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SUMMARY

The analytical signal is a complex representation of a time domain signal: the real part is the time domain
signal itself, while the imaginary part is its Hilbert transform. It has been observed that damage, even at a
very low level, yields clearly detectable variations of analytical signal quantities such as phase and
instantaneous frequency. This observation can represent a step toward a quick and effective tool to
recognize the presence of incipient damage where other frequency-based techniques fail. In this paper a
damage identification procedure based on an adimensional functional of the square of the difference
between the characteristics of the analytical theoretical and measured signal is proposed. Numerical
examples, on a single degree of freedom system and of 3 degrees of freedom building model, prove the
efficacy of the proposed method, its robustness in the presence of measuring errors, and show that the use of
the signal phase leads to the best damage parameter estimation. Copyright# 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Damage can occur in structures during their service life due to extreme events and/or aggressive
environmental conditions. In general, it manifests itself in a reduction of structural stiffness,
leading to a loss of durability and safety conditions. For civil engineering it becomes of primary
importance to detect and quantify damage at an early stage, much before structural collapse.
In the past 40 years, many researchers have focused on this problem with the aim of providing a
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reliable damage identification procedure or a structural health monitoring program. Most of
non-destructive techniques are based on the correlation between measured data (in the majority
of cases from dynamic tests) and the response of an analytical model of the damaged structure
(model-based procedures). Different structural response characteristics can be used for this
purpose including modal data [1–4], curvature measures [5–7], frequency response functions
(FRFs) [8–11] and strain energy [12–14]. However, the main issue of any identification
procedure is damage sensitivity. A robust technique should be able to detect damage at very low
level and in the presence of measuring noise; engineers need tools to recognize when dangerous
situations may be initiated and well hidden behind an apparent structural integrity condition,
avoiding the use of any complex algorithm. Frequency-based identification procedures often fail
to give a satisfactory answer to this problem.

Analyses based on the use of the Hilbert transform (HT) have been proposed for detecting
and quantifying non-linearities. In [15, 16] the analysis is carried out in the frequency domain,
using differences between HT and FRFs to detect system non-linearities, while in [17, 18] the
authors use the properties of the analytical signal for the system characterization. Since the HT
appears to be particularly effective in detecting system non-linearities, it has also been used for
damage identification problems assuming non-linear damage models [19, 20] (breathing cracks),
while in [21–24] HT is combined with a proper mode decomposition algorithm to solve an
identification benchmark test on a linear structure.

The aim of this work is to show the potentiality of applying HT to detect and quantify
damage at an early stage in linear systems; it is worth stressing that in this paper we deal
with damage that causes loss of stiffness in some point of the structure. The HT tool is used
to obtain the analytical representation of the system response. Then, a damage identification
procedure based on an adimensional functional of the square of the difference between
theoretical and measured data is proposed. The lowest value of the functional gives the
damage parameter of the system. Specifically, attention is focused on the signal phase,
and instantaneous frequency, since it will be shown that even low damage levels lead to
considerable response variations between undamaged and damaged case. In order to assess
the robustness of the proposed identification procedure, numerical applications on single
degree of freedom (SDOF) and 3 degrees of freedom (3DOF) are presented using data records
perturbed by measuring noise.

2. HT AND ANALYTICAL SIGNALS

Let x(t) denote the response of a linear system. Its HT is defined as

#xðtÞ ¼
1

p
P

Z 1
�1

xðtÞ
t� t

dt ð1Þ

where P stands for principal value; it is an integral transform of the original signal x(t) with the
kernel 1/pt.

The complex signal

zðtÞ ¼ xðtÞ þ i #xðtÞ ð2Þ

where i is the imaginary unit is called the analytical signal (see [15] for further reference).
The latter can be interpreted as a rotating vector in a complex plane; indeed, rewriting z(t)
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in the form

zðtÞ ¼ AðtÞ exp½iWðtÞ� ð3Þ

A(t) is the so-called amplitude (or envelope) of the rotating vector and WðtÞ is the phase angle,
respectively, defined as

AðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ2 þ #xðtÞ2

q

WðtÞ ¼ arctan
#xðtÞ

xðtÞ

� �
ð4Þ

The phase angle WðtÞ is a function that lies in the interval (�p,p), exhibiting jumps of 2p. In
order to handle with a smooth function, it is convenient to use an unwrapping algorithm that
corrects the radian phase angles by adding multiples of � 2p when a jump occurs. In such a way
the function WðtÞ unwrapped is defined in the whole real set.

