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Abstract. The availability of BIG molecular databases derived from
quantum mechanics computations represent an opportunity for compu-
tational intelligence practitioners to develop new tools with same accu-
racy but much lower computational complexity compared to the costly
Schrédinger equation. In this study, unsupervised and supervised learn-
ing methods are applied to investigate the internal structure of the data
and to learn the mapping between the atomic coordinates of molecules
and their properties. Low dimensional spaces revealed a well defined clus-
tering structure as defined by the measures used for comparing molecules
based their atom distributions and chemical composition. Supervised
learning techniques were applied on the original predictor variables, as
well as on a subset of selected variables found using evolutionary algo-
rithms guided by residual variance analysis (Gamma Test). Black and
white box modeling approaches were used (random forests, neural net-
works and model trees and adaptive regression respectively). All of them
delivered good performance, error and correlation-wise, with neural net-
works producing the best results. In particular white box techniques
obtained explicit functional dependencies, some of them achieving con-
siderably reduction of the feature set and expressed as simple models.

Keywords: Computational intelligence + Quantum mechanics -
Molecules - 3D visualization - Random forests - Neural networks -
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1 Introduction

Computational quantum mechanics derived from first principle has traditionally
been used for the discovery and design of de-novo molecules and for the study
of their structures and electronic properties [1]. More recently, the availability
of huge molecular databases derived from quantum mechanics computations has
given rise to new methods based machine learning [2—4]. These quantum mechan-
ics machine learning models have shown great promises, approaching the same
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accuracy as first principle quantum mechanics computations at a much lower
computational cost.

There are two main models in machine learning: discriminative (forward) and
generative (inverse). In the context of quantum mechanics and discriminative
learning which is the aim of this study, the goal is to learn a mapping from
molecule x to a property y. In general, given a dataset [z; —y;, with i = 1 to
N] that consists of N molecules (x;) with their associated properties (y;), the
discriminative model will learn a mapping from z; — ¥; and use that mapping
to predict new molecules. Several approaches have been explored in the literature
to tackle these problems [4].

In these approaches, observations are described in terms of collections of
variables/attributes, having several kinds of mutual dependencies, redundancies
and noise. However, such a description may affect performance statistical and
machine learning procedures because of the curse of dimensionality. Often the
data concentrate in low dimension nonlinear manifolds, embedded within the
high dimensional space in which the data is represented, either using an instance-
attribute (the present case) or a dissimilarity representation. The implication
is that in fact the data is not often really high dimensional. The dimension
of those manifolds is considered to be the intrinsic dimension and usually it
is much smaller than that of the original data representation space. Learning
and uncovering these manifolds is important and useful for understanding the
internal structure of the data, as well as for improving the performance of data
analytic methods like clustering, classification and regression. In this study, we
explored unsupervised and supervised learning approaches to map the atomic
coordinates of the molecules to their electronics properties as follows. (a) From
the atomic coordinate of each molecule, its Coulomb matrix is computed [2]. (b)
Rows and columns of these matrices are sorted in decreasing order according to
their column norm. This gives rise to an N x M feature matrix, where N is the
total number of molecules and M the number of atoms that make the largest
molecule in the set. (¢) The Gamma test is performed to estimate the level of
noise in the data. (d) M5 Model trees, Random Forests, adaptive regression and
Neural networks are used to learn a mapping from the feature matrix to the
electronics properties of the molecules with correlation coefficient close to 0.996.

The rest of this paper is organized as follows. In Sect.2 we described the
molecular dataset used in this study. Section 3 presents the machine learning
techniques. Section 4 presents the experimental settings and the results obtained
while we conclude in Sect. 5.

2 Molecules

The QM7 dataset used in this study is a subset of the GDB-13 dataset and
was downloaded from [2]. This set consists of 7102 small organic molecules and
their associated atomization energy. Initial Cartesian coordinates were generated
and subsequently relaxed using the Universal Force Field106 as implemented in
OpenBabel107 (version 2.3.2). Structures were further relaxed and self-consistent
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field energies calculated at the density functional level of theory (DFT) using
the Perdew-Burke-Ernzerhof (PBEOQ) functional with def2-TZVP basis set as
implemented in Gaussian (version 09 rev. D.01). Atomization energies were then
obtained by subtracting free atom energies computed in the same fashion. More
information relative to this dataset can be obtained at [2].

