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Identification of the nonlinear behaviour of a cracked RC beam
through the statistical analysis of the dynamic response

M. Breccolotti*,y, A. L. Materazzi and I. Venanzi

Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy

SUMMARY

This study investigates a new identification procedure suitable to deal with nonlinear systems. The
proposed approach is made up of three main parts: system excitation with a band-limited white noise,
solution of the Fokker–Planck equation that describes the motion of the structure in a parametric form
and identification of the unknown system parameters by minimizing a suitable functional. The new
procedure is able, for instance, to assess the severity of cracking caused by the shrinkage or by the
overcoming of the concrete tensile strength in reinforced concrete (RC) structures. Cracked RC elements,
in fact, exhibit a nonlinear behaviour due to different values of the flexural stiffness that depends on the
opening of the cracks. Some numerical simulations allowed verifying the applicability of the procedure.
Copyright # 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Control and monitoring of existing structures, especially of bridges, is becoming of prime
importance in civil engineering. In fact the observation of the bridges belonging to great road
and highway networks, such as in the U.S. or in the E.U., shows that many of them are badly
damaged. The budget needed for their refurbishment seems to be quite impressive. Hence, a
rational plan to proceed to the repairs following a list of precedence is absolutely necessary.
Within this framework many studies have been carried out since the 1970s on the application of
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experimental methods, based on dynamic tests, to asses the maintenance condition of the most
important infrastructures [1, 2]. The detection of structural damage through dynamic methods is
a complex task, as the parameters involved in the process (natural frequencies, modal shapes,
damping) depend mainly on the global stiffness and therefore are only slightly influenced by
local damages, which, usually, threaten safety. In fact the estimate of the structural safety is
made difficult by the weak correlation between the members’ stiffness and the mechanical
strength of the members’ cross sections [3]. Moreover, it must be pointed out that most
investigation methods require the preventive knowledge of the dynamic characteristics of the
undamaged structure, information that is available only in a few cases. After the first studies,
based on the changes of the natural frequencies of vibration [4] and on the damage-induced
modification of the modal shapes [5, 6], the present trend is toward the application of advanced
techniques to the analysis of the dynamic response, such as statistical methods, proper damage
indexes, model updating, neural networks, etc. Modal analysis methods, such as the modal
assurance criterion (MAC) and the coordinate modal assurance criterion (COMAC), have been
used with success by Fryba and Pirner [7] who compared the dynamic behaviour of two identical
bridges, one damaged and the other undamaged, taking the undamaged one as reference.
Brincker et al. [8] reported their experience in a wide set of progressive damage tests, artificially
realized on a bridge in Switzerland that afterwards was razed and replaced by a new one, using
a technique called enhanced frequency domain decomposition (FDD), based on the
determination of eigenfrequencies, eigenvectors and damping changes. The authors observed
that their studies were carried out without taking into account the influence of the temperature
and effect that, in their opinion, could prevent the detection of small changes of the modal
parameters. Just a few studies concern the assessment of prestressed or reinforced concrete (RC)
structures, a task that is much more difficult than evaluating structures made of homogeneous
materials. The main reason is that the cracks crossed by the reinforcement, alternatively open
and close during the vibration, giving rise to changes in the dynamic response of the structural
element. The nonlinearity of damaged RC elements was recently studied jointly in the time–
frequency domain by Owen et al. [9] and by Neild et al. [10]. A finite element model for damaged
RC elements based on the theory of fracture mechanics was proposed by Saavedra and Cuitio
[11]. Also Petryna and Krtzig [12] proposed a procedure for damage evaluation based on the
strip modelling of prestressed or RC structures. All these methods, making use of the natural
frequencies and the modal shapes of the investigated system, are affected by the uncertainties
due to the environmental factors and require the knowledge of the dynamic characteristics
of the undamaged structure. Recent researches proposed the use of innovative techniques based
on the probabilistic analysis of the dynamic response of RC structures subjected to Gaussian
excitation. These methods are based on the observation that the response of a non-linear system
to a Gaussian excitation is non-Gaussian and that the upper statistical moments of the response
can be used as a measure of the non-Gaussianity of the response and, therefore, as damage
indicators [13, 14]. The higher the non-Gaussianity of the response, the higher the nonlinearity
of the structure and, thus, the higher the severity of the damage. In this paper a method that
is potentially able to identify the cracking state of an RC beam is proposed. It is based on
the dynamic excitation of the beam using a band-limited Gaussian white noise force and
on the interpretation of the measured response using a parametric Fokker–Planck equation.
Unfortunately closed-form solutions of the Fokker–Planck equation exist only under limiting
hypotheses that hardly can be satisfied in the field of bridge monitoring, even if some
approximate solutions have been presented [15] and the finite element method has also been
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used [16]. In the present work the solution is sought using numerical methods by minimizing a
suitable functional of the problem parameters.