The time derivative of the analytical signal ’zðtÞ is also a complex signal related to z(t) by

’zðtÞ ¼ ’AðtÞ exp½iWðtÞ� þ i ’WðtÞAðtÞ exp½iWðtÞ�

¼o tð Þz tð Þ ð5Þ

In Equation (5), o(t) is a complex frequency defined as

oðtÞ ¼
’AðtÞ

AðtÞ
þ i ’WðtÞ ð6Þ

The imaginary part of this vector ’WðtÞ represents the angular velocity of z(t) in the ½xðtÞ; #xðtÞ�
plane, and it is referred to as instantaneous frequency. The reason for this is straightforward; for
instance, if one assumes the original signal to be a cosinusoidal one, i.e. xðtÞ ¼ A cosðotÞ; the
analytical signal is a complex exponential zðtÞ ¼ A expðiotÞ; where A(t)=A and WðtÞ ¼ ot: Thus,
in this case, the instantaneous frequency coincides with the original circular frequency. In order
to better clarify these concepts, the signal xðtÞ ¼ cosðotÞ; its HT #xðtÞ ¼ sinðotÞ; the phase WðtÞ
and the phase unwrapped are depicted in Figure 1.

3. DAMAGE SENSITIVITY

The main issue of any damage identification procedure is damage sensitivity. Often, the
comparison between the response of the damaged and undamaged system does not provide any
clue for recognizing a possible damage scenario. To show this, let us consider a massless
cantilever bar with a pointmass m attached at its free end (Figure 2). The bar stiffness is EA=‘;
its length being denoted by ‘: Damage is modeled by a little reduction the axial stiffness EAð1�
aÞ=‘; where a 2 ½0; 1Þ is referred to as the damage coefficient. Although simple, this example is
physically meaningful to our purpose and gives the possibility to trace some first heuristic
consideration on the damage sensitivity of the signal features.

The equation governing the vibration of the given system under an impulsive force in
horizontal direction FðtÞ ¼ dðtÞ (where d(t) is Dirac’s delta function) is

.xðtÞ þ 2L ’xðtÞ þ o2
0ð1� aÞxðtÞ ¼ dðtÞ=m ð7Þ

where L ¼ z0o0

ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

denotes the damping term, z0 the damping ratio and o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=m‘

p
is

the undamaged bar circular frequency.
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In Figure 3 the impulse response function (IRF) and the FRF of the undamaged and
damaged bar are reported. The damping ratio is assumed such that z0o0 ¼ 1 and the
undamaged circular frequency is o0 ¼ 10 rad=s; while the damage coefficient is a=0.01 labeled
as aeff : The reduction in the system frequency from the undamaged to the damaged case is just of
0.59%; thus, a small damage scenario is analyzed in fact in Figure 3; the response of the
damaged system totally overlaps the response of the undamaged one in both domains, and then
it is not possible to predict this kind of damage. Our purpose is to look for a system feature that
is sensitive to detect little damage. To aim at this we have to consider the characteristics of the
analytical signal calculated on the IRF.

(a) (b)

(c) (d)

Figure 1. Example of the analytical features of the cosinusoidal signal: (a) original signal; (b) Hilbert
transform of the signal; (c) phase; and (d) phase unwrapped.
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By applying the HT to the undamaged and damaged IRF, it is possible to construct the
corresponding analytical signals. In Figure 4 the two signals are compared in a polar plot at
different time instants. It can be noted that the amplitude of the damaged structure IRF is
practically the same to the amplitude of the sound structure IRF. That is, low levels of damage
do not produce high variations in the amplitude of the analytical signal. In this sense, we say
that the amplitude is not a ‘good feature’ in the damage identification procedure. On the
contrary, a clear and identifiable phase shift between the two vectors is evident. From this
heuristic analysis, the phase seems to be more detectable and, consequently, more suited to
highlight even ab initio damage scenario in the structure. In this contest we can say that the
phase is a ‘good feature’ in damage identification. In the following, we will quantify the behavior
of these features in relation to the procedure proposed.