2.1 Coulomb Matrix

The inputs to our machine learning models are the same descriptors that also
enter the Schrodinger equations i.e. the nuclear charges Z; and the atomic posi-
tions R;. Our machine learning model, instead of finding the wavefunction which
maps the system’s Hamiltonian to its energy, it directly learns a mapping from
the system to energy based on examples given for training. The Coulomb matrix
used in this case is directly obtained from Z; and R;.

05224 i=j
Zij = (1)
ek 1#

Z; is the atomic number or nuclear charge of atom i, and R; is its position in
atomic units. The Coulomb matrix M is symmetric and has as many rows and
columns as the number of atoms in the molecule.

While the Coulomb matrix is invariant to translation and rotation of the
molecule, it is not invariant to re-indexing of its atoms. One remedy is to sort
the columns and rows of the Coulomb matrices by descending order relative to
their norm 2 [2]. That is, for each molecule in the dataset, compute its Coulomb
matrix. Pad each matrix to the right and bottom with zeros so they all have the
same size that is 23 x 23, which is the maximum number of atoms per molecule
in the QM7 dataset. Compute the norm-2 of each molecules and sort rows and
columns in descending order. Given that the Coulomb matrix is symmetrical,
only the lower triangular part is kept. Finally they are unfolded into 1D vector
representation of the molecule. For the 7102 QM7 molecules the representation
has a matrix of 7102 x 276 feature, where each row represents the signature of
a molecule. This matrix was extended by including five extra features given by
the chemical composition of the molecule with respect to the number of atoms
of Carbon, Hydrogen, Nitrogen, and Sulfur. Both matrices were converted to
z-scores (column-wise) by subtracting the mean and dividing by the standard
deviation. The final data matrix was composed of 7102 x 282 features (281 pre-
dictors and the target property: Atomization energy).

3 Machine Learning Techniques

3.1 Unsupervised Analysis and Data Exploration

Low Dimensional Spaces for Data Exploration. It is possible to cre-
ate spaces for data exploration and visualization by computing low dimen-
sional spaces that preserve chosen properties of the original dissimilarity matrix
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describing the objects [17]. Many techniques have been developed based on dif-
ferent principles. Among them are the Sammon nonlinear mapping and the t-
distributed Stochastic Neighbor Embedding (t-SNE).

Sammon’s nonlinear mapping [15] transforms vectors of two spaces of dif-
ferent dimensions (D > m) by means of a transformation like  : RP? — R™
which maps vectors £ € RP to vectors y € R™, y = ¢(z). Sammon error =

> LS. ; M%, where typically d is an Euclidean distance in R™.
i<j 9ij b ij

The weight term 5;»1 gives more importance to the preservation of smaller dis-
tances rather than larger ones and is determined by the dissimilarity distribution
in the data space. Moreover, they are fixed, which is referred to as lack of plas-
ticity.

t-SNE is an enhancement of SNE [10], where the mapping from higher dimen-
sional space to lower dimensional space is based on the consideration of the
similarity of conditional probabilities between datapoints. A conditional proba-
bility p;|¢ is the probability of datapoint x; to have x; as a neighbor based on a

cap(—|zi—z;|%/207)

ki €2p(—llwi—zkl?/207)”
datapoint z; and k is a perplexity parameter related to selected local neighbors
size. For the lower dimensional space, SNE utilizes conditional probabilities g;;
of datapoints z; based on another Gaussian distribution. The goal is to minimize
the difference between the probability distributions of the two spaces, expressed
as the sum of Kullback-Leibler divergences: C'= 32,3 pj‘ilogzj“:. One draw-
back of SNE, is the low cost when representing widely separated points. t-SNE
applies a symmetric cost function and uses the Student’s t-distribution in the tar-
get space, which has a heavier tail [18]. These modifications represent a notable
improvement.

Gaussian distribution p;|i = = where o2 is the variance of

3.2 Supervised Analysis

Gamma Test. The Gamma test is a nonparametric technique aimed at esti-
mating the variance of the noise present in a dataset [6,12,16], very useful in
the construction of data-driven models. Noise is any source of variation in the
target variable that cannot be explained by a smooth function (model) relating
the target with the predictor variables. The gamma estimate indicates whether
it is possible to explain the target variable by a smooth deterministic model
based on the predictor variables. From this, an assessments can be made on (i)
whether it is hopeful or hopeless to find a smooth model to the data, (i) whether
more explanatory variables should be incorporated to the data, (i) how many
observations are minimally required in order to build a model, (i) appropriate
thresholds in order to avoid overfitting during training and (v) what is the over-
all quality of the data. The most important assumptions of the procedure are
(i) the model function f is continuous within the input space, (i) the noise is
independent of the input vector = and (i) the function f has bounded first
and second partial derivatives.