2. NONLINEAR BEHAVIOUR OF RC BEAMS

The cracking in bending of RC elements submitted to monotonically increasing loads may be
studied using the methods of nonlinear fracture mechanics [17]. In the present paper the
attention is focused on Mode I fracture, which occurs in case of pure bending. In such a
condition, a fracture process zone, whose length is a; develops around the tip of the crack.
According to Hilsdorf and Brameshuber [18], the length a may be evaluated in the order of
30–50% of the characteristics length:

lch ¼
EGF

f 2t
ð1Þ

which depends on the elastic modulus E; the fracture toughness GF and the concrete tensile
strength ft: Considering, as an example, a concrete having a characteristic compressive strength
fck ¼ 42 N=mm2; a mean tensile strength ft ¼ 3:6 N=mm2; an elastic modulus E ¼ 35 000 N=
mm2 and a fracture toughness GF ¼ 0:06 Nmm=mm2; the value of lch is 160mm. Then the
length of the process zone is comprised between 48 and 80mm. The toughness mechanism in the
fracture process zone may be modelled, following Hillerborg et al. [19], by a cohesive tension
sðwÞ; function of the crack tip opening w; acting on the crack surfaces (Figure 1). As a
consequence the stress–elongation curve of concrete in tension across the crack assumes the
nonlinear shape of Figure 2. Anyway when the behaviour of a cracked RC beam element is
considered, the global stiffness only slightly departs from linearity. In fact the bending moment
transmitted across the crack tips by means of the cohesive tension sðwÞ is negligible with respect
to that carried by the rebars, because of the moderate value of sðwÞ and as the process zone,

Figure 1. Fracture process zone at the crack tip (adapted from [17]).
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whose extent is only a small fraction of the crack length, is near to the neutral axis. On the
contrary, the rebars carry far greater tensile forces than the concrete in the process zone and are
placed in a more favourable position.

The dynamic behaviour of cracked RC beams shows further peculiar aspects. In particular,
the following characteristics have been observed by the authors [20]:

(i) RC elements behave roughly linearly under low-intensity dynamic excitation, even if they
are damaged and cracked.

(ii) An increase of the structural nonlinearity under increasing external loads can be observed
without any change in the actual damage condition.

(iii) Localized damage, such as the partial cut of the rebars or concrete cover removal, does
not affect the overall nonlinearity of the element behaviour.

(iv) Under low-severity cracking, the nonlinearity increases with damage. In fact, when the
concrete starts to crack, the RC element begins to behave in a nonlinear way. In this
phase the cracks are so small that they can be completely closed even by a low-level
external excitation. As the severity of the crack pattern increases, a more evident
nonlinear behaviour can be observed. This is due to the fact that the difference between
the stiffness of the element with closed cracks and that of the element with open cracks
increases.

(v) Under high-severity cracking, the nonlinearity decreases for constant level excitation. The
wider the cracks, the bigger the external excitation needed to activate the nonlinear
behaviour of the RC element caused by the closure of the cracks. Eventually, for very low
levels of the external excitation, a linear behaviour of the element characterized by the
flexural stiffness of the element with open cracks can be observed.