4. DAMAGE IDENTIFICATION PROCEDURE

The idea is to define a functional highlighting the difference between the experimentally
measured system response and the same response computable from an appropriate model of the
system, referred to as the theoretical system response. The more the model approximates the

Figure 2. Massless cantilever bar of length ‘ with a point mass m.

(a) (b)

Figure 3. Comparison between undamaged (solid) and damaged (dotted) system response: (a) impulse
response function and (b) frequency response function.
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damaged system under the experiment, the more this difference tends to zero. Thus, if the
functional is properly defined as a function of the damage parameter, it will be possible to
identify the state of the system by this comparison. The challenge for defining such an objective
function is not easy for many reasons. It must be simple to compute, and it should not be
sensible to data error, i.e. coming from ambient or instrumental noise. Moreover, it should be
required that the damage-based objective function does not have an oscillatory behavior with
local minima. We propose the following adimensional objective function to detect damage at
early stage, defined as

JZðaÞ ¼

R Tf

Ti
ðZthða; tÞ � Zexðaeff ; tÞÞ

2 dtR Tf

Ti
Zexðaeff ; tÞ

2 dt
ð8Þ

where ½Ti;Tf � is the observation window, ZðtÞ is a general feature of the system response (time
history displacement, or velocity, acceleration, or amplitude, phase, instantaneous frequency
calculated from the displacement or velocity or acceleration), while the apexes th and ex stand
for theoretically determined, varying the value of a, and experimentally measured, or
numerically simulated, affected by aeff, respectively. Although the analytical signal and the
original signal contain the same information, the behavior of functional (8), defined on
the amplitude A(t), the phase WðtÞ; the instantaneous frequency ’WðtÞ or the displacements of the
system is clearly different. From the above considerations we expect that the phase is a system

Figure 4. Polar plot of the analytical signal at multiple times (T0 ¼ 2p=o0): undamaged (thicker solid) and
damaged (thinner dashed).
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feature better than others to highlight little changes in stiffness of the system, that is, functional
(8) based on this feature should have better performance. This will be proved in the following by
means of some benchmark-simulated test.

4.1. Simulated impact hammer test

Let us assume that impact hammer test data are available for the SDOF structure, whose
mechanical and damage parameters are those reported in Section 3, and let the observation
window time be Ti ¼ 0 s; Tf ¼ 6 s:

First, the experimental displacement of the damaged system xexðaeff ; tÞ is simulated, and the
analytical signal is calculated by means of numerical HT; then, varying a in the range [0,1) with
steps of Da ¼ 0:001; the function response in terms of displacements xthða; tÞ; amplitude Athða; tÞ;

(a) (b)

(c)

Figure 5. Variation of the objective function versus a for a simulated impact hammer test: (a) amplitude;
(b) phase; and (c) instantaneous frequency.
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phase Wthða; tÞ and instantaneous frequency ’Wthða; tÞ are evaluated, and finally the integral (8) is
calculated for each feature considered. Results are reported in Figure 5. The lowest value of the
objective function defined JZðaÞ is localized at a ¼ 0:01 in each case and it identifies the damage
level of the structure. In order to highlight this value, a logarithmic scale has been used for the y-
axis; thus, in each of Figure 5 a sharp peak is obtained.