Let S be a system described in terms of a set of variables and with y € R
being a variable of interest, potentially related to a set of m variables =T € R™
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expressed as y = f(z) 4 r, where f is a smooth unknown function represent-
ing the system, 7 is a set of predictor variables and 7 is a random variable
representing noise or unexplained variation. Let M be the number of observa-
tions and p is the number of nearest neighbors considered. If YNLMJ is the k-th
nearest neighbor of object ;, for every k € [1,p], a sequence of estimates of
E (1(y' — y)?) based on sample means is computed as

M
1 2
(k) = 537 ; lyn k) — Vil (2)

M
1
om(k) = MZ 1T i) — Tl

=1

where E denotes the mathematical expectation and |.| Euclidean distance. The
relationship between vas(k) and dpr(k) is assumed linear as dpr(k) — 0 and an
estimate for the variance of the noise I" = Var(r) is obtained by linear regression
of dpr(k) vs. yar (k)

(k) = I+ G o (k) 3)

From Eq.3 the vRatio (V;) is defined as a normalized I" value with respect to
the variance of the target variable. Since V;. € [0, 1], it allows comparisons across

different datasets: r

"= arly W

Assessing the relevance of the predictor variables is approached by searching for
subsets with good I'-statistics. In real-world cases the search space is determined
by the power set of the predictor variables and evolutionary computation meth-
ods provide an alternative to the prohibitive brute force. A genetic algorithms
explores subsets of predictors represented as binary vectors g ={0,1}" e R™
(masks). Each represents a subset determined by the predictors present in the
vector and the target y. The potential of each subset of variables is given by
the I'-statistics, which could be specified in different ways. A single-objective
cost function can be formulated as a linear combination of partial fitness coming
from (i) the MSE as associated to V,. (the Iy term), (4) ‘model smoothness’ as
associated to G (the Gy term) and (%4) ‘model complexity’ given by the relative
number of predictors (the Ly term).

—

F(O)=Wi s I;(0) + W, «Gp(0) + Wi Lp(9) (5)

where W; = 0.8, W, = 0.1, W; = 0.1 are the weights of the contributing fitness
terms, the largest of which is given to I, directly related to the estimated MSE.
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_ 1-(1—10%V(9) it V(V) <0
If(0)=92-2(1+V,.(9))"! otherwise

Gr(0) = 1= (1+|G()|/range(y)) "
Li(0)=>9/m (6)

The choice of the weights {W;, W,, W;} is a compromise between the importance
given to the partial fitness components coming from the subset’s V,., the model
complexity G and the model’s cardinality (the smaller, the simpler, since it
contains fewer predictors). The practical form of {Iy, G, Ly} in (6) is a heuristic
emerging from many different applications. This use of GammaTest statistics
has been very successful elsewhere [21-23].

3.3 Modeling Techniques

Several black and white box approaches have been used for learning predictive
models for the Atomization Energy property. Namely, Neural networks (fully
connected multilayer perceptrons) and Random Forests [5,13] as black box repre-
sentatives, with M5 model trees [11,14,19,20] and Multivariate adaptive regres-
sion splines (MARS)?! [7,8] as white box instances.

4 Results

4.1 Unsupervised Analysis and Data Exploration

Since it is not possible to properly display 3D content on hard media, snapshots
from fixed perspectives are presented. In order to simplify the representation,
the original 7102 objects were pre-clustered using the leader algorithm [9] with
an Euclidean distance threshold of 12.33 | which produced 1003 clusters (lead-
ers). They are shown as semi-transparent spheres with sizes proportional to the
cluster sizes. For both methods, the Sammon and the t-SNE mappings, the 3D
transformations clearly exhibit the presence of well defined structures composed
of different clusters. In the case of Sammon mapping (Fig. 1, Top), there is a
lower density structure (upper right, mostly composed of outlying elements), well
differentiated from a left area of much higher density composed of a sequence
of clusters which progressively become more sparse. Under t-SNE, the mapping
exhibits outlying elements at the top and the right respectively (Fig. 1, Bottom).
Several clusters are also well defined and they correspond to the major structures
of the Sammon mapping.

