is well known and easy to prove that a lower
cutting sequence Kβ,ρ is equal to the lower mechanical word
obtained by “dividing the couple (β, ρ) by β + 1,” that is, in
symbols

Kβ,ρ = sβ/(β+1), ρ/(β+1)

(see, for instance, Lothaire 2002, Section 2.1.2). Since
β/(β + 1) = 1 − 1/(β + 1), then β/(β + 1) is irrational
if and only if β itself is irrational. In conclusion, we have

Wn = sβn/(βn+1),0 is Sturmian ⇔ βn /∈ Q. (13)

Now, from Remark 2 we have

βn = Fn√
F2
n+2 − F2

n

= Fn√
(Fn+2 − Fn)(Fn+2 + Fn)

(14)

= Fn√
Fn+1(Fn+2 + Fn)

for all n ∈ N. By an induction argument on n, it is immediate
to prove that

Fn+m = Fn · Fm−1 + Fn+1 · Fm (15)

for all n ≥ 0, m ≥ 1: For this purpose, consider m ≥ 1
fixed and assume that (15) is true for n = k and n = k + 1.
Adding side to side, (15) is hence true for n = k + 2, and
since it trivially holds for n = 0 and n = 1, (15) is proved in
general.

Using (15) with m = n + 2, we then get from (14)

βn = Fn√
FnFn+1 + Fn+1Fn+2

= Fn√
F2n+2

(16)

for all n ≥ 1;5 hence, βn is rational if and only if F2n+2 is
a perfect square. But Cohn and Wyler proved independently
in 1964 that a Fibonacci number Fm, m ∈ N0, is a square if
and only if m = 0, 1, 2, 12 (see Cohn 1964 and Wyler and
Rollett (1964)); hence,

F2n+2, n ≥ 1, is a square ⇔ n = 5. (17)

Therefore, (13), (16) and (17) together prove the first part of
the thesis.

If n = 5, we get from (8)

β5 = F5√
F2
7 − F2

5

= 5

12
,

and considering the line y = 5x/12, by some trivial com-
putations, we conclude that W5 = K5/12, 0 is a purely
periodic word with period 5 + 12 = 17 and periodic fac-
tor 00010010001001001, i.e.,

W5 = 00010010001001001 00010010001001001

00010010001001001 . . . (18)

��
5 To obtain (16), the more expert reader could quickly observe that

Fn+1(Fn+2 + Fn) = Fn+1Ln+1 = F2(n+1).
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In the next example, we compute the first digits of three
morewords after the special caseW5.Wewill also need these
explicit determinations in Example 8 of the next section.

Example 6 (The words W6, W7 and W8)

(i) Using (8), we obtain

β6 = F6√
F2
8 − F2

6

= 8
√
377

377
≈ 0.412 020 962;

hence, as in Example 5, we find the first 147 digits of the
Carboncettus word W6 as follows:

W6 = K8
√
377/377, 0

= 000 100 100 010 010 001 001 001 000 100

100 010 010 001 001 001 000 100 100 010

010 001 001 001 000 100 100 010 010 001 (19)

001 001 000 100 100 010 010 001 001 001

000 100 100 010 010 001 001 001 000 . . .

(ii) For W7, we find

β7 = F7√
F2
9 − F2

7

= 13
√
987

987
≈ 0.413 794 559

and then we get the following first 147 digits

W7 = K13
√
987/987, 0

= 000 100 100 010 010 001 001 001 000 100

100 010 010 010 001 001 000 100 100 010

010 010 001 001 000 100 100 100 010 010 (20)

001 001 000 100 100 100 010 010 001 001

001 000 100 100 010 010 001 001 001 . . .

(iii) For W8, we find

β8 = F8√
F2
10 − F2

8

= 21
√
646

1292
≈ 0.413 116 974

and, consequently,

W8 = K21
√
646/1292, 0

= 000 100 100 010 010 001 001 001 000 100

100 010 010 001 001 001 000 100 100 010

010 010 001 001 000 100 100 010 010 010

001 001 000 100 100 010 010 010 001 001 (21)

000 100 100 100 010 010 001 001 000 100

100 100 010 010 001 001 000 100 100 . . .

Note that for W8 we have written 30 more digits (177)
than for the previous words: The reason for this will be
clear later.

4 The Carboncettus limit word

If A is a finite alphabet, the set of right infinite words over
A is usually denoted by AN0 or Aω. It is equipped with a
distance d defined as follows: For any

x = x0x1 . . . xk . . . andy = y0y1 . . . yk . . . (22)

belonging to Aω, we set

d(x, y) :=
{
2−min{k∈N0 : xk �=yk } if x �= y;
0 if x = y.