The heuristic considerations on the goodness of the objective functions in the previous section
can now be quantified in terms of performance of the minimization algorithm applied to the
functional of the acceleration J .xðaÞ; of the amplitude JAðaÞ; of the phase JWðaÞ and of the
instantaneous frequency J ’WðaÞ: To aim at this, Mathematica# built-in minimization subroutines
based on Newton and quasi-Newton minimization methods have been used. While the Newton
algorithm is based on the computation of the first and second derivatives of the objective
function [25], in the quasi-Newton method the second-order derivative is approximated with the
Broyden–Fletcher–Goldfarb–Shanno method, described in [26]. Of course, differences in terms
of computational time between the two algorithms become important when more damaged
parameters are considered, although being indicative in this simple scalar case. In Table I the
performance of the algorithms used is summed up by means of four categories: the value of the
identified damage, the number of steps needed to reach the assigned tolerance, the number of
evaluation points of the objective function and the computational time expressed in seconds
(central processing unit; CPU time). The number of evaluations and the CPU time in the case of
the phase-based and instantaneous frequency-based objective functions are less than others, and
therefore phase and instantaneous frequencies are preferable. In this contest, we could say that
the latter features are more sensitive with respect to the minimization procedure. It is clear that
computational effectiveness of the functionals is striking in multiple degrees of freedom
(MDOF) structures with more damaged parts and, then, short computational time is preferred.
We will show in the next sections that, among the analytical features, the phase is also the most
reliable for robustness’ sake with respect to signal with measurement noise.

5. IDENTIFICATION PROCEDURE IN THE PRESENCE OF MEASUREMENT NOISE

In this section, in order to assess the robustness of the proposed identification procedure,
simulated records are affected by a random noise, W(t). The noise, superimposed to all
simulated recorded data, is a band-limited Gaussian noise with standard deviation equal to 10%
of a third of the maximum peak of acceleration response. In Figure 6(a) the displacement time

Table I. Performance of the functionals calculated on the signal without noise: functional J, value of the
identified damage, the number of steps needed, the number of evaluation points of J and computational

time expressed in seconds (CPU time).

Newton method Quasi-Newton method

J a # Steps # Eval. CPU(s) J a # Steps # Eval. CPU(s)

J .xðaÞ 0.010 3 4 0.031 J .xðaÞ 0.010 4 6 0.047
JAðaÞ 0.010 3 4 0.016 JAðaÞ 0.010 4 5 0.047
JWðaÞ 0.010 2 3 50.001 JWðaÞ 0.010 4 5 50.001
J ’WðaÞ 0.010 2 3 50.001 J ’WðaÞ 0.010 4 5 50.001
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history xðaeff ; tÞ of the damaged system is depicted, and in Figure 6(b) the same signal affected
by noise measurements, xðaeff ; tÞ þWðtÞ; is reported. Taking into account the measurement
noise, the extension of the aforementioned damage identification procedure is not straightfor-
ward because the results by using Equation (8) are not satisfactory as the previous case. In fact,
depending on the parameter of the system and the level of the noise, the signal is mixed up with
the noise in the last instants of the time window ½Ti;Tf �; as the signal decays. For example,
considering the displacement of the damaged structure recorded in the presence of noise, labeled
xðaeff ; tÞ þWðtÞ; the phase WðtÞ of its analytical signal is plotted in Figure 7(a); after tffi 4 s the
record is highly affected by the noise. Further, the unwrapping algorithm, needed to take into

(a) (b)

Figure 6. Displacements of the SDOF: (a) without noise and (b) with measurement noise.

(a) (b)

Figure 7. Signal with measurement noise: (a) phase with noise and (b) phase unwrapped with noise.
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account the cycles that the vector produces in the complex plane, returns a phase that rears up in
the last few seconds (Figure 7(b)), compromising the robustness of the method.

Functional (8) can be explicitly expressed as

JWðaÞ ¼

R Tf

Ti
ðWthða; tÞ � Wexðaeff ; t;WðtÞÞÞ

2 dtR Tf

Ti
ðWexðaeff ; t;WðtÞÞÞ

2 dt
ð9Þ

and it is plotted in Figure 8, where the y-axis is in the logarithmic scale. The presence of the
measurement noise does not induce in functional (9) a sharpened peak and the minimization
procedure may not converge. This happens because the analyzed signal does not have a well-
behaved HT. Then, it needs a proper procedure to restore the validity of the method.