This initial exploration of the data using unsupervised visualization tech-
niques reveals the existence of well differentiated classes of molecules, determined
by their Coulomb matrices and atomic composition. These structures would be
exploited by supervised techniques aiming at predicting molecular properties.

! MARS is trademarked and licensed to Salford Systems.
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Fig. 1. Low dimensional spaces. Top: Sammon mapping. Bottom: t-SNE mappings.
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4.2 Supervised Analysis

An orientative estimation of the predictive information contained in the data
was obtained by computing the vRatio index (Eq.4). The value obtained was
quite low (V. = —0.0056) indicating that the information contained within the
281 descriptor variables has a high predictive power for the Atomization Energy
target variable (in z-score form). This result provides a quantitative assessment
of what the exploratory methods of Sect. 3.1. Several supervised machine learn-
ing approaches were used to construct models for the Atomic Energy prop-
erty: random forests, model trees, neural networks (multilayer perceptrons)
and multivariate adaptive regression splines. In all cases, a 10-fold crossvalida-
tion scheme was used, with standard performance measures: (1) Mean absolute
error (MAE = (1/n) Y"1, |oi — pi]), (2) Root mean squared error (RMSE =
Vv (1/n) > (0; — pi)?)) and (3) Pearson Correlation coefficient (R), where n is
the number of observations , and p;, o; the predicted and observed values respec-
tively (z-scores) of the Atomization Energy . Two of the modeling techniques
used are considered as ‘black box’ (neural networks and random forests), while
the model trees and adaptive regression are ‘white box’, transparent ones.

The neural networks models used were multilayer perceptrons with one and
two fully connected hidden layers and one output layer in 20 x 15 x 1, 30 x 15 x 1
architectures respectively. All activation functions were of the relu type, with
MAE as the loss function, optimized by the ‘Adam’ procedure (using a python-
keras implementation). The number of epochs was set to 200, with 10% of the
training set in the fold used for validation. Other parameters were: learning rate
= 0.001, beta;= 0.9, betag= 0.999 and no AMSGrad. The random forests model
had 10 trees in the forest, with a number of features equal to log(N;) + 1, where
N; is the number of inputs. M5 model trees were generated with a minimum of
4 instances/leaf node and pruned rules. In a second application, bagging of this
type of models was used with 10 iterations of the bagging procedure, and 100%
of the training set as the size of each bag. The Adaptive Regression models were
applied with a maximum number of terms allowed set to 100 in two variants and
with a maximum interaction degree of K = 5.

Two rounds of modeling experiments were conducted. In the first round the
entire set of 281 predictor variables were used. For the second round, the power
set of predictors were explored with a genetic algorithm using binary vectors as
individuals, as described in Sect. 3.2. The objective function and the balancing
weights W were those of Eq. 5, using the partial fitness from Eq. 6. The genetic
algorithm settings were: population size =100 individuals, one-point crossover
operator with rate =0.5 and bit mutation operator with rate =0.05. At the end
of the evolution process, the best individual had 156 selected predictors (55.5%
of the originals) with a V. = 5.759 1078, indicating both a high degree of pre-
dictability of the target variable and a high degree of redundancy in the original
set of predictors. The modeling results for the two round of experiments are
shown in Table 1.

All modeling techniques produced predicted outputs which are highly corre-
lated with the observed Atomization Energies. The minimum correlation coeffi-
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Table 1. Modeling results with different machine learning techniques (10-fold Cross-
validation)

ROUND 1 (281 original predictors) | MAE |RMSE| R
NN (20 x 15 x 1) 0.0220 | 0.0340 | 0.9995
NN (30x 15x 1) 0.0230 | 0.0330 | 0.9995
Random forest 0.0639 | 0.0857 | 0.9964
M5 model trees 0.0612 | 0.0915 | 0.9958
M5 model trees (bagging) 0.0515 | 0.0742 | 0.9973
Adaptive regression 0.0658 | 0.0876 | 0.9961
ROUND 2 (156 selected predictors) MAE | RMSE |R