(23)

In this way, (Aω, d) is a compact metric space (hence com-
plete and totally bounded by a fundamental result in general
topology) called the Cantor space (see Lothaire 2002, Chap.
1). From the distance defined in (23), it follows that a
sequence of words {Xn}n ⊂ Aω converges to Y ∈ Aω, and
we write

lim
n→∞ Xn = Y (24)

in this case, if, for every i ∈ N0, we have (Xn)i = Yi for all
sufficiently large n, i.e., greater than some ν(i). In agreement
with (22), the previous notations

(Xn)i and Yi

obviously indicate the letter of the words Xn and Y , respec-
tively, associated with i .

Now that we have the notations and definitions necessary
for this section, let us reconsider Fibonacci numbers. Recall-
ing that the sequence of ratios of two consecutive Fibonacci
numbers {Fn+1/Fn}n∈N0

converges to the golden section

φ =
(
1 + √

5
) /

2,6 then

6 Since in the Introduction we are committed to making the paper self-
contained (with the exception of Theorem 1), we sketch here what we
think is the most elementary proof of lim

n→∞ Fn+1/Fn = φ. Using only

definition (1) and identity (26), it is in fact immediate to prove, through
a trivial induction argument, that

|Fn+1/Fn − φ| < 1/φn−1

for all n ≥ 1. For the inductive step note that, if n − 1 ≥ 1, then
∣∣∣∣
Fn+1

Fn
− φ

∣∣∣∣ =
∣∣∣∣
Fn−1 + Fn

Fn
− φ2

φ

∣∣∣∣ =
∣∣∣∣
Fn−1

Fn
− 1

φ

∣∣∣∣

= 1

Fnφ/Fn−1
·
∣∣∣∣

Fn
Fn−1

− φ

∣∣∣∣ <
1

φ
· 1

φn−2 = 1

φn−1 ,
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lim
n→∞

F2
n+2 − F2

n

F2
n

= lim
n→∞

(
Fn+2

Fn

)2

− 1

= lim
n→∞

(
Fn+2

Fn+1
· Fn+1

Fn

)2

− 1

=
(
φ2

)2 − 1

= 3φ + 1 , (25)

where in the last step we used the equality

φ2 = φ + 1. (26)

Recalling (8), we then define

β∞ := lim
n→∞ βn = lim

n→∞
Fn√

F2
n+2 − F2

n
(27)

= lim
n→∞

⎛

⎝

√
F2
n+2 − F2

n

F2
n

⎞

⎠

−1

and, using (25) and (26), we obtain

β∞ =
(√

3φ + 1
)−1 =

√
1

3φ + 1
· 3φ − 4

3φ − 4

=
√
3φ − 4

5
=

√
3
√
5 − 5

10
(28)

≈ 0.4133042381.

This leads to consider the line

y = β∞x (29)

and to state the following:

Definition 5 Similar to Definition 2, we set

W∞ := Kβ∞,0 = K√
(3

√
5−5)/10, 0

(30)

and we call W∞ the Carboncettus limit word.

Footnote 6 continued
where to obtain the previous inequality we used Fnφ/Fn−1 ≥ φ and
the inductive hypothesis.

The first digits ofW∞ can be easily computed as in Exam-
ples 4, 5 and 6, getting

W∞ = K√
(3

√
5−5)/10, 0

= 000 100 100 010 010 001 001 001 000 100

100 010 010 001 001 001 000 100 100 010

010 010 001 001 000 100 100 010 010 010

001 001 000 100 100 010 010 010 001 001 (31)

000 100 100 100 010 010 001 001 000 100

100 100 010 010 001 001 001 000 100 . . .

Consider now a family, or better, a sequence of lines {Ln :
n ∈ N} with positive slopes in the plane R

2, and assume
that it “converges” to some line L of the form (5). Then, it is
not true in general that the cutting sequence (lower or upper)
attached to Ln approaches the cutting sequence attached to
L in the sense of the definition given in (24). And the same
can be said for the slopes of a sequence of mechanical or
balanced words. The following is a very simple example of
what can happen.

Example 7 For any n ∈ N, consider the line

Ln : y =
(
2

5
− 1

n

)
x

through the origin of the plane. It is clear that the sequence
{Ln}n∈N converges (punctually) to the line L : y =
2x/5 considered in Example 3, but the sequence of words{
K2/5−1/n, 0

}
n∈N does not converge to K2/5, 0 shown in (6).

In fact, it is simple to check that, for every n ≥ 15, the first
nine digits of K2/5−1/n, 0 are 000 100 010, hence different
from the ones of K2/5, 0.

We are now ready to prove the main result of the section.

Theorem 2 The limit of the sequence of Carboncettus words
is the Carboncettus limit word, in symbols

lim
n→∞ Wn = W∞.