5.1. Use of a filter to restore the procedure efficiency

In order to restore the validity of the identification procedure described above, it is necessary to
filter the recorded signal. There are many kinds of filters in literature: Butterworth, Elliptic or
Chebyshev of the first and second kind and so on, with different specifications [27]. Our aim is to
have the minimum distortion of the filtered signal and to cut the highest noise frequencies above
a certain value that is commonly called cutoff frequency. Butterworth low-pass filter has these
characteristics and therefore seems to be the best option. The behavior of such a filter can be
summarized by the so-called FRF H(s), with s being a complex number, which has the following
form:

HðsÞ ¼
ON

CQN
k¼1 ðs� pkÞ

ð10Þ

where OC is the cutoff frequency (rad/s), N is the order of the filter

pk ¼ Oc exp i
p
2
þ

p
2N

2k� 1ð Þ

� �h i

Figure 8. Objective function calculated on the phase (unwrapped) of the displacement affected by
measurement noise.
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are the poles (the roots of the denominator) and i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. From definition
(10) with the position s ¼ io; the so-called gain function or magnitude-squared function
HðioÞ
�� ��2 is obtained. When o ¼ 0; HðioÞ

�� ��2! 1 and the frequency component will be
completely passed. When o!1; the magnitude-squared function HðioÞ

�� ��2! 0 and the
frequency components are completely stopped. Between the pass band and the stop band, there
is a transition band ð05HðioÞ51Þ in which the frequency component will be partially passed.
When o ¼ Oc; H ioð Þ

�� ��2 always becomes 0.5 (half power) regardless of the order of the filter N.
In Figure 9 the effects of the filter order N on the frequency response are shown for a

Butterworth low-pass filter with unitary cutoff frequency. If the filter order increases, the
transition from the pass band to the stop band gets steeper.

Figure 9. Butterworth low-pass filter: magnitude-squared function HðioÞ
�� ��2 for different filter orders.

(a) (b)

Figure 10. Filtered signal with measurement noise: (a) phase and (b) phase unwrapped.
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Moreover, converting a product into a sum:YN
k¼1

ðs� pkÞ ¼
XN
k¼0

cks
k ð11Þ

one can identify the coefficient ck. Calling x(t) and y(t) the input signal and the output of the
filter, respectively, and with X(s) and Y(s) their Laplace transform, the linear input–output
relationship in Laplace space can be expressed as

YðsÞ ¼ HðsÞXðsÞ ¼
ON

CPN
k¼0 cks

k
XðsÞ ð12Þ

that is

YðsÞ
XN
k¼0

cks
k ¼ ON

CXðsÞ ð13Þ

Then, the inverse Laplace transform gives the differential form of the filter that will be used to
clean the signal from the noise: XN

k¼0

ck
dk

dtk
yðtÞ ¼ ON

CxðtÞ ð14Þ

In passing from Equation (13) to Equation (14), a general property of the Laplace transform
has been taken into account:

dk

dtk
yðtÞ ¼ L�1 YðsÞsk �

Xk�1
r¼0

sr
dk�1�r

dtk�1�r
yð0Þ

 !
ð15Þ

jointly to the assigned initial conditions:

yð0Þ ¼ 0

y0ð0Þ ¼ 0

. . . :

yðk�1Þð0Þ ¼ 0 ð16Þ

Equation (14) is a linear differential equation of order N that can be numerically solved and
gives the output of the filter y(t). Of course, following this procedure the input x(t) and the
output y(t) of the filter are not in phase. Yet, a simple backward–foreward procedure
(implemented in the Matlab# command filtfilt) gives back the two signals in phase. Therefore,
in the following, the filtered signal will be always intended in phase with the input.