A piecewise-linear relationship between bending moment and rotation, as the one depicted in
Figure 3, can reasonably justify this behaviour. In fact, if the beam is uncracked, its behaviour is
linear (solid line) and its response to a white noise excitation is Gaussian. If the beam is cracked,
a residual opening of the cracks still remains even at rest (Figure 4). The amount of the opening
ðW2Þ is related to the depth and number of cracks occurring in the element. If the beam is lightly
cracked the value of W2 is small (dashed line), while it is bigger for a strongly cracked beam
(dash-dotted line). For the same reasons discussed previously in the case of static loads, the
flexural stiffness during the opening of the cracks may be assumed linear too and the curved fillet
between the linear branches may be neglected. Anyway the stiffness depends on the status of the
cracks: it is higher if the cracks are closed; it is lower if the cracks are open. Hence, if the external

Figure 2. Stress–elongation curve of concrete across a crack.

NONLINEAR BEHAVIOUR OF A CRACKED RC BEAM 419

Copyright # 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2008; 15:416–435

DOI: 10.1002/stc



excitation is too low to produce the closure of the cracks, the element behaves linearly. If the
level of the external excitation is increased, the cracks can close and the element behaves
nonlinearly. If the severity of the cracks expressed by the value of the parameter W2 increases, a
stronger external excitation would be necessary to activate the nonlinear behaviour of the
cracked RC element. This behaviour has been also observed by Neild et al. [10] through
instantaneous frequency measurements during experimental tests on cracked RC beams.
Naturally, this behaviour can be observed for both positive and negative bending moments,
with suitable modifications to Figure 3. It has also been assumed that the cracks length and
geometry do not change during the motion caused by the dynamic tests. This hypothesis can
reasonably be accepted if we think that the level of the external excitation used for the dynamic
tests is far below the level of the excitation expected during the life of the structure. Thus, no
further damage can be caused by the execution of the dynamic tests. An increase of the crack
pattern can instead be generated only by a stronger external excitation due, for instance, to
bigger live load. In the present study we will assume that the position and the extent of the
cracked zone are supposed to be known, while the remaining unknowns, K2 and W2 of Figure 3,
have to be estimated by means of the proposed methodology. It is worth to note that the
parameters K2 and W2 are relative to an RC element with finite dimensions that can contain
several cracks with different depth and amplitude. The parameter W2 is in this case equal to the

(a) (b)

Figure 4. (a) Rotation under loading and (b) residual crack opening at rest of a cracked RC element.

Figure 3. Relationship between bending moment and rotation in a cracked RC element.

M. BRECCOLOTTI, A. L. MATERAZZI AND I. VENANZI420

Copyright # 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2008; 15:416–435

DOI: 10.1002/stc



sum of the cracks openings at rest W2 ¼
P

i W0i: No steel rebars yielding is expected since we are
dealing with service load conditions.

3. NON-LINEAR IDENTIFICATION

3.1. Theoretical background

The stationary probability density function (PDF) of the response of a single degree of
freedom (SDOF) system with continuous piecewise-linear restoring force loaded by a
white noise external excitation can be obtained solving the corresponding Fokker–Planck
equation. Let the motion of an SDOF system with unit mass be described by the following
equation [21]:

.xþ b1 ’xþ FiðxÞ ¼ f ðtÞ ð2Þ

where FiðxÞ ¼ o2
i ðx� x0iÞ for xi4x4xiþ1; i ¼ 1; 2 (see Figure 5), oi and x0i are suitable

constants and f ðtÞ is a weakly homogeneous stochastic process having null mean and spectral
density of the form:

Sf ðoÞ ¼
S0

1þ o2t20
ð3Þ

that satisfies the filter equation:

t0 ’f þ f ¼
ffiffiffiffiffi
S0

p
uðtÞ ð4Þ

Figure 5. Parameters describing a continuous piecewise-linear restoring force.
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where uðtÞ is a white noise with unit spectral density, S0 and t0 are positive constants. The
corresponding response PDF is

wðx; ’xÞ ¼
w1ðx; ’xÞ ¼ C1 � e

�ðo2
1
=S0Þb1x

2þð2x01o2
1
=S0Þb1x � e�ðb1=S0Þ ’x

2

¼ w1;xðxÞ � w ’xð ’xÞ; x4x2

w2ðx; ’xÞ ¼ C2 � e
�ðo2

2
=S0Þb1x

2

� e�ðb1=S0Þ ’x
2

¼ w2;xðxÞ � w ’xð ’xÞ; x > x2

8<
: ð5Þ

Four additional constraints have to be satisfied:

(1) the continuity condition on the restoring force

o2 ¼ o1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x01

x2 � x02

r
ð6Þ

(2) the continuity of the PDF

w1xðx2Þ ¼ w2xðx2Þ ð7Þ

(3) the differentiability of the response’s PDF that requires the continuity of the PDF’s
derivative

dw1x

dx

����
x2

¼
dw2x

dx

����
x2

ð8Þ

(4) the normalization condition of the PDFZ þ1
�1

wxðxÞ dx ¼ 1 ð9Þ

In the case of SDOF system having mass different from unity, Equation (2) becomes

m .xþ c ’xþ RiðxÞ ¼ rðtÞ ð10Þ

It can be rewritten as

.xþ
c

m
’xþ

RiðxÞ

m
¼

rðtÞ

m
ð11Þ

It can be noted that Equations (2) and (11) are identical with the positions: b1 ¼ c=m;
FiðxÞ ¼ RiðxÞ=m and f ðtÞ ¼ rðtÞ=m:

3.2. Generalized SDOF system

As mentioned in Section 1, the exact solution of the Fokker–Planck equation for multiple degree
of freedom systems exists only in a very few cases. Nevertheless, there is a wide class of
structures whose motion can be conveniently approximated by an SDOF system [22]. In these
cases, the more the deformed shape of the system can be described by only one deflected shape,
the more accurate results can be obtained by the analysis of the corresponding generalized
SDOF system. For our purposes, in order to express the equation of the dynamic equilibrium
for a continuous beam in the form of a generalized SDOF system:

*m.Zþ *c’Zþ *kZ ¼ *rðtÞ ð12Þ

the generalized mass *m; the generalized damping *c; the generalized stiffness *k and the generalized
force *rðtÞ associated with the generalized displacement Z must be evaluated. Applying
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the principle of virtual displacement to a beam, it is possible to calculate the following
quantities:

*m ¼

Z L

0

mðxÞ � c2
ðxÞ � dx ð13Þ

*k ¼

Z L

0

kðxÞ � c002ðxÞ � dx ð14Þ

*c ¼

Z L

0

cðxÞ � c2
ðxÞ � dx ð15Þ

*rðtÞ ¼

Z L

0

rðx; tÞ � cðxÞ � dx ð16Þ

where L is the length of the beam and cðxÞ is the shape function assumed to describe the
deflection of the beam. Naturally, the generalized stiffness *k has to be calculated taking into
account, if necessary, the nonlinear stiffness of the dynamical system. As shape function cðxÞ;
the static deflection or a modal shape may be alternatively used. If the system is linear the 1st
modal shape may be conveniently taken as the shape function. The modal analysis can no longer
be applied to nonlinear systems. In the evaluation of the generalized damping *c the distributed
damping may be taken as

cðxÞ ¼
2x1o1m1

L
ð17Þ

where x1; o1 and m1 are the relative damping, the natural frequency and the participating mass
of the 1st mode evaluated in the case of open cracks. For the evaluation of the Equations
(13)–(16), the choice of taking as shape function the static deflection during the fully open
crack phase proved by numerical analyses to give more accurate results and for this reason
has been used. Let us now consider the non-uniform stiffness, simply supported beam subjected
to the concentrated load FðtÞ at midspan shown in Figure 6. The beam stiffness is EJ1 near the
supports for an extent a by each side and EJ25EJ1 around the midspan for an extent L� 2a:
The stiffness EJ2 is representative of the cracked zone.

The relationship between the force FðtÞ and the displacement Z at midspan is

Z
L

2

� �
¼

FL3

48EJ2
þ

Fa3

6

J2 � J1

EJ1J2
ð18Þ

Figure 6. Non-uniform stiffness beam.
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while the general relationship between the force FðtÞ and the displacement Z at a section placed
at a distance x from the left support is

ZðxÞ ¼

FL2

16EJ2
þ

Fa2

4EJ1

J2 � J1

J2

� �
x�

Fx3

12EJ1
; 05x5a

FL2x

16EJ2
þ

Fa3

6EJ1

J2 � J1

J2
�

Fx3

12EJ2
; a5x5

L

2

8>>><
>>>:

ð19Þ

If the deflection of the whole beam is expressed in term’s of its midspan deflection, the shape
function cðxÞ may be expressed as follows:

ZðxÞ ¼ Z
L

2

� �
� cðxÞ ð20Þ

Consequently, the deflection Z at x ¼ L=2 may be assumed as Lagrangian coordinate for the
generalized SDOF system. The shape function cðxÞ is thus equal to

cðxÞ ¼

L2

16
þ

a2

4

J2 � J1

J1
L3

48
þ

a3

6

J2 � J1

J1

x�
1

L3

4

J2

J1
þ 2a3

J2 � J1

J2

x3; 05x5a

a3

6

J2 � J1

J1
L3

48
þ

a3

6

J2 � J1

J1

þ

L2

16
L3

48
þ

a3

6

J2 � J1

J1

x�
1

L3

4
þ 2a3

J2 � J1

J1

x3; a5x5
L

2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð21Þ

while its second derivative with respect to the x variable is

c00ðxÞ ¼

�
6

L3

4

J2

J1
þ 2a3

J2 � J1

J2

x; 05x5a

�
6

L3

4
þ 2a3

J2 � J1

J1

x3; a5x5
L

2

8>>>>>>><
>>>>>>>:

ð22Þ

3.3. Identification of the nonlinear behaviour due to cracking

The identification of the mechanical parameters, i.e. damping and stiffness, in Equation (10) can
be achieved by solving an inverse dynamic-stochastic problem. Based on the theoretical
background presented in the previous sections, a procedure to identify a structural system
excited by Gaussian white noise has been established. The identification can be carried out
through the following steps:

(i) System excitation using a band-limited white noise. The system, whose mechanical
parameters are unknown, is excited by means of a Gaussian band-limited white noise. An
excitation of this type can be generated, for instance, by means of an electrodynamic
shaker driven by a closed-loop controller, which generates the excitation according to a
prescribed power spectral density value S0:
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(ii) Measurement of the response. The procedure requires that the system’s response, in terms
of displacements and velocities, is known by measurement.

(iii) Evaluation of the structural damping c using the FP equation. Recalling that the
velocity’s PDF is Gaussian (Equation (5)) with standard deviation equal to

s ’x ¼

ffiffiffiffiffiffiffiffiffi
S0

2cm

r
ð23Þ

The measurement of the velocity directly allows the determination of the system
damping:

c ¼
S0

2ms2’x
ð24Þ

(iv) Evaluation of the parameters that identify the nonlinear restoring force. The parameters
o1;o2;C1;C2 and x01 that define the nonlinear behaviour of the system of Figure 5 are
identified by minimizing the functional:

J ¼

Z þ1
�1

½wtestðxÞ � wxðxÞ�
2 dx ð25Þ

that depends on the PDF of the measured data ðwtestÞ and on the response’s PDF
obtained placing tentative values of the parameters o1; o2; C1; C2 and x01 in Equation
(5). Since the system response is measured at discrete times, the functional J may be
conveniently approximated by means of the finite sum (Figure 7):

J ¼
Xn
i¼1

Ntest;i

Ntot
�

Nx;iðxiÞ

Ntot

� �2
ð26Þ

where Ntot is the number of samples and the ratios Ntest;i=Ntot and PDFi � dx=Ntot are the
ith relative frequencies.

 

Figure 7. Evaluation of the displacement’s relative frequencies from simulated data and tentative PDF.
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A numerical procedure making use of a genetic algorithm (GA) optimization technique
has been implemented in a Matlab environment to find the unknown parameters. The GA
approach was chosen for its capability to find global minimum rather than local minima in
the search space and for its capability of dealing with a high number of unknown parameters
to be estimated. The GA, which is based on natural selection, repeatedly modifies
a population of individual solutions selecting at random, at each step, individuals from
the current population to be parents and using them to produce the children for the next
generation. Over successive generations, the population ‘evolves’ towards an optimal
solution. An initial population of 10 000 vectors of the unknown parameters o1; o2; C1;
C2 and x01 has been used. The cost function implemented in the GA is the functional J
reported in Equation (26), subjected to the constraints represented by Equations (6)–(9).
These nonlinear constraints have been taken into account using the augmented Lagrangian
genetic algorithm by Conn et al. [23, 24]. The extension of this procedure to the generalized
SDOF is straightforward, taking into account the considerations made in the previous
section.

4. NUMERICAL EXAMPLE

4.1. Characteristics of the cracked RC beam used in the simulations

To test the nonlinear identification procedure described in the previous section, a nonlinear FE
model representing a cracked RC beam has been defined (Figure 8). It represents a simply
supported RC beam, 4.3m long, made of concrete, having a characteristic compressive strength
fck ¼ 42 N=mm2: Its prismatic cross section is 20� 30 cm while the clear length between the
supports is 4.0m. The beam is supposed cracked at midspan with an extension of the cracked

Figure 8. Cracked RC beam considered in the numerical simulations.

Figure 9. Nonlinear FE model used in the numerical simulations.
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zone of 1.0m. The reinforcement is made with four 12mm rebars in tension and two 12mm
rebars in compression. The stirrups, built with 8mm rebars, are placed every 10 mm.

4.2. FE model

The FE model representing the cracked RC beam is shown in Figure 9. It is made up of eight
linear frame elements and two nonlinear frame elements placed in the middle part of the beam.
Thus, all the nonlinearities have been concentrated into two nonlinear elements characterized by
the following force–displacement relationship:

P

V

M

8>><
>>:

9>>=
>>; ¼

ku 0 0

kv 0

sym: kW þ L2=4 � kv

2
664

3
775 �

u

v

W

8>><
>>:

9>>=
>>; ð27Þ

Figure 10. End displacements for the nonlinear element.

Figure 11. Parameters describing the continuous piecewise-linear restoring moment.

NONLINEAR BEHAVIOUR OF A CRACKED RC BEAM 427

Copyright # 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2008; 15:416–435

DOI: 10.1002/stc



where P; V and M are, respectively, the internal axial force, the shear force and the bending
moment; ku and kv are the axial and transversal linear stiffness; u; v and W are the relative axial
displacement, the relative transversal displacement and the relative rotation between the end
sections of the element (Figure 10), defined as

u ¼ ui � uj

v ¼ vi � vj

W ¼Wi � Wj ð28Þ

The moment–rotation relationship kW is nonlinear. It is described by the equation (Figure 11):

M ¼
K2 � W for W5W2

K1 � Wþ ðK1 � K2Þ � W2 for W4W2

(
ð29Þ

The cracks are supposed to be initially open and the flexural stiffness is K2: Positive rotations
further open the cracks, while negative rotations close them. Until the relative rotation W
between the ends of the nonlinear element reaches the limiting value W2 the cracks remain open
and the bending stiffness is equal to K2: For W5W2 the cracks are completely closed and the
element behaves as an uncracked element with tangent stiffness K1; greater than K2: Under low-
level external excitation, the relative rotation between the initial and the final section of the
cracked element remains in the range 05W5jW2j; thus the response is linear and the system
containing the nonlinear elements provides a Gaussian response to a Gaussian excitation.
Conversely, under bigger enough external forces, the rotation becomes smaller than W2; the
cracks alternatively open and close, the behaviour becomes nonlinear and the response non-
Gaussian.

The increase of the nonlinearity at the first stage of cracking and its decrease for a more
developed cracking pattern, as already mentioned in Section 2, can be described by a proper
variation of the mechanical parameters K2 and W2; while K1 is assumed to be constant. In the
most general damage identification problem the following parameters have to be identified: the
number of cracked beam regions, their position and extent, the flexural stiffness of the cracked
elements K2 and the relative rotation causing the complete closure of the cracks W2: The value of
the flexural stiffness of the uncracked region K1 can be assumed as known.