Proof We want to show that for each fixed i ∈ N0 it holds

(Wn)i = (W∞)i (32)

for all n ∈ N large enough. Therefore, assume by reductio
ad absurdum that this is not true for all i , and let j be the
smallest i such that (32) is not satisfied for infinitely many
n ∈ N. Then, for each positive integer m ≤ j consider the
following unitary open interval

]�β∞ · m, �β∞ · m�[ ,
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and since βn → β∞ by definition and β∞ /∈ Q (recall (27)
and (28), resp.), then there exists ν ∈ N such that

βn · m ∈ ]�β∞ · m, �β∞ · m�[

for all n ≥ ν and m ≤ j . Now, recalling the definition of
lower cutting sequence (see Definition 1(i)), this means that
for every integer i from 0 to at least j we have (Wn)i =
(W∞)i for all n ≥ ν, and this contradicts our assumption. ��

The previous theorem claims that the sequence of words
whose first elements are (9)–(12), (18) and (19)–(21) con-
verges to (31). Using the definition of distance given in (23),
it is possible to define a further sequence

{δn}n∈N where δn := d(Wn,W∞). (33)

Example 8 Numerically, the first elements of {δn}n are the
following:

δ1 = 2−2, δ2 = 2−6,

δ3 = 2−9, δ4 = 2−23,
(34)

δ5 = 2−16, δ6 = 2−64,

δ7 = 2−40, δ8 = 2−170,

as the reader can immediately verify comparing (9)–(12) and
(18)–(21) with (31).

5 Conclusion and future work

After the introductive section, to move faster to present
Carboncettus words, we have reduced to a minimum an
important geometric section like the second one. In a later
work (on “the Prato octagon and regularity measures for
polygons,” see Caldarola 2020), we will devote more space
to the sequence {Cn}n , studying in more depth the charac-
teristics of its elements. For example, already in Caldarola
et al. (2020c) there was mention of the existence of the “limit
normalized octagon” CN∞, in analogy with W∞. Since the
circumferences ΓFn and ΓFn+2 become larger and larger,CN∞
is obtained by normalizing the radius of the internal one.
Another approach to study the limit of {Cn}n without car-
rying out normalizations, say C∞, is to use non-standard
mathematics or a numerical system that allows calculations
with infinite numbers.7

7 Among many non-standard settings useful for this purpose, the sim-
plest is probably the computational one described in (Sergeyev 2003,
2007, 2017) and also used in (Antoniotti et al. 2020a, b; Caldarola
2018b, a; Caldarola et al. 2020a, e) with limit curves and polytopes,
fractals, or with speculative-didactic intentions. Such computational
system is even applied to Fibonacci words in Margenstern (2015).

We find it fascinating to be able to construct regular or
almost regular geometric figures, by means of simple or
approximate methods, such as the one shown here which
uses Fibonacci numbers to obtain a family of octagons that
are indistinguishable from a regular one. And this must be
understood not only limited to the figures of the Euclidean
plane. The interest, moreover, is undoubtedly greater if it
is possible to trace ancient uses or historical foundations of
approximate methods, very rare until modern times, as far as
we know today.

Much work remains to be done also on the purely
combinatorial-algebraic aspects highlighted here, such as the
sequence of Carboncettus words and its properties, similar or
derived sequences from {Cn}n , the characteristics of the ele-
ments in {Cn}n , etc. For example, the sequence {δn}n defined
in (33) does not decrease monotonously as it is immedi-
ately evident from (34), but it is easy to prove that the two
subsequences of odd- and even-indexed terms, i.e., {δ2n+1}n
and {δ2n}n , respectively, are monotone (this is because they
depend on the approach of the line (7) to (29) from the above
andbelow, resp.). Thus, it seems interesting to study and com-
pare their speeds of convergence to zero and other aspects
also in perspective of the so-called unimaginable numbers.

The unimaginable numbers are numbers so large that they
cannot be written through the ordinary scientific or exponen-
tial notation, but they need notational systems specifically
designed for the purpose, such as Knuth up-arrow notation,
Conway chained arrow notation, Steinhaus–Moser notation,
Bowers’s operators and others (see Caldarola et al. 2020b,d
and the references therein for more details). The usual con-
vention is that an unimaginable number is a number greater
than 1 googol = 10100.8

In a sequence of converging words, it often happens that
the distances decrease very quickly and become very soon
“unimaginably small.” For instance, for the fourth element
of the sequence {δ2n}n , corresponding to the fourth line of
the form (7) from the above, we already have

δ8 = d(W8,W∞) = 2−170 ≈ 6.682

1052
<

1√
1 googol

,

and, more importantly, note the rapid growth of the expo-
nents in the right column in (34). Unfortunately, however,
despite various evidences, many links between combina-
torics of words and unimaginable numbers remain almost
unexplored nowadays, and we hope that many researchers,

8 The number 1 googol is in fact a rather significative threshold for
several reasons, among them because it is of the order of magnitude of
the greatest numbers in the physical realm. For example, the Eddington
number NEdd, which represents the number of protons (or electrons)
in the observable universe, should be about 1080, and the total volume
of the observable universe itself should be about 10128 times that of a
neutron.
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from different parts of the world, will soon be interested in
systematically studying these fascinating topics.
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