The displacements affected by the noise, xðaeff ; tÞ þWðtÞ; have been processed with a Butterworth
filter with parameters OC ¼ o0 þ 15ðrad=sÞ ¼ 25ðrad=sÞ and N ¼ 12: After the application
of the filter, the resulting signal yðtÞ has a well-behaved HT: the phase assumes a regular behavior,
as shown in Figure 10(a) and (b), and is now well suited for the procedure proposed through
Equation (9). Then, the resulting time history output y(t) has been considered for the evaluation of
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the analytical signal. By adopting the same procedure as before, the validity of the damage
identification is restored as shown in Figure 11, where the functional JWðaÞ calculated from the
filtered displacement shows a well-marked peak (dashed line) corresponding to the damage value.

In Table II, results on the sensitivity of the objective functions are reported. Both the Newton
and the quasi-Newton methods did not converge to a solution in case of functional based on the
displacements and on the amplitudes, while the identified damage was a ¼ 0:013 and 0:016
having used the phase and the instantaneous frequency, respectively. That is, the phase of the
analytical signal is more sensitive than other features not only from a computational
perspective, but also with respect to the precision of the identified damage coefficient, even in the
presence of measurement noise. For these reasons, in the following extension to MDOF
structures, we will refer to just the objective function based on the phase.

6. EXTENSION TO MDOF SYSTEMS

The extension to MDOF systems is not straightforward because the proposed method by using
Equation (8) is not satisfactory as the case of SDOF, depending strongly on the structural

Figure 11. Objective function calculated on the phase (unwrapped): without filter (continuous line) and
with filter (dashed line).

Table II. Performance of the functionals calculated on the signal with measurement noise: functional J,
value of the identified damage, the number of steps needed, the number of evaluation points of J and

computational time expressed in seconds (CPU time).

Newton method Quasi-Newton method

J a # Steps # Eval. CPU(s) J a # Steps # Eval. CPU(s)

J .xðaÞ } } } } J .xðaÞ } } } }
JAðaÞ } } } } JAðaÞ } } } }
JWðaÞ 0.013 2 3 0.031 JWðaÞ 0.013 4 5 0.031
J ’WðaÞ 0.016 3 4 0.015 J ’WðaÞ 0.016 4 5 0.031
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parameters. In this section, by resorting to a numerical application, the physical reason of this
ill-posed problem will be shown. In the next section, by means of a filtering technique, the
validity of the procedure on the analytical signal will be restored. Let us consider a three-storey
shear-beam-type building analyzed in [24] and depicted in Figure 12. The mass, stiffness and
viscous damping of each storey are assumed to be the same, with mj=1000 kg, kj=980KN/m,
cj=2814Ns/m, respectively, for j ¼ 1; 2; 3:Damage is simulated by decreasing the stiffness at the
first floor by a damage coefficient aeff chosen as aeff ¼ 0:01; that is, we consider a global damage
coefficient.

Suppose an impact loading is applied to the second floor; the simulated time history
acceleration response, for instance, at the third floor .xex3 ðaeff ; tÞ and the correspondent Fourier
spectrum are calculated and depicted in Figure 13. By looking at a Fourier spectrum of the
damaged system response .xex3 ðaeff ; tÞ (Figure 13(b)), it appears that the second and the third
modes do not contribute strongly. A measurement noise, as previously done, is superimposed to
the simulated acceleration .xex3 ðaeff ; tÞ; and it strongly affects both the acceleration and the
spectrum (Figure 13(c)–(d)). The analysis previously described is then performed and the
functional of the phase is reported, because it is the most significant as in the SDOF system. To
aim at this, the functional JWðaÞ in Equation (9) is calculated once the analytical signal of both
.xex3 ðaeff ; tÞ and .xth3 ða; tÞ and the correspondent phases have been evaluated, where a assumes
values in the range (0,0.8) with step Da ¼ 0:001: In Figure 14 it is shown that the aforementioned
method is efficient in detecting damage, but the presence of local minima in JWðaÞ (highlighted
with dotted circles in the figure) could affect the identification procedure.