NN (20 x 15 x 1) 0.034 |0.048 |0.9990
NN (30x 15 x 1) 0.035 |0.051 |0.9985
Random forest 0.0659 | 0.0874 | 0.9962
M5 model trees 0.0631 | 0.0982 | 0.9952
M5 model trees (bagging) 0.0538 | 0.0771 | 0.9971
Adaptive regression 0.0689 | 0.0926 | 0.9957

cient was 0.9952, corresponding to M5 model trees using the reduced set of vari-
ables. The highest correlation was obtained with the neural network (0.9995),
closely followed by the bagged M5 model trees (0.9973). Overall, using only
55.5% of the predictors (Round 2) barely affected the correlation results. From
the point of view of the error measures, the best models were the neural networks,
in particular the 20 x 15 x 1 architecture, with a cross-validation MAE of 0.0220
on the z-scores of Atomization Energy. More complex layouts (30 x 15 x 1) did
not differ significantly in performance. This kind of behavior has been observed
elsewhere, when working with neural networks. It is noteworthy that the bagged
M5 model trees performed consistently better than Random Forest for all of the
measured considered. Moreover, the later was matched by the Adaptive Regres-
sion model, which is an explicit, deterministic representation of the functional
dependencies. While random forests are notoriously opaque, M5 and Adaptive
Regression models are totally transparent. The single M5 model tree is composed
of 100 rules when using 281 predictors and 92 when using the 156 selected by
the evolutionary algorithm. Altogether, the model composition indicates a high
level of irrelevancies in the set of descriptor variables, which could be removed
without losing predictive performance.

In the case of Adaptive Regression models, they did not achieve a com-
petitive error-wise performance with respect to neural networks. However, they
ranked similarly with Random Forest with respect to both error and correlation
measures. The later is specially important when looking at the model struc-
ture. Both Adaptive Regression models for data with 281 and 156 predictors
respectively, used only 5 variables (1.78% and 3.2% respectively). Considering
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the original high dimensionality of the descriptor space, this represents a con-
siderable reduction from a feature selection point of view. An important aspect
is that this reduction is performed simultaneously with learning the underlying
functional dependencies. The explicit models when using data with 281 and 156
predictors respectively are

zscores(Atom.Energy) = —ky * Targ — ka * xa77 + kg * Max(0, —x1 — ky) +
ks * Max(0,z1 + ke) + k7 x Maz(0,—x19 — kg) * Max(0,—x26 — kg) —
k1o * MCLJZ(O,JHQ + kll) * Max(O, —Tog — ]ﬁz) + k13 * Max(O, —ZTog — k'14) *
Max(0, —xo6 — k16) + k17 * Maz(0, —x96 — k1g) * Maz (0,26 + k19) + koo *
Max(O, —T26 — kgl) — k22 * Max(O, T26 + k‘gg) — k25
and

zscores(Atom.Energy) = —Kq xx152 — Ko * 2153 + K3 Max (0, —x1 — Ky) +
K5+« Max (0,71 + K¢) + K7 % Max(0, —x11 — Kg) — Ko x Maz(0,z11 + K10) +
Kll * M(IIL’(O, —T24 — Klg) — K13 * Ma$(0,$24 -+ K14) — K15,

where z k;, K; € R, i € NT are constants found during the learning process and
Mazx(p, q) is the maximum between p and ¢. In models of this kind, it is possible
not only to explicit the important predictor variables, but also the way in which
they interact, which is transparently shown by the multiplicative terms involving
the basis functions (e.g. max (0, —z1 +k11)max(0, x1 —k12)). As discussed above,
this model has a performance that matches the one from a random forest, which
is a widely used, well established machine learning technique.

From the point of view of performance, neural networks outperformed all
other models. However, explicit, transparent models were capable of providing
good results, at the level of other well established (black box) techniques, while
working with significantly fewer number of predictors, with the advantage of
exposing the nature of their interrelations and producing simple models.

5 Conclusions

The visualization of low-dimensional mappings from Coulomb matrices and
atomic composition provided understanding of the structure of the data. They
revealed the existence of well defined clusters from the point of view of both
local distance preservation and consistency of conditional probability distribu-
tions between the original and the target spaces. The results obtained with
different machine learning techniques aiming at modeling Atomization Energy
(random forests, neural networks, model trees and adaptive regression), proved
effective at capturing the functional dependencies between molecular structure
and composition, and molecular properties, like Atomization Energy. Black and
white models were produced that combine performance with transparency and
explanation, identifying small subsets of relevant variables. Performance-wise,
neural network models were superior, but adaptive regression in particular, pro-
duced relatively compact and transparent models, with accuracies comparable to
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those provided by well established techniques like random forests. Future work
will expand the studies to other molecular properties, as well as to mechanisms
for deriving molecular structure from desired properties.
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