4.3. Parameters describing the nonlinear behaviour

The bending stiffness K1 has been calculated taking into account the elastic properties of the
uncracked section. The stiffness K2 has been calculated neglecting the contribution of concrete
in tension, applying the hypotheses commonly used in the strength analysis of RC sections.
Assuming that the curvature remains constant along the nonlinear spring elements, the
parameters K1 and K2 are

K1 ¼
E � J1

l
¼

4:03e7 kN=m2 � 0:000492 m4

0:50 m
¼ 39623:6 kNm

K2 ¼
E � J2

l
¼

4:03e7 kN=m2 � 0:000128 m4

0:50 m
¼ 10299:9 kNm

ð30Þ

where E is the concrete elastic modulus, l is the length of the element and J1 and J2 are the
moments of inertia of the uncracked and cracked section, respectively. The beam has a mass per
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unit length equal to 0:144 t=m: Recalling Equation (13) and using the shape function of Equation
(21), the mass *m of the generalized SDOF system has been calculated. Similarly, integrating the
Equation (15), the corresponding value of the damping *c has been obtained. Their values are
*m ¼ 0:254 t; *c ¼ 0:934 kN sm�1: The generalized force *rðtÞ associated with the assumed shape
function is equal to the external excitation acting at the midspan of the beam. In fact,

*rðtÞ ¼

Z L

0

rðx; tÞ � cðxÞ � dx ¼
Z L

0

rðtÞ � d x�
L

2

� �
� cðxÞ � dx ¼ rðtÞ � c

L

2

� �
¼ rðtÞ ð31Þ

where d is the Dirac delta function and cðL=2Þ ¼ 1 from Equation (21). To reduce the nonlinear
beam to a nonlinear SDOF system it is necessary to define its nonlinear restoring law. Referring
to Figure 6, for positive displacement ðZ > 0Þ the cracks shown in the Figure 8 further open and
the behaviour is linear. For negative displacements the behaviour of the beam remains linear
until the cracks are completely closed. This happens when the value of the bending moment in
the nonlinear element verifies the following equality:

WðMÞ ¼
Z L

0

M

EJ2
� dx ¼ W2 ð32Þ

where W2 represents the total value of the crack openings of the beam at rest (Figure 4).
Considering the values of flexural stiffness reported in Equation (28) the nonlinear relation
between rotation and moment at the beam’s midspan is shown in Figure 11, where the
parameters assume the values: u1 ¼ 199:05 kN0:5 m0:5 rad�0:5; u2 ¼ 101:49 kN0:5 m0:5 rad�0:5; W2
¼ �4:85� 10�4 rad; W01 ¼ �3:59� 10�4 rad; W02 ¼ 0:00 rad:

The corresponding relation between the displacement and the external force at midspan is
represented in Figure 12 where the parameters that define this relationship are o1 ¼ 121:9
kN0:5 m�0:5; o2 ¼ 74:9 kN0:5 m�0:5; x2 ¼ �0:89 mm; m1 ¼ �0:55 mm; m2 ¼ 0:00 mm:

Figure 12. Parameters describing a continuous piecewise-linear restoring force.
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4.4. External excitation

An artificial white noise external force has been applied at the midspan of the beam (node no. 6
in the FE model). This force simulates the one that could be generated during an experimental
test through a closed-loop control electrodynamic shaker. The artificial external force has been
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Figure 13. Sample of the time history of the forcing function used in the simulation.
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Figure 15. PSD of the forcing function.
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generated to be compatible with a constant power spectral density of 0:8 kN2 s in the range
0.10–50.1Hz, applying the well-known algorithm proposed by Shinozuka and Jan [25]. The
duration of the excitation has been set to 300 s with a sampling frequency of 500Hz. The time
history of the force, its PDF and its power spectral density (PSD) are depicted in Figures 13, 14
and 15, respectively.
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Figure 16. Sample of the time histories of the displacement.
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Figure 17. Sample of the time histories of the velocity.
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Figure 18. Sample of the time histories of the acceleration.
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4.5. Results of the numerical simulations

The displacement, the velocity and the acceleration time histories of the node at midspan have
been numerically evaluated by direct integration of the equations of motion, using the HHT
algorithm [26]. Samples of the time histories of displacement, velocity and acceleration are
shown in the Figures 16–18. In Figures 19–21 are given the distributions of the relative

Figure 19. Relative frequencies of the displacement.

Figure 20. Relative frequencies of the velocity.

Figure 21. Relative frequencies of the acceleration.
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frequencies of the displacement, the velocity and the acceleration, respectively, along with the
values of the skewness and of the kurtosis that are indicators of the non-Gaussianity of the
distributions. On the same figures the PDF of the Gaussian distributions having the same mean
and standard deviation are superimposed. It can be noted that the velocity relative to
frequencies displays an almost null skewness and a kurtosis equal to 3.00; thus the velocity is
Gaussian. In fact the distribution is well approximated by a Gaussian PDF with the same mean
value and standard deviation, as foreseen by Lin et al. [27, 28]. On the contrary, the
displacement and acceleration relative frequencies are quite far from being approximated by
normal distributions and their non-Gaussian nature becomes more and more evident as the level
of the external excitation increases, in good agreement with the experimental behaviour
described in [20].

4.6. Results of the identification procedure

In Table I the results of the identification procedure are summed up, compared with the value used
in the FE model to generate the pseudo-experimental data. The damping c of the system has been
identified using Equation (24) from the simulated velocity data. The model updating technique and
the minimization of the functional J described in Equation (26) allowed the evaluation of the
unknown parameters o1; x2 and m1 with identified values very close to the actual ones.

The displacement PDF corresponding to the identified parameters is depicted in Figure 22
together with the relative frequencies of the displacement data obtained by the numerical
simulation. Some comments must be made about the identified value of the damping which is
affected by a non-negligible error. In the procedure described in Section 3.2 two simplifying

Table I. Comparison between actual and identified parameters.

Actual value Identified value Relative error (%)

c 0:934 kN sm�1 2:005 kN s m�1 114.7
o1 121:2 kN0:5 m�0:5 114:4 kN0:5 m�0:5 �5:6
x2 0.89mm 0.93mm 4.5
m1 0.55mm 0.55mm 0.0
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Figure 22. Comparison between numerical simulation and fitted PDF.
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hypotheses have been introduced: the determination of the damping of the generalized SDOF
system is carried out neglecting the contribution of the higher modes damping and the damping
is supposed to be the same for both cracked and uncracked elements. Nevertheless, only in
a very few cases the damping represents an important parameter to be identified. Moreover, in
the identification procedure described in this paper, the error introduced in the stiffness
identification, which is the main object of the overall identification procedure, by a poor
estimation of the damping c is quite small, as demonstrated by the numerical results.

5. CONCLUDING REMARKS

Cracked concrete beams exhibit a nonlinear behaviour that depends on the severity of cracking
and on the level of the external excitation. It has been observed that the nonlinearity tends
initially to increase as the crack pattern gets more severe whereas it tends to decrease as the
cracks further widen and deepen and can no longer close under dynamic excitation. The
nonlinearity increases, also, with the level of the external excitation. Since the state of cracking
can be considered as damage for RC elements, affecting their strength and stiffness at the service
limit state, its evaluation is of primary importance. In this paper a new procedure to identify the
nonlinear features of cracked RC beams is presented. The method is based on the statistical
analysis of the system response when it is subjected to a band-limited white noise, on the theory
of Markov process and on the Fokker–Planck equation. The minimization of a suitable
functional, which depends on the statistical properties of the responses of the real system and of
a parametric numerical model that simulates the breathing of the cracked RC beam during the
dynamic response, allows the evaluation of the mechanical properties of cracked RC beams. The
assessment of the severity of the cracking is hence possible. Several simulations carried out using
a numerical model representative of experimental tests allowed to validate the procedure. The
obtained results confirmed the applicability of the proposed method.
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