Figure 12. Three shear-beam building model.
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This happens because the HT allows the damage identification only if the analyzed
signal is monocomponent or almost monocomponent, i.e. what we have already indicated
as well-behaved HT of the signal. Therefore, it needs a monocomponent signal to restore the
validity of the method; this can be achieved, for example, by use of Hilbert Huang
algorithm [21–24], labeled empirical mode decomposition that, in fact, separates
the multicomponent signal in a summation of the so-called intrinsic mode functions. The
only problem is that this technique is based on empirical observations, i.e. no analytical
tools may be used. In the next section, we propose a different way to reduce the signals in
monocomponent ones, resorting to the filtering technique. That is, when MDOF systems are
considered, band-pass filtering has the double effect: (i) to reduce the influence of the

(a) (b)

(c) (d)

Figure 13. Simulated response of the third floor: (a) acceleration of the third floor .xex3 ðaeff ; tÞ; (b) Fourier
spectrum of .xex3 ðaeff ; tÞ; (c) acceleration of the third floor with noise: .xex3 ðaeff ; tÞ þWðtÞ; and (d) Fourier

spectrum of .xex3 ðaeff ; tÞ þWðtÞ:
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measurement noise and (ii) to separate each modal response, giving the searched signal with
well-behaved HT. The identification procedure will be based on the analytical signal of one of
the modal structural response.

7. EXTRACTING THE MODAL RESPONSES TO RESTORE THE
PROCEDURE VALIDITY

As is well known, from the modal analysis, the response of an n-degree of freedom system is the
sum of the modal responses .xpjðtÞ

.xpðtÞ ¼
Xn
j¼1

.xpjðtÞ ¼
Xn
j¼1

fpj .qjðtÞ ð17Þ

where fpj is the pj element of the system modal matrix and q(t) the displacement in the modal
space.

Thus, it occurs to extract from the acceleration response the modal responses .xpjðtÞ; for each
mode j, using several low-pass filters of the same kind as those in Section 5.1.

Once selected the parameters characterizing the low-pass filters, the procedure to extract the
modal responses is summarized as follows:

1. First a Fourier spectrum of the damaged system acceleration response is performed, such
that one can determine not only the natural frequencies of the system, but also the

Figure 14. Objective function in terms of phase (unwrapped) versus a for the 3DOF system, in the presence
of measurement noise; below, a zoom in the neighborhood of aeff ¼ 0:01:
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approximate frequency range around each natural frequency oj, say

ojL5oj5ojH ð18Þ

2. then low-pass filters are applied twice for each natural frequency having as OC the cutoff
frequency ojL and ojH ; respectively;

3. finally, the difference between the time histories’ output solution of the equation of the
filter in differential form (Equation (14)) with OC ¼ ojH ; and OC ¼ ojL; well approximate
the modal response

.yp;j ¼ ½.yp;ojH
ðtÞ � .yp;ojL

ðtÞ� � .xpjðtÞ ð19Þ

In order to show how to use this procedure let us come back to the previous application. First
of all, for the factorization of ck, the poles (the roots of the denominator in Equation (10)) must
be obtained. The filter order N=8 leads to a good performance of the filter and avoids further
complications, due to the increasing order of the differential equations, Equation (14). To
extract the modal response from the signal, the aforementioned steps have to be followed. First
of all, the natural frequencies have to be found. As reported in the Fourier spectrum of the
damaged system response .xex3 ðaeff ; tÞ; (Figure 13(d)) the three natural frequencies are
o1=13.62 rad/s (2.17Hz); o2=38.48 rad/s (6.12Hz); o3=56.17 rad/s (8.94Hz). Thus, to
determine the modal responses, using filtering, the following frequency ranges are selected:

(i) 0:82 rad=s ¼ o1L5o15o1H ¼ 25:9 rad=s for the first mode;

Figure 15. Comparison between the first theoretical modal response of the system (continuous line) and
the signal obtained by filtering the response (dotted line).
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(ii) 25:9 rad=s ¼ o2L5o25o2H ¼ 47:7 rad=s for the second mode;
(iii) 47:7 rad=s ¼ o3L5o35o3H ¼ 65:3 rad=s for the third mode.

For instance to find out the first modal response using the signal response at the third floor, it is
necessary to process this signal .xex3 ðaeff ; tÞ depicted in Figure 13(c), through the eighth-order low-
pass filter twice; first using the filter having OC ¼ o1H ¼ 25:9 rad=s; then the filter having OC ¼

o1L ¼ 0:82 rad=s: The resulting time history obtained by the difference between the time histories’
output, solution of both the equations of the filters in differential form (Equation (14)) ð.y3;1 ¼
½.y3;o1H

ðtÞ � .y3;o1L
ðtÞ� � .x31ðtÞÞ; well approximates the first modal response, as reported in

Figure 15. Analogously, we can extract the other modal responses by processing the signal
.xex3 ðaeff ; tÞ with the eighth-order low-pass filter twice, for each mode, with a frequency band
ojL5oj5ojH (j ¼ 1; 2; 3) given above. The resulting three-time histories obtained by the
difference .yp;j ¼ ½.yp;ojH

ðtÞ � .yp;ojL
ðtÞ� � .xpjðtÞ thus obtained well approximate each modal

response. We label these functions .xexpj ðaeff ; tÞ; since they have been obtained for the damaged
system.

So far we are in the same condition as the previous case: a signal that has a well-behaved HT.
Thus, after considering the analytical signal of both the first modal responses .xex31ðaeff ; tÞ
extracted and .xth31ða; tÞ (varying a), the functional JWðaÞ based on the phase W31 is calculated from
Equation (8).

Results are depicted in logarithmic scale in Figure 16. By looking at this figure, it is evicted
that the validity of the proposed method is restored being efficient in detecting damage again.
The effect of the filter in this case, compared with the SDOF system, is double because it cuts

Figure 16. Objective function in terms of phase (unwrapped) of the first modal response extracted by the
filter; below, a zoom in the neighborhood of aeff ¼ 0:01:
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out: (i) the frequency content, due to the other modal components and (ii) the higher frequencies
due to the band-limited Gaussian noise.

As observable from Figure 17, functionals JW2ðaÞ and JW3ðaÞ; calculated from the second and
the third modal responses, respectively, seem to be also suited for the identification of the
damage level. The third modal response shows the worst behavior because it lasts just for a few
instants and thus it is affected more than others by numerical error due to the filter dynamics or
the numerical HT. Of course, the first modal response is the easiest to find because the filter can
be applied only once; then we find it more convenient just to identify the damage with the phase
of the first modal response of the structure. These results show that the procedure based on the
phase is, in general, a robust way to detect the damage on real structures with real
measurements. Experimental tests on a 2DOF shear-type model subjected to several damage
scenarios have been analyzed in [28], and the obtained results show the effectiveness of the
method in accordance with those obtained numerically.

8. CONCLUSIONS

In this paper the incipient damage identification problem has been investigated by using
simulated data records in dynamic setting. Comparison of response variations due to damage in
terms of amplitude, phase and instantaneous frequency has been made in order to assess the
sensitivity of these response quantities to the parameter variations due to damage. The response
quantities have been defined in the complex plane by introducing the so-called analytical signal,
the imaginary part being the HT of the real part. It has been shown that, especially for small

Figure 17. Objective function in terms of phase of the modal responses extracted from the recorded signal
by a filter: JW1ðaÞ from the first modal response; JW2ðaÞ from the second modal response; and JW3ðaÞ from the

third modal response.
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damage extent, the response in terms of IRF and amplitude is almost insensible to the system
perturbation, which makes a damage identification based on this response characteristic
unfeasible. Conversely the phase and the instantaneous frequency exhibit high sensitivity to
stiffness changes, where the first is preferred to the latter. In conclusion to this study, the
following remarks can be highlighted: (i) a damage identification procedure may be
advantageously performed by using the phase; (ii) it has been shown that the method is
reliable if one deals with monocomponent signal; (iii) the method proposed has been extended to
multicomponent signals (such as the response to SDOF and MDOF structures affected by
measurement noise) by an opportune Butterworth’s filter preprocessing that gives back a
monocomponent signal. In this paper, the damage identification procedure has been performed
only by means of numerical tests.
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