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Movable guyed masts affected by wind loads: Buckling and
stochastic response
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SUMMARY

This paper presents a new structural system to be used in communication towers and demonstrates the
achieved improved structural performances with respect to currently used cable-stayed masts.
The proposed structure is a cable-stayed tower where a truss system is introduced as a new link between
the cables and the mast in order to improve the lateral stiffness and to reduce instability phenomena. The
motivations and the main design choices for such a supporting structure are outlined. Numerical models
are developed in order to accurately describe the geometrically nonlinear behavior of both the cables and
the whole system. A combined linear/nonlinear stability analysis is proposed to investigate the structural
stability of the system and the Monte Carlo simulation approach is used to estimate the stochastic response
of the supporting structure to a correlated Gaussian vector describing the wind load. The obtained results
manifest the better performances achievable by introducing the truss system. Copyright # 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Mobile phones are connected to the mobile and fixed phone networks using systems named
‘base stations’. These are mainly composed of the supporting structure, the communication
devices (antennas and/or dishes), and the shelter used to place the equipment for controlling and
running the transmission apparatus. Some of these base stations are designed to be easily
removed and placed somewhere else to accommodate the required volume of users at any given
area at different times of the year.
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The main features of the supporting structure of such stations are the lightweight and the
slenderness that make wind the prevalent load and shift the leading concerns in the design
process onto the assessment of the structural stability and the mechanical damage due to stress
fluctuations (fatigue). Furthermore, the estimation of the peak response becomes crucial if one
considers the severe requirements in terms of maximum displacements and rotations of the
antennas which have to be satisfied for the radio signals to be successfully transmitted.

Within this context, a research project was started to address the problems arising when
designing, constructing, and maintaining such structures. In the first stage of the research, two
structural layouts were investigated by experimental tests. One will be referred to as the original
structure (OS) and is a typical cable-stayed mast with six orders of stays placed at 1208 angle
from each other [1]; the other will be indicated as the new structure (NS) and is obtained by
modifying the connections between the cables and the post [2]. In particular, a truss system is
used which changes the internal forces distribution overcoming serious problems in terms of
structural stability and improving the overall dynamic behavior.

The main goal of this paper is to investigate the effect of the truss system on two main aspects:
first the structural stability and second the stochastic response of the two systems when affected
by a correlated Gaussian vector process describing the wind action. Suitable numerical finite
element models (FEM) are developed accounting for the geometrically nonlinear behavior of
the cables, and the Monte Carlo simulation is performed on the two systems in order to
compare the main response statistics.

2. STRUCTURAL SYSTEMS

One of the problems associated with movable base stations is the need to reduce, as much as it is
possible, the plan dimensions both for facilitating the transport and for simplifying all the
bureaucratic procedures to obtain installation permissions (e.g. Italy). This design requirement
leads to disadvantageous structural features associated with the stays being at a large angle with
the ground, thus reducing their effectiveness in terms of overall stiffness and stability.

The problem described so far motivated a significant change in the original structural design.
The stays, which are usually directly connected to the mast (Figure 1), are now linked to a
special truss system as it is shown in Figure 2. The obtained structural layout very closely
resembles a sailing boat mast. It is expected that this configuration increases the stiffness and
induces a more uniform distribution of internal forces, thus improving the overall performance
in terms of both displacements and stability.

The two structural systems analyzed in this paper are shown in Figures 1 and 2. They have
exactly the same geometric and material properties but the truss system. The mast is made of
five steel elements, length of 6m and pipe cross section, connected by bolted flanges. The lower
four elements have a diameter of 168.3mm and a thickness of 12.5mm. The higher element has
a diameter of 139.7mm and a thickness of 10.0mm. There are five orders of three stays, the
directions of which form 1208 angles in the plan view. The lower part of the mast is connected to
a shelter in two locations (heights 0.93 and 3.76m) and two pipe steel rods (thickness 10mm)
connect the upper part of the shelter frame to the post, increasing its lateral stiffness. The
foundation slab is made of three precast elements, mixing steel beams and reinforced concrete,
with plan dimension of 7:2 m� 5:0 m and thickness of 30 cm.
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The only difference in the new supporting structure is the introduction of the two-elements
truss system with rectangular steel tube section (dimensions 60 mm� 40 mm; thickness 3mm)
in the first three orders of stays. One of the elements is horizontal and mainly carries
compression force, whereas the other is diagonal and principally bears tensile force. Further

Figure 1. Original structure (no truss system).

Figure 2. New structure (truss system).
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information on the actual structural system is beyond the scope of this paper and can be found
in [2] together with the results of experimental tests aimed at characterizing and identifying its
mechanic and dynamic behaviors.

3. NUMERICAL MODELING

The structural response is calculated developing a suitable numerical code based on the FEM,
which takes into account the inherent geometrically nonlinear behavior of the cables and the
whole systems [3].

The solution of such nonlinear problems can be obtained by the incremental approach where
the loads are applied by increments and the corresponding deformations are calculated. The
equilibrium equation of a body at time tþ Dt can be obtained using the principle of virtual
displacements referring to a known configuration tr:Z

trO

tþDt
tr

Sijd tþDt
tr

eij d
trO ¼tþDt R ð1Þ

where Sij is the second Piola–Kirchhoff stress tensor, eij is the Green–Lagrange strain tensor [4],
and tþDtR is the external load. The integral is performed over a known domain trO: The
undeformed or any of the known intermediate equilibrium configurations can be used as
reference. In this paper, the updated Lagrangian approach is adopted in which the last
calculated equilibrium configuration (at time t) is chosen as reference [5]. Equation (1) is, in
general, nonlinear because of possible nonlinearities in the constitutive and/or compatibility
equations and can be expressed defining the involved kinematic and static variables as the sum
of a known value and an unknown increment. This increment can be linearized about the last
calculated configuration and finally, using appropriate shape functions to interpolate the
displacement field, the equilibrium equation can be expressed as

ð
t
tKL þ

t
t KNLÞD

tþDt
t u ¼tþDt R�t

t F ð2Þ

where the matrices t
tKL and t

tKNL are the elastic and geometric components of the tangent
stiffness matrix t

tKT: The vector D
tþDt
t u is an approximation of the nodal displacement increment

from t to tþ Dt: The right-hand side represents the out-of-balance load vector, namely, the load
vector that is not yet balanced by the element internal stresses t

tF: In particular, tþDtR represents
the applied load vector at time tþ Dt; which can include static, inertia, and damping forces.

Starting from the 2D element already proposed in [6], a straight beam 3D finite element is
developed assuming that, during deformation, the cross sections remain plane, the beam can
undergo large deflections and rotations, but the deformation is small and the shear deformation
is negligible. Under the specified conditions, the stiffness variations are only dependent on
orientation variations, and the displacement field is completely characterized by the beam axis
deflection, the axial displacements, and the torsional rotation along the axis length. Moreover,
linear growths for the axial displacements and torsional rotations are assumed. It follows that
the axis deformed configuration is characterized by 12 nodal displacements.

Both static and dynamic analysis are carried out using (2) with the 3D straight beam stiffness
matrices and developing a suitable solver engine based on the Newton–Raphson method [7] to
tackle the nonlinearity and the Newmark method [5] for the time domain integration. The beam
consistent-mass matrix is evaluated from the shape functions with the standard assumption of
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uniform mass distribution along the beam length and the damping matrix is calculated using the
Rayleigh model.

A crucial point is the choice of cable modeling. It seems appealing to use the same beam
element described before for the whole structure. In order to accurately describe the highly
nonlinear behavior of the stays, it is chosen to use an appropriate number of elements for each
cable and give the actual geometrical and mechanical characteristics. In particular, it is found
that modeling each of the stays with 10 elements can accurately describe the cