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SUMMARY

A novel numerical scheme for the time-domain dynamic analysis of buildings incorporating energy
dissipation devices of viscoelastic type is presented. Two alternative state-space representations are
considered for the frequency-dependent behaviour of the viscoelastic dampers, namely generalized
Maxwell’s (GM) model and Laguerre’s polynomial approximation (LPA) technique. The computational
burden is dramatically reduced by using a convenient modal transformation of coordinates, where the
equilibrium modulus of the viscoelastic devices is included in the evaluation of modal shapes and
undamped modal frequencies. Both GM model and LPA technique lead to closed-form expressions for the
parameters characterizing the modal relaxation functions of the building, which in turn are exploited in
deriving the exact integration operators for the modal oscillators. Importantly, all the matrices required in
the proposed cascade scheme are directly computable from the exact transition matrices of traditional state
variables (displacements and velocities) and additional internal variables (for either GM model or LPA
technique). A simple application to a Single-DoF oscillator demonstrates the unconditional stability of
the numerical method; the numerical efficiency is proved with the dynamic analysis of a discretized
structural system with a large number of degrees of freedom; the accuracy is confirmed by the seismic
response analysis of a realistic 10-storey building equipped with viscoelastic dampers. Copyright r 2010
John Wiley & Sons, Ltd.
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1. INTRODUCTION

A vast computational and experimental literature has been devoted in the last two decades to
structural applications of viscoelastic dampers [1–7]. Indeed, these devices prove to be very
effective in mitigating the dynamic impact of natural actions such as ground shakings, wind
gusts and ocean waves. Despite recent advances in the field, very crude approximations are often
exploited by structural engineers in practical situations, which contrast with the extraordinary
rheological complexity of elastomeric materials used in viscoelastic dampers [8–12]. The most
popular techniques of analysis and design are based on the Modal Strain Energy (MSE)
method, in which effective values of elastic stiffness and viscous damping are utilized. Originally
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developed for laminated composites containing viscoelastic layers [13,14], this approach has
been subsequently adapted to seismic and wind applications [15–17]. Although very
straightforward, the MSE method may lead to unacceptable inaccuracies in many engineering
situations, as demonstrated by recent investigations conducted in different contexts [18–23].

The problem then exists to develop effective numerical schemes of dynamic analysis to
overcome the misleading notion of effective stiffness and damping for the elastomeric devices
[24], without excessively increasing the computational effort. Even within the limits of the linear
range, in fact, the vibration of buildings equipped with viscoelastic dampers is ruled in the time
domain by a quite cumbersome set of second-order integro-differential equations with memory
kernels, which requires specialized algorithms.

The computational techniques developed in recent years to address this problem can be
classified into two main categories. The first type of strategies consists in the modification of
standard numerical schemes. Aprile and Benedetti [25] proposed to couple the Newmark’s b
method [26] with an additional set of differential equations governing the time evolution of the
internal state variables associated with a number of Maxwell’s elements. A similar approach is
formulated in Patlashenko et al. [27], where more sophisticated numerical schemes are
considered (e.g. the Hilber–Hughes–Taylor method [28]).

The alternative state-space models independently proposed by Palmeri et al. [29] and by
Adhikari and Wagner [30,31] constitute the second type of strategies. In these methods, the
viscoelastic memory is taken into account by appending to the traditional state variables, i.e.
displacements and velocities, a certain number of suitable additional internal variables. The
forces experienced by the viscoelastic components are then expressed as linear combination of
the new state variables, which are ruled by linear differential equations. As shown in Section 2,
where generalized Maxwell’s (GM) model and Laguerre’s polynomial approximation (LPA)
technique are compared, the form of these additional state equations depends on the
mathematical representation of the constitutive law for the viscoelastic behaviour. In both the
cases, the integro-differential equations of motion are turned into a set of linear differential
equations of greater order, but easier to solve. The numerical solution is finally sought for the
fully coupled state-space equations.

The main disadvantage of the latter strategies is the excessive number of internal state
variables, which may be required in real applications. As an example, the number of devices
installed in each storey of a viscoelastically damped building can vary from 1 to 50, or even
more. As a result, the number of additional state variables for each storey can be easily much
greater than the number of dynamically significant degrees of freedom (DoF).

It follows that, similar to the classical eigenvalue analysis for viscously damped structures, it
is necessary to implement a technique able to reduce the size of the matrices for actual buildings
provided with viscoelastic devices. Indeed, modal frequencies and modal damping ratios are
de facto insufficient to characterize the vibration of such structures in the modal space, but the
concept of modal decoupling is still valid. Inaudi and Kelly [32] tackled this problem in the
frequency domain, providing expressions for diagonalizable frequency-dependent stiffness and
damping matrices. The same concept of defining non-viscously damped modal oscillators
underlies the introduction of the so-called modal relaxation functions in the time domain. As in
Palmeri et al. [19], for studying the wind-induced vibration of viscoelastically damped buildings,
the modal relaxation functions can be viewed as the time-domain counterpart of the frequency-
dependent stiffness and damping matrices appearing in the frequency domain.

Aimed at reducing the computational effort of time-domain dynamic analyses, two main
novelties are introduced in this study. First, new closed-form expressions are provided in Section 3,
which enable the mechanical parameters of the modal relaxation functions to be computed
starting from the analogous quantities of the viscoelastic dampers. These formulae are specialized
for both GM model and LPA technique. Secondly, an improved cascade scheme of solution is
formulated in Section 4. This further innovation is obtained through convenient manipulations of
the coupled state-space equations of motion, which make all the approximate integration
operators directly computable from the transition matrices of traditional state variables and
additional internal variables.
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Three numerical examples are presented in Section 5 for validation purposes. The
unconditional stability of the proposed numerical scheme is checked with reference to a Sigle-
DoF viscoelastic oscillator with a Maxwell’s rheological element. The numerical efficiency is
demonstrated with the dynamic analysis of a finite element (FE) model with a large number of
DoFs. Finally, practical effectiveness and accuracy are confirmed by the seismic application to a
realistic 10-storey building equipped with viscoelastic dampers.

2. CONSTITUTIVE LAW FOR LINEAR VISCOELASTIC DEVICES

Within the limits of the linear theory, the reaction force r(t) experienced by a viscoelastic device
can be expressed in the time domain through a convolution integral [18]:

rðtÞ ¼ jðtÞ � _qðtÞ ¼
Z 11

�1
jðt � sÞ_qðsÞ ds; ð1Þ

where asterisk and over-dot stand for convolution operator and time derivative, respectively; q(t) is
the time history of the pertinent deformation of the viscoelastic device; and jðtÞ is its relaxation
function, i.e. the time history of the reaction force due to a unit-step deformation applied for t50. In
practical situations, the function jðtÞ is non-negative and monotonically decreasing for tX0 (Figure 1,
left); moreover, jðtÞ must be zero for to0 to satisfy the causality constraint. The latter condition,
along with the assumption that the device is unloaded for tp0, allows to simplify Equation (1) as:

rðtÞ ¼
Z t

0

jðt � sÞ _qðsÞ ds ¼ K0qðtÞ1
Z t

0

gðt � sÞ_qðsÞ ds; ð2Þ

where K0 is the equilibrium modulus of the viscoelastic device, representing its purely elastic
stiffness and g(t) the time-varying part the relaxation function jðtÞ, that is (Figure 1, right):

K0 ¼ lim
t!1

jðtÞ ¼ jð1Þ; gðtÞ ¼ jðtÞ � jð1Þ: ð3Þ

The equilibriummodulusK0 can be easily identified, as a simple static test is only required to determine
the horizontal asymptote of the relaxation function of a given viscoelastic device (Figure 1).

2.1. GM model

For many engineering purposes, the dynamic behaviour of a linear viscoelastic device can be
accurately approximated by means of the GM model. This rheological model is made of an
elastic spring, �K0, in parallel with a certain number �‘ of Maxwell’s elements, each one given by
an elastic spring, �Ki, in series with a viscous dashpot, �Ci ¼ �Ki�ti, with i ¼ 1; . . . ; �‘. The ratio
�ti ¼ �Ci= �Ki is the relaxation time of the ith Maxwell’s element, which measures the velocity of the
unloading process for this rheological unit. One can easily prove [29] that K0 ¼ �K0 ¼ jð1Þ is the
equilibrium modulus in the GM model, while the time-varying part of its relaxation function is
given by the superposition of �‘ exponentially decaying functions:

�gðtÞ ¼
X�‘
i¼1

�Ki exp �
t
�ti

� �
; ð4Þ

0 ( )K

( ) (0)t

( )t

t

( )g t

t

0(0) K

Figure 1. Typical relaxation function jðtÞ of a viscoelastic damper (left) and its time-varying part gðtÞ in
which the equilibrium modulus K0 has been removed (right).
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where the over-bar herein denotes the quantities specifically associated with the GM model for a
given viscoelastic device.

The experimental identification of the �‘ pairs or parameters f �K1; �t1g; . . . ; f �K�‘; �t�‘g of the GM
model proves to be quite complicated in real applications. The most popular approach consists
in a non-linear regression in the frequency domain, based on the results of small-amplitude
vibration tests [33,34]. Unfortunately, this is an ill-posed problem, and the numerical solution is
fraught with difficulties.

It has been shown that the reaction force of the GM model can be conveniently expressed in
the form [29]:

�rðtÞ ¼ K0 qðtÞ1
X�‘
i¼1

�Ki liðtÞ; ð5Þ

where the ith additional variable liðtÞ, taken as the internal deformation in the ith Maxwell’s
spring, is ruled by a first-order linear differential equation:

_liðtÞ ¼ _qðtÞ �
liðtÞ
�ti
: ð6Þ

2.2. LPA technique

In Palmeri et al. [29], a novel technique, termed LPA, has been proposed for representing
the relaxation function of a viscoelastic device with the help of the ortho-normal properties
of the Laguerre’s polynomials. Accordingly, the approximate time-dependent part
of the relaxation function is given by a single exponentially decaying function modulated
by a polynomial of order ~‘ (i.e. an expression alternative to Equation (4) for the GM
model):

~gðtÞ ¼ exp �
t
~t0

� �X~‘
i¼1

~KiLi�1
t
~t0

� �
; ð7Þ

where the over-tilde denotes the quantities specifically associated with the LPA technique
for a given viscoelastic device; ~t0 is a characteristic relaxation time of the viscoelastic device;
and ~Ki is the ith Laguerre’s rigidity, with i ¼ 1; . . . ; ~‘. The parameter ~t0 can be easily
estimated from a single relaxation test, e.g. through the procedure described in Reference [29],
while:

~Ki ¼
1

~t0

Z 11

0

gðtÞLi�1
t
~t0

� �
dt: ð8Þ

The function Lpð�Þ in Equations (7) and (8) stands for the pth Laguerre’s polynomial, which for
pX2 can be evaluated as:

Lp11ðxÞ ¼
2p11� x

p11
LpðxÞ �

p
p11

Lp�1ðxÞ; ð9Þ

being L0ðxÞ ¼ 1 and L1ðxÞ ¼ 1� x.
In Reference [29], it is also shown that the reaction force in the LPA technique turns out to be

(alternative to Equation (5)):

~rðtÞ ¼ K0qðtÞ1
X~‘
i¼1

~Ki liðtÞ; ð10Þ

where again K0 ¼ jð1Þ is the equilibrium modulus; and again the ith additional internal
variable liðtÞ is ruled by a first-order linear differential equation (alternative to Equation (6)):

_liðtÞ ¼ _qðtÞ �
1

~t0

Xi

j¼1

ljðtÞ: ð11Þ
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It is worth noting that, although formally similar, some important differences exist between
GM model and LPA technique: (i) just one characteristic relaxation time ~t0 has to be defined in
the LPA technique, while the number �‘ of relaxation times in the GM model cannot be a priori
specified; (ii) the ~‘ Laguerre’s rigidities ~K1; . . . ; ~K‘ can be evaluated from a single relaxation test
by using Equation (8), while the rigidities �K1; . . . ; �K‘ have to be identified along with the
corresponding relaxation times �t1; . . . ; �t‘ from many vibrations tests; (iii) the time evolution of
the ith additional internal variable liðtÞ in the LPA technique involves all the first i internal
variables (Equation (11)), while in the GM model, all the internal variables are uncoupled
(Equation (6)), i.e. loading and unloading processes of the Maxwell’s elements are independent.

3. STATE-SPACE EQUATIONS OF MOTION FOR STRUCTURAL SYSTEMS
INCORPORATING VISCOELASTIC DEVICES

The dynamic equilibrium of a linear building structure, having n DoF and r added linear
viscoelastic dampers (Figure 2, left), is governed in the time domain by a set of n-coupled
integro-differential equations of second order:

M � €uðtÞ1C � _uðtÞ1K � uðtÞ1
Xr

j¼1

bj �
Z t

0

jjðt � sÞbTj � _uðsÞ ds ¼ fðtÞ; ð12Þ

where M, C and K are the matrices of mass, damping and stiffness of the structural system
without viscoelastic devices, respectively; the jth kernel jjðtÞ is the relaxation function of the jth
viscoelastic damper; bj is its influence vector; and fðtÞ is the array of the time-varying external
forces acting on the building; while a dot is used to denote the matrix product.

3.1. Modal analysis

Following the modal analysis proposed by Palmeri et al. [19], let us consider the transformation
of coordinates:

uðtÞ ¼ U � qðtÞ ¼
Xm

k¼1

/kqkðtÞ; ð13Þ

where the rectangular modal matrix U ¼ ½/1 � � �/m�, of dimensions m� n, and the m-
dimensional array qðtÞ ¼ fq1ðtÞ � � � qmðtÞg

T collect the first mpn modal shapes and the
corresponding modal coordinates of the building structure, respectively (in real applications,
m� n). The kth modal shape, /k, is evaluated along with the corresponding undamped natural
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Figure 2. Framed structure equipped with viscoelastic dampers (left) and associated modal oscillators
(right), in which the asterisked diamonds denote the time-varying part of the modal relaxation functions.
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circular frequency, ok, as solution of the real-valued eigenproblem:

K1
Pr
j¼1

bj � bTj jjð1Þ

" #
� /k ¼ o2

kM � /k ;

/T
i �M � /k ¼ di;k ;

ð14Þ

di;k being the Kronecker’s delta symbol, equal to one when i ¼ k, zero otherwise. Interestingly,
the summation in the left-hand side of the first of Equations (14) accounts for the additional
stiffness arising in static conditions (i.e. when the circular frequency of vibration o goes to zero)
from the introduction of the viscoelastic dampers.

Pre-multiplying Equation (12) by UT, one obtains the integro-differential equations of
motion in the reduced modal space:

€qðtÞ1N � _qðtÞ1X2 � qðtÞ1
Z t

0

Gðt � sÞ � _qðsÞ ds ¼ UT � fðtÞ; ð15Þ

where N ¼ UT � C �U is the reduced viscous damping matrix, associated with the inherent
dissipation of the building without viscoelastic dampers; X ¼ diagfo1 � � �omg is the spectral
matrix of the structure, which includes the increase in the stiffness due to the equilibrium
modulus of the viscoelastic dampers; and GðtÞ is the modal relaxation matrix, taking into
account the time-varying part of the viscoelastic kernels, that is:

GðtÞ ¼ UT �
Xr

j¼1

bj � bTj ðjjðtÞ � jjð1ÞÞ

" #
�U: ð16Þ

For homogeneous structural systems, it is often assumed that the modal shapes are orthogonal
with respect not only to mass and stiffness matrices, M and K, but also with respect to the
viscous damping matrix, C. For instance, this is the usual way of mathematically representing
the small amount of energy dissipation provided by internal frictions in both steel and
reinforced concrete frames. When this condition is met, the structure is said to be classically (or
proportionally) damped, and the equations of motion turn out to be decoupled in terms of
modal coordinates [35]. This important result can be extended to the case of buildings in which
the viscoelastic dampers are distributed almost homogeneously, e.g. somehow proportionally to
the floor masses and/or to the rigidities of the structural frame [16,17,21,32]. Analytically, this
extension implies to neglect the off-diagonal elements of the relaxation matrix GðtÞ:

GðtÞ ¼ diagfg1ðtÞ . . . gmðtÞg: ð17Þ

It would be important to emphasize that this assumption is far from being unrealistic. Starting
from the pioneering installation in the Twin Towers of the World Trade Center in New York
(1969), in fact, viscoelastic dampers are generally distributed almost homogeneously over the
resisting structure [1,4]. The aim is to spread the energy dissipation in as many locations as
possible, which is what typically happens for many engineering applications. For the sake of
completeness, the general mathematical conditions to perfectly decouple the equations of
motion in the modal space are provided in Appendix A.

3.2. Uncoupled modal equations of motion

Once the matrices N and GðtÞ in Equation (15) are assumed to be diagonal, the transformation
of coordinates of Equation (13) can be used to decouple the equations of motion in the reduced
modal space, so that the kth modal coordinate qkðtÞ is ruled by:

€qkðtÞ12zkok _qkðtÞ1o2
kqkðtÞ1

Z t

0

gkðt � sÞ_qkðsÞ ds ¼ QkðtÞ; ð18Þ
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in which kth modal excitation and kth modal relaxation function are given by:

QkðtÞ ¼/T
k � fðtÞ;

gkðtÞ ¼/T
k �

Xr

j¼1

bj � bTj ðjjðtÞ � jjð1ÞÞ

" #
� /k ¼

Xr

j¼1

gk;jðjjðtÞ � jjð1ÞÞ;
ð19Þ

where the combination coefficient gk;j ¼ /T
k � bj � bTj � /k represents the influence of the jth

viscoelastic damper on the kth modal relaxation function.
Interestingly, Equation (18) can be viewed as the integro-differential equation governing the

motion of the kth modal oscillator of the building structure. As schematically illustrated in
Figure 2 (right), this is made of a unit mass restrained by an elastic spring o2

k in parallel with a
viscous dashpot 2zkok and with an additional viscoelastic device of relaxation function gkðtÞ,
having zero equilibrium modulus (fluid-like behaviour), the pure elastic contribution of the
viscoelastic dampers being included in o2

k .
As the relaxation function jðtÞ of a real viscoelastic device can be represented by using either

GM model or LPA technique, the same can be carried out for the modal relaxation function
gkðtÞ. More precisely, from the comparison between Equation (2) and either Equation (5) for the
GM model or Equation (10) for the LPA technique, it follows that the convolution integral
appearing in Equation (18) can be turned into:Z t

0

gkðt � sÞ _qkðsÞ ds ¼
X‘
i¼1

bk;ilk;iðtÞ; ð20Þ

where ‘ is the number of additional internal variables used for each modal oscillator; and the
coefficient bk;i plays the same role as the rigidities �Ki and ~Ki in Equations (5) and (10), and thus
in principle could be identified in the same way. Analogously, the additional internal variable
lk;iðtÞ is ruled by the same type of linear differential equations presented in the previous section
for GM model (Equation (6)) and LPA technique (Equation (11)), depending on the
approximation used for the modal relaxation function. The resulting equations are explicitly
presented in the Sections 3.3 and 3.4.

Upon substitution of Equation (20) into Equation (18), the dynamic response of the kth
modal oscillator can be posed in a state-space form, which is independent of the modelling used
for gkðtÞ:

_xkðtÞ ¼ Dk � xkðtÞ1Bk � kkðtÞ1vQkðtÞ; ð21Þ

where xkðtÞ ¼ fqkðtÞ _qkðtÞg
T is the two-dimensional array of the usual state variables, i.e.

the modal displacement qkðtÞ and the modal velocity _qkðtÞ; kkðtÞ ¼ flk;1ðtÞ � � � lk;‘ðtÞg
T is the

‘-dimensional array listing the additional state variables associated with the approximate
modal relaxation function; and

Dk ¼
0 1

�o2
k �2zkok

" #
; Bk ¼ �

0 0 � � � 0

bk;1 bk;2 � � � bk;‘

" #
; v ¼

0

1

( )
: ð22Þ

On the contrary, the rate of variation of the new state array lkðtÞ is ruled by:

_kkðtÞ ¼ D̂ � kkðtÞ1A � xkðtÞ; ð23Þ

where the ‘-dimensional matrix D̂ is defined in the following subsections for both GM model
and LPA technique; and the matrix A, of dimensions ‘ � 2, is in both the cases:

A ¼
0 0 � � � 0

1 1 � � � 1

" #T
: ð24Þ

It is worth highlighting here that in Equation (23), the hat distinguishes the matrix of coefficients
for the additional internal variables, D̂, from that one for the classical state variables, Dk, which
appears in Equation (21). Moreover, matrices D̂ and A are the same for all the modal oscillators.
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3.3. GM model

If the GM model is used for all the viscoelastic dampers incorporated into the building
structure, then the relaxation times f�tj;1; . . . ; �tj;�‘j

g of the jth device are also relaxation times of
the modal oscillators. Accordingly, the full set of modal relaxation times is so defined:

ft1; . . . ; t‘g ¼
[r
j¼1

f�tj;1; . . . ; �tj;�‘j
g; ð25Þ

where the
S

stands for the union operator; and �‘j and ‘ (with �‘jp‘) are the numbers of
Maxwell’s elements in the jth viscoelastic damper and in each modal oscillator, respectively. By
particularizing the second of Equation (19) for the GM model (Equation (4)), one obtains:

gkðtÞ ¼
Xr

j¼1

gk;j �gjðtÞ ¼
Xr

j¼1

gk;j

X�‘j

i¼1

�Kj;i exp �
t
�tj;i

� �
; ð26Þ

where �gjðtÞ ¼ jjðtÞ � jjð1Þ is the time-varying part of the GM-type relaxation function for the
jth viscoelastic damper; and �Kj;i ¼ �Kjð�tj;iÞ is its discrete relaxation spectrum, whose ordinate �Kj;i

represents the elastic stiffness of the ith Maxwell’s element having relaxation time �tj;i. Taking
into account Equation (25), the order of the summations in Equation (26) can be reversed, and
the expression so obtained can be further simplified as:

gkðtÞ ¼
X‘
i¼1

Xr

j¼1

gk;j
�KjðtiÞ exp �

t
ti

� �
¼
X‘
i¼1

bk;i exp �
t
ti

� �
; ð27Þ

where bk;i is the ith element appearing in the second row of the matrix Bk introduced in
Equations (21) and (22), which takes the exact expression:

bk;i ¼
Xr

j¼1

gk;j
�KjðtiÞ: ð28Þ

By virtue of the formal similarity with Equation (4), the generic exponential function appearing
in the right-hand side of Equation (27) can be associated with the additional internal variable
lk;iðtÞ, in which the subscripts k and i denote modal oscillator and relaxation time, respectively.
It follows that this new state variable is ruled by a linear differential equation formally similar to
Equation (6):

_lk;iðtÞ ¼ _qkðtÞ �
lk;iðtÞ
ti

; ð29Þ

so that the matrix of coefficients D̂ in Equation (23) takes the diagonal form:

D̂ ¼ �

t�11

t�12

. .
.

t�1‘

2
6666664

3
7777775
; ð30Þ

which is the same for all the modal oscillators. Interestingly, this method of projecting the
relaxation functions of the viscoelastic dampers onto the reduced modal space does not
introduce further approximations in the dynamic analysis of the building, as the expressions of
Equations (25)–(30) are exact.

3.4. LPA technique

If the LPA technique is used for all the viscoelastic dampers incorporated into the building,
considering in all the cases the same characteristic relaxation time t0 and the same number of
terms ‘, then these values can also be assumed for all the modal oscillators. Indeed, by
particularizing the second of Equation (19) for the LPA technique (Equation (7)), one obtains
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(analogous and alternative to Equation (26)):

gkðtÞ ¼
Xr

j¼1

gk;j ~gjðtÞ ¼
Xr

j¼1

gk;j exp �
t
t0

� �X‘
i¼1

~Kj;iLi�1
t
t0

� �
; ð31Þ

where ~Kj;i is the ith Laguerre’s rigidity for the jth viscoelastic damper. By reversing the order of
the summation, and further simplifying the expression so obtained, Equation (31) gives:

gkðtÞ ¼
X‘
i¼1

Xr

j¼1

gk;j
~Kj;iLi�1

t
t0

� �
exp �

t
t0

� �
¼ exp �

t
t0

� �X‘
i¼1

bk;iLi�1
t
t0

� �
; ð32Þ

with the following position (similar to Equation (28)) for the coefficients appearing in the matrix
Bk introduced in Equations (21) and (22):

bk;i ¼
Xr

j¼1

gk;j
~Kj;i: ð33Þ

By taking advantage of the formal similarity with Equation (7), the generic Laguerre’s
polynomial appearing in the right-hand side of Equation (32) can be associated with the
additional internal variable lk;iðtÞ, in which the subscripts k and i denote modal oscillator and
order of the polynomial, respectively. It follows that this new state variable is ruled by a linear
differential equation formally similar to Equation (11):

_lk;iðtÞ ¼ _qkðtÞ �
1

t0

Xi

j¼1

lk;jðtÞ; ð34Þ

so that the ‘-dimensional matrix of coefficients D̂ in Equation (23) takes the lower-triangular
form:

D̂ ¼ �t�10

1

1 1

..

. ..
. . .

.

1 1 � � � 1

2
666664

3
777775; ð35Þ

which is the same for all the modal oscillators.

4. NUMERICAL METHOD OF SOLUTION

In the previous sections, GM model and LPA technique have been reviewed for a single
viscoelastic device, and then extended to cope with viscoelastically damped buildings in the
modal space. Aim of this section is to formulate a numerical scheme for the time-domain
dynamic analysis of such type of structural systems.

To do this, let the time axis be subdivided into small intervals of equal length, Dt, which in
practical applications must satisfy the two conditions:

Dtpmin
p

4maxfom;ocg
;
1

3
tmin

� �
; ð36Þ

where om is the undamped circular frequency of the higher mode of vibration retained in the
analysis; oc the cut-off frequency of the external excitation; and tmin the shortest relaxation time
considered among the r viscoelastic dampers. These conditions make sure that all the non-
negligible harmonic contributions to the structural response and all the relaxation processes of
the viscoelastic dampers are represented with sufficient accuracy in the numerical solution.

Under the assumption that the inhomogeneous terms in Equations (21) and (23) vary linearly
in each time step, the numerical solution for the kth modal oscillator can be posed in the

TIME-DOMAIN DYNAMIC ANALYSIS 527

Copyright r 2010 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2011; 18:519–539

DOI: 10.1002/stc



incremental form [36–38]:

xkðt1DtÞ ¼ Hk � xkðtÞ1C0k � fvQkðtÞ1Bk � kkðtÞg1C00k � fvQkðt1DtÞ1Bk � kkðt1DtÞg;

kkðt1DtÞ ¼ Ĥ � kkðtÞ1Ĉ
0
� A � xkðtÞ1Ĉ00 � A � xkðt1DtÞ;

ð37Þ

where the explicit dependence on the time step Dt of the integration operators (i.e. the matrices
H and C) has been omitted to simplify the notation; and kk is handled as an array of pseudo-
forces acting on the state-space array xk and vice versa.

The integration operators in the first of Equations (37), without the hat, are those evaluated
from Dk, which is the classical matrix of coefficients of a single-DoF oscillator with viscous
damping. More precisely, Hk is the transition matrix of the kth modal oscillator for the selected
time step Dt, which is known in closed form:

Hk ¼ exp½DkDt� ¼

cosðOkDtÞ1
zkok

Ok
sinðOkDtÞ

1

Ok
sinðOkDtÞ

�
o2

k

Ok
sinðOkDtÞ cosðOk DtÞ �

zkok

Ok
sinðOkDtÞ

2
6664

3
7775 expð�zkokDtÞ;

ð38Þ
the reduced circular frequency Ok being:

Ok ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2k

q
ok : ð39Þ

The other two integration operators appearing in the right-hand side of the first of
Equations (37) are given by:

C0k ¼ Hk �
1

Dt
Lk

� �
�D�1k ; C00k ¼

1

Dt
Lk � I2

� �
�D�1k ; ð40Þ

where the Is stands for the identity matrix of size s, while

Lk ¼ ½Hk � I2� �D�1k ; D�1k ¼
�2zk o�1k �o�2k

1 0

" #
: ð41Þ

In the second of Equations (37), the ‘-dimensional transition matrix Ĥ, associated with the
additional internal variables through the matrix of coefficients D̂, can also be evaluated in closed
form for both GM model and LPA technique, and the relative expressions are provided in the
following subsections. Once the transition matrix Ĥ is known, the dependant matrices Ĉ0 and Ĉ00

can be computed as (analogously to Equations (40)):

Ĉ0 ¼ Ĥ�
1

Dt
L̂

� �
� D̂�1; Ĉ00 ¼

1

Dt
L̂� I‘

� �
� D̂�1; ð42Þ

in which (analogous to the first of Equation (41)):

L̂ ¼ ½Ĥ� I‘� D̂�1: ð43Þ

The computation of the inverse matrix D̂�1k is possible in closed form as well, as the matrix of
coefficient D̂k has a very special form for both GM model and LPA technique. The respective
inverse matrices are provided in the Sections 4.1 and 4.2.

The inspection of Equations (37) reveals that the two state arrays xk and kk are coupled, as the
traditional state variables at the end of the time step, listed in xkðt1DtÞ, depend on the additional
state variables at the same instant, listed in kkðt1DtÞ, and vice versa. As a matter of fact, this
coupling does not allow evaluating the exact integration operators of the viscoelastic modal
oscillators in closed form. However (Appendix B), a new form can be derived by manipulating
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Equations (37), which enables an alternative, and very effective, solution in cascade:

xkðt1DtÞ ¼ �Hk � xkðtÞ1 �Wk � kkðtÞ1f �C
0
k � vgQkðtÞ1f �C

00
k � vgQkðt1DtÞ;

kkðt1DtÞ ¼ �Hk � kkðtÞ1½Ĉ
0
� A� � xkðtÞ1½ �C

00
� A� � xkðt1DtÞ;

ð44Þ

where the over-arc denotes the updated terms in the first of Equations (44), which are so defined:

�H ¼Ek � ½Hk1C00k � Bk � Ĉ
0
� A�; �Wk ¼ Ek � ½C0k � Bk1C00k � Bk � Ĥ�;

�C
0
k ¼Ek � C0k ; �C

00
k ¼ Ek � C00k ;

ð45Þ

Ek being a modification matrix of dimensions 2� 2:

Ek ¼ ½I2 � C00k � Bk � Ĉ00 � A��1: ð46Þ

Assuming that the building structure is at rest for tp0, i.e. xkð0Þ and kkð0Þ are nil arrays, the
numerical scheme starts solving the cascade Equations (44) for t ¼ 0:

xkðDtÞ ¼ �C
0
k � vQkð0Þ1 �C

00
k � vQkðDtÞ;

kkðDtÞ ¼ Ĉ
00
� A � xkðDtÞ:

ð47Þ

The scheme then continues, step by step, with the cascade Equations (44) for t ¼ Dt; 2Dt; . . ., until
the final time instant tf ¼ NDt is reached, N being the number of the sampling time instants.

Before proceeding with the specialized expressions of transition matrix Ĥ and inverse of D̂ for
both GM model (Section 4.1) and LPA techniques (Section 4.2), it is may be useful to stress the
practical advantages of a cascade numerical scheme. First, the evaluation of the integration
operators for the fully coupled differential equations of motions is avoided, in so saving
computational time. Secondly, in each time step the dynamic equilibrium and the loading/
unloading processes of the viscoelastic components (first and second of Equations (44),
respectively) are decoupled. This can simplify, for instance, the application of re-analysis
techniques for optimization purposes [39,40], as modifications in the viscoelastic dampers do not
affect the integration operators associated with the classical state variables of the building;
moreover, nonlinear phenomena in the structural frame and/or in the elastomeric devices can be
handled separately.

4.1. GM model

The cascade scheme formulated in the earlier section requires the transition matrices for classical
state variables (Hk) and additional internal variables (Ĥ). These fundamental integration
operators are defined as the matrix exponential of the respective matrices of coefficients, Dk and
D̂. The first operator is given by Equation (38), while the second one depends on the
mathematical representation of the viscoelastic memory. When the GM model is used, the
matrix of coefficient D̂ is diagonal (Equation (30)), and hence also the associated transition
matrix Ĥ takes a diagonal form:

Ĥ ¼ exp½D̂Dt� ¼

expð�Dt=t1Þ

expð�Dt=t2Þ

. .
.

expð�Dt=t‘Þ

2
6666664

3
7777775
: ð48Þ
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The matrix inverse of D̂, which is also required (Equations (42) and (43)), is also diagonal:

D̂
�1
¼ �

t1

t2

. .
.

t‘

2
666664

3
777775: ð49Þ

4.2. LPA technique

When the LPA technique is used, the matrix of coefficients D̂ is lower triangular, filled with t�10

(Equation (35)), and therefore, the correspondent transition matrix Ĥ is also lower triangular,
and depends on the dimensionless ratio a ¼ Dt=t0 only:

Ĥ ¼ exp½D̂Dt� ¼

P1ðaÞ

P2ðaÞ P1ðaÞ

..

. ..
. . .

.

P‘k ðaÞ P‘k�1ðaÞ � � � P1ðaÞ

2
6666664

3
7777775
expð�aÞ; ð50Þ

in which P1ðaÞ ¼ 1, while the higher-order polynomials P2ðaÞ; . . . ; P‘ðaÞ are given by the recursive
expression:

PiðaÞ ¼ �
Xi�1
j¼1

Z a

0

PjðrÞ dr: ð51Þ

The first polynomials so computed are listed below:

P2ðaÞ ¼ � a; P3ðxÞ ¼ �a1
a2

2
; P4ðaÞ ¼ �a1a2 �

a3

6
;

P5ðaÞ ¼ � a1
3

2
a2 �

a3

2
1

a4

24
; P6ðaÞ ¼ �a12 a2 � a31

a4

6
�

a5

120
; . . .

ð52Þ

The inverse matrix of D̂ proves to be lower-bidiagonal, and it is simply given by:

D̂
�1
¼ �t0

1

�1 1

. .
. . .

.

�1 1

2
666664

3
777775: ð53Þ

5. NUMERICAL VALIDATION

5.1. Numerical stability

Aim of this section is to investigate the numerical stability of the scheme of solution proposed in
the earlier section. Without lack of generality, the numerical stability can be studied by considering
the free vibration of a generic modal oscillator [25–28]. By neglecting the modal excitation QkðtÞ,
after a simple manipulation, Equations (44) can be rearranged in the compact form:

ð54Þ

where the subscript k is omitted to simplify the notation; and the block matrix into square brackets
is the amplification matrix of the numerical scheme. This matrix depends on the selected time step
Dt along with the mechanical properties of the modal oscillator. When the viscous damping is
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considered in parallel with the viscoelastic relaxation, one can verify that the resulting amplification
matrix tends to the identity matrix when Dt! 0, and to the nil matrix when Dt! 11. The latter
condition proves that the amplification matrix is asymptotically stable.

For an arbitrary time step 0oDto11, the stability of the numerical solution can be directly
related to the spectral radius of the amplification matrix, rA, which is defined as the supremum
among the moduli of its eigenvalues. For a given time step Dt, in fact, rAo1 is a sufficient
condition for the numerical stability.

To verify with an example that the proposed scheme of solution is unconditionally stable, i.e.
stable for any time step Dt, the spectral radius rA for a modal oscillator with a single Maxwell’s
element has been studied. The undamped period of vibration and the viscous damping ratio are
chosen as T ¼ 2p=o ¼ 1 s and z ¼ 0:002; two values of the stiffness parameters b1 ¼ 1 s�2 and
b1 ¼ 10 s�2 are considered; the relaxation time t1 and the time step Dt vary in the intervals
½0; 10 s� and ½0; 50 s�, respectively. Figure 3 displays the spectral radius of the amplification
matrix rA as a function of t1 and Dt for the two selected values of b1, representative of low and
high viscoelastic damping. In both the cases, rAo1 for Dt > 0, i.e. the numerical algorithm is
stable, and in both the cases rA tends to decrease when Dt increases. The comparison between
the graphs obtained for b1 ¼ 1 s�2 and b1 ¼ 10 s�2 reveals that in the second case, the spectral
radius shows some fluctuations, which however do not affect the numerical stability of the
proposed method of dynamic analysis.

5.2. Numerical efficiency

As far as the computational efficiency is concerned, the performances of the proposed approach
have been compared with those of the numerical scheme formulated by Patlashenko et al. [27].
The objective structural system is the slender cantilever beam shown in Figure 4, which is 1:00m
long, 0:10m deep and 0:20m wide. The material constituting the beam is assumed to be purely
elastic, without inherent damping. Young’s modulus and Poisson’s coefficient take the values
E ¼ 300MPa and n ¼ 0:20, respectively, while the mass density is r ¼ 1500 kg=m3. Energy
dissipation is provided by a set of viscoelastic strips perfectly bonded to the beam (2 longitudinal
and 20 inclined by 451), which are represented through linear viscoelastic springs connecting the
joints of the FE model of the beam (Figure 4). The equilibrium modulus of a strip 1-m long is
K0 ¼ 2000 kN=m, while the time varying part of the relaxation function is described by �‘ ¼ 3
Maxwell’s elements, whose mechanical parameters are listed in Table I. The FE mesh of the
beam consists of Q ¼ 10M2 plane-stress four-node quadrilateral elements [41] with unit aspect
ratio (square shape), M being the number of elements in the transverse direction of the beam (M
is equal to 4 in Figure 4). The mesh has been progressively refined by taking M5 1, 2, 4, 8 and
16. For these five cases, the number of quadrilateral elements (Q), viscoelastic springs (r) and

1
[s]

[s]t

A

1
[s]

[s]t

A

Figure 3. Spectral radius rA of the proposed numerical scheme as a function of time step Dt and relaxation
time t1 for low (left) and high (right) viscoelastic damping.
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DoFs (n) are summarized in Table II, along ith the values of the fundamental frequency of
vibration with (o1) and without (O1) the application of the viscoelastic strips. The percentage
variation of these quantities with the refinement of the mesh is also reported into parentheses.
The inspection of Table II reveals that with M ¼ 8 subdivisions in the transverse direction (i.e.
with n ¼ 1440 DoFs), the convergence in terms of fundamental frequency of vibration has been
reached for engineering purposes.

The forced vibration of the slender beam under the harmonic force f ðtÞ ¼ F sinðOf tÞ, with
amplitude F ¼ 10N and circular frequency Of ¼ 80 rad=s, has been considered. The force is
applied at the top node of the beam’s free end, while the dynamic response uðtÞ has been
computed at the bottom node (Figure 5) in the time interval ½0; tf �, with tf ¼ 0:50 s. For each of
the five FE models with different numbers of DoFs, three alternative dynamic analyses have
carried out, namely: (A) proposed approach in the reduced modal space, with m ¼ 5 modal
coordinates retained in the analysis; (B) the numerical scheme presented by Patlashenko et al.
[27], namely the SIDE (System of Integro-Differential Equations) scheme based on the
Newmark’s b method with parameters b ¼ 1=4 and g ¼ 1=2 (constant average acceleration
method) and with semi-analytical integration rule for the hereditary kernels; (C) the same SIDE
scheme of Reference [27] applied in the reduced modal space, as obtained by considering the first
m ¼ 5 modal shapes of the beam without the proposed modification of the eigenproblem
(Equation (14)). All the numerical schemes have been implemented in Mathematica 6.0 codes
[42], and the time-domain analyses have been carried out on a Microsoft Windows desktop PC
equipped with dual-core AMD Athlon 64 X2 processor at 3.0GHz and with 2.0GB of RAM.
The selected time step was Dt ¼ 0:1ms in all the cases, corresponding to N ¼ 5000 time steps for
each analysis. Table III shows the computational time for different meshes, i.e. for different
numbers of DoFs (from n ¼ 40 to n ¼ 5440). It clearly emerges that the proposed approach
(type A analysis) is always computationally more efficient than the nodal SIDE scheme (Type B

Table I. Parameters of the Generalized Maxwell’s model for the viscoelastic strips considered in the second
numerical application.

�‘ K0=jð0Þ �K1=jð0Þ �t1 ðsÞ �K2=jð0Þ �t2 ðsÞ �K3=jð0Þ �t3 ðsÞ

3 0.20 0.20 0.010 0.50 0.005 0.10 0.0005

Table II. Different finite element models for the second numerical application.

M Q ¼ 10M2 r ¼ 40 M n ¼ 2Q1r=2 O1 ðrad=sÞ o1 ðrad=sÞ

1 10 40 40 54.0 82.9
(—) (—) (—) (—) (—)

2 40 80 120 47.6 80.0
(1300%) (150%) (1200%) (�11.9%) (�3.5%)

4 160 160 400 45.7 79.1
(1300%) (150%) (1233%) (�3.9%) (�1.1%)

8 640 320 1440 45.2 78.8
(1300%) (150%) (1260%) (�1.1%) (�0.4%)

16 2560 640 5440 45.1 78.7
(1300%) (150%) (1278%) (�0.2%) (�0.1%)

1.00 m
0.

10
m

Figure 4. Finite element model of the slender beam with viscoelastic strips considered in the second
numerical application.
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analysis) presented in Reference [27], and that the advantage increases with the number of DoF.
As an example, for n ¼ 5440, the computation time reduces from 425:2 s (type B analysis) to
6:4 s (type A analysis). This tremendous improvement is possible by virtue of the proposed
modal analysis (Equation (14)), which enables us to reduce the size of the dynamic problem.
Indeed, also the SIDE scheme in the conventional modal space (type C analysis) requires
computational times similar to those of the proposed approach. However, the inaccuracy of the
modal SIDE scheme increases with the number of DoFs, while the proposed approach is always
in good agreement with the nodal SIDE scheme. This trend is confirmed by Figure 5, where the
results provided by the three numerical schemes are compared for two different FE meshes. For
a small number of DoFs (n ¼ 40), the discrepancies among the three methods of analysis are
virtually indiscernible. On the contrary, for a large number of DoFs (n ¼ 5440) proposed
approach (thin solid line) and nodal SIDE scheme (reference method, circles) are in good
agreement, while the modal SIDE scheme (thick dashed line) significantly underestimates the
amplitude of the beam’s forced vibration.

5.3. Realistic building structure

To test the accuracy of the proposed procedure of analysis in a realistic engineering application,
the seismic-induced vibration of the shear-type 10-storey steel frame depicted in Figure 6 (left)
has been studied. The values of mass Mi and lateral stiffness of the main frame Ki, taken from
Reference [43], are summarized in Table IV, while the inherent viscous damping ratio of the
steelwork structure is assumed to be z0 ¼ 0:02.

A single viscoelastic damper is ideally located at each storey, and connected to the principal
moment-resisting frame through a very stiff bracing system. Initial value of damper’s relaxation
function and brace’s rigidity at the ith level are 1.2 and 10.0 times greater than the
corresponding main stiffness Ki at the same level, respectively. The first three modal shapes of
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[m
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]
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Figure 5. Dynamic response of the slender beam considered in the second numerical application for coarse
(left) and fine (right) meshes.

Table III. Computational times required by different analyses for the second numerical application.

n
Type-A analysis

(proposed approach) (s)
Type-B analysis
(nodal SIDE) (s)

Type-C analysis
(modal SIDE) (s)

40 2.3 3.1 1.6
120 2.3 6.1 1.6
400 2.3 21.7 1.8
1440 2.6 87.8 2.5
5440 6.4 425.2 7.7
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the frame under investigation are displayed in Figure 6 (right), as evaluated including also the
effects of bracing system and equilibrium modulus of the viscoelastic dampers (Equation (14)).
The associated undamped modal frequencies are o1 ¼ 2:93, o2 ¼ 7:50 and o3 ¼ 12:0 rad=s.

Two different types of relaxation functions are considered for bottom and top floors, namely
types A and B, which in practice could be given either by a single actual device or by the
superposition of many devices installed at the same level. Both type A and type B viscoelastic
dampers are represented with the GM model, whose parameters (rigidities and relaxation times)
are summarized in Table V. The dimensionless relaxation functions are plotted in Figure 7,
whose inspection reveals that the process of relaxation is more rapid in type B devices.

The first three modes of vibration are retained in the analysis (m ¼ 3), which ensure that in
this case, 94% of the participating mass of the building is included in the analysis (i.e. for seismic
applications, the same considerations hold as for conventional buildings with classical viscous
damping). Following the exact procedure presented in Section 3.3, three relaxation times are
considered for each modal oscillator (‘ ¼ 3), and the nine (m� ‘ ¼ 9) modal parameters bk;i are
evaluated in closed form through Equation (28).

1 2 3

( )t

( )V t

viscoelastic
damper

Figure 6. Steel frame considered in the third numerical application (left) and modal shapes retained in the
analysis (right).

Table IV. Main characteristics of the steel frame considered in the third numerical application.

Storey level i Mass Mi (Mg) Frame stiffness Ki (kN/mm) Type of viscoelastic damper

10 29.1 4.25 B
9 35.4 5.34 B
8 35.4 6.80 B
7 35.9 7.76 B
6 35.9 8.96 B
5 35.9 10.2 A
4 36.8 11.3 A
3 36.8 12.9 A
2 36.8 13.3 A
1 38.6 14.6 A

Table V. Parameters of the Generalized Maxwell’s model for the viscoelastic dampers considered in the
third numerical application.

Type �‘ K0=jð0Þ �K1=jð0Þ �t1 ðsÞ �K2=jð0Þ �t2 ðsÞ �K3=jð0Þ �t3ðsÞ

A 2 0.20 0.20 0.15 0.60 0.25 — —
B 3 0.10 0.30 0.03 0.30 0.06 0.30 0.15
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To successively excite the modes of vibration of the building retained in the dynamic analysis,
the ground acceleration has been conveniently modelled as a modulated sinusoidal function,
€ugðtÞ ¼ AgðtÞ sinðOgðtÞ tÞ; where amplitude and frequency of the input are given by
AgðtÞ ¼ ð11 sinðpt=tf Þ � t=tf Þ

2 and OgðtÞ ¼ 1114t=tf , respectively, tf ¼ 40 s being the final time
instant.

Figure 8 shows the time histories of tip displacement dðtÞ and base shear V ðtÞ delivered by the
proposed numerical scheme. These pictures reveal that the only significant contribution to the tip
displacement is due to the first mode of vibration in the first seconds of the motion, while also the
second mode contributes to the shear force. The accuracy of the results has been assessed in the
frequency domain. The bilogarithmic graphs of Figure 9 compare the modulus of the Fourier’s
transform of the time histories dðtÞ and V ðtÞ furnished by the proposed dynamic analysis (solid
lines) with the corresponding frequency-domain responses (dashed lines) computed through the n-
dimensional frequency response function matrix of the system, so defined [24]:

HðoÞ ¼ o2M1K1io C1
Xr

j¼1

bj � bTj FhjjðtÞi

" #" #�1
; ð55Þ

where i5
ffiffiffiffiffiffiffiffiffi
� 1

p
is the imaginary unit, F denotes the Fourier transform of the quantity

within angle brackets, and the approximate viscous damping matrix is given by
Cffi 2z0 M �U �X �U

T �M. The comparison is very satisfactory, as the proposed numerical
scheme is able to perfectly capture all the significant features of the building’s dynamics with three
modes of vibration only, in so reducing tremendously the computational effort.
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Figure 7. Dimensionless relaxation functions for type A (left) and type B (right) viscoelastic dampers
considered in the third numerical application.
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Figure 8. Time histories of tip displacements (left) and base shear (right).
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6. CONCLUSIONS AND PERSPECTIVES

In the framework of the dynamic analysis of linear building structures provided with linear
viscoelastic dampers, a new numerical scheme of time-domain solution has been presented and
validated by examples. The free vibration analysis of a simple Single-DoF oscillator with viscoelastic
memory has been used to check the unconditional stability of the method. The improved
computational efficiency has been shown through the dynamic analysis of a FE structural model
with a large number of DoFs. The accuracy has been demonstrated through the seismic application
to a realistic Multi-DoF steel frame equipped with viscoelastic energy dissipation devices.

Among the advantages of the proposed technique: (i) new closed-form expressions are
derived for the integration operators when the viscoelastic devices are represented either via GM
model or via LPA technique; (ii) operating in the modal space, by means of a novel formulation
in cascade, the computational burden is further reduced. These innovations make the proposed
numerical scheme absolutely competitive in terms of computational time with the traditional
MSE method, whose inaccuracies can become intolerable for engineering applications.

Interestingly, when the LPA technique is adopted, the additional advantage exists that just
simple relaxation tests are required for the viscoelastic dampers, in so avoiding more complicated
frequency-domain characterizations of the elastomeric materials. On the contrary, the GM model
is much more popular in the current state-of-practice, and consequently, this alterative
representation of the viscoelastic memory has also been considered in the proposed formulation.

The approach presented in this study lends itself to be extended to cope with more complex
structural systems. Future studies may be devoted to consider geometrical and/or material
nonlinearities by implementing a re-analysis technique [40] to update, step-by-step, the matrices
appearing in the right-hand side of Equation (44). Semi-active control strategies could also be
worth of investigation: for instance, by using magneto-rheological braces [44] in series with
viscoelastic dampers, one can obtain controllably modal relaxation times, whose effectiveness
would be studied numerically and experimentally.

APPENDIX A: MODAL DECOUPLING FOR VISCOELASTICLLAY DAMPED
STRUCTURES

The concept of modal coupling for structural systems provided with viscoelastic devices has
been rigorously addressed in the frequency domain by Inaudi and Kelly [32]. Similar
conclusions can be developed in the time domain. It is well known that, following Caughey and
O’Kelly [35], the modal shapes /k delivered by Equation (14) are able to diagonalize the viscous
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damping matrix C in Equation (12) if and only if this matrix can be written as:

C ¼M �
X

i

½M�1 � K1�i xi; ðA1Þ

where xi is a real-valued scalar coefficient, and where K1 is the stiffness matrix in the left-hand
side of Equation (14):

K1 ¼ K1
Xr

j¼1

bj � bTj jjð1Þ: ðA2Þ

Interestingly, if x0 and x1 are the only two non-zero coefficients, the viscous damping matrix
turns out to be a linear combination of mass and stiffness matrices:

C ¼ x0M1x1 K1; ðA3Þ

which is the classical case of Rayleigh’s damping. It is well known that in the reduced modal
space Equation (A3) reduces to:

N ¼ x0 Im1x1X
2: ðA4Þ

Analogously to the pure viscous damping, the viscoelastic relaxation terms in the left-hand side
of Equation (12) are diagonalizable in the modal space if and only if, for a generic time instant t,
the following condition holds:Xr

j¼1

bj � bTj ðjjðtÞ � jjð1ÞÞ ¼M �
X

i

½M�1 � K1�i ZiðtÞ; ðA5Þ

where ZiðtÞ is a real-valued scalar function of time t. The latter expression can be viewed as time-
domain counterpart of those reported by Inaudi and Kelly [32] in the frequency domain, and more
recently by Adhikari and Pascual [45] in the Laplace’s domain. If both the conditions expressed in
Equations (A1) and (A5) are satisfied, then the structural system has uncoupled modes of vibration.

It is worth noting that, similar to the previous case, if Z0ðtÞ and Z1ðtÞ are the only two non-zero
functions in the right-hand side of Equation (A5), then the viscoelastic damping is simply
proportional to mass and elastic stiffness. Recalling now Equation (16), this Rayleigh-type
viscoelastic damping leads to a very special form of the modal relaxation matrix (analogous to
Equation (A4)):

GðtÞ ¼ Z0ðtÞ Im1Z1ðtÞX
2: ðA6Þ

Indeed, this m-dimensional matrix is diagonal, and its kth element is given by:

gkðtÞ ¼ Z0ðtÞ1Z1ðtÞo
2
k : ðA7Þ

This representation is particularly effective when the structural system is made, for instance, of a
single viscoelastic materials.

APPENDIX B: MATHEMATICAL DERIVATION OF THE PROPOSED
CASCADE SCHEME

In order to derive the numerical cascade scheme of Equations (44), let us substitute the second
of Equations (37) into the first one, in so obtaining the discrete-time relationship:

xkðt1DtÞ ¼Hk � xkðtÞ1C0k � fvQkðtÞ1Bk � kkðtÞg

1C00k � fvQkðt1DtÞ1Bk � Ĥ � kkðtÞ1Bk � Ĉ0 � A � xkðtÞ1Bk � Ĉ00 � A � xkðt1DtÞg;
ðB1Þ

where the traditional two-dimensional state array xkðt1DtÞ at the end of the time step appears in
both sides. In order to overcome this inconvenience, Equation (B1) can be rearranged as:

½I2 � C00k � Bk � Ĉ00 � A� � xkðt1DtÞ ¼ ½Hk1C00k � Bk � Ĉ0 � A� � xkðtÞ

1½C0k � Bk1C00k � Bk � Ĥ� � kkðtÞ1fC0k � vgQkðtÞ1fC00k � vgQkðt1DtÞ:

ðB2Þ

TIME-DOMAIN DYNAMIC ANALYSIS 537

Copyright r 2010 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2011; 18:519–539

DOI: 10.1002/stc



Pre-multiplying now both sides of Equation (B1) by the modification matrix of Equation (46),
and taking into account the matrices introduced in Equation (45), one obtains the first of
Equation (44), in which the state array xkðt1DtÞ at the end of the time step can be predicted by
knowing the traditional and additional state variables at the beginning of the time step, xkðtÞ and
kkðtÞ, and knowing also the excitation Qk at the time instants t and t1Dt. Once xkðt1DtÞ is
evaluated, the array of the additional state variables at the end of the time step can be computed
through the second of Equation (44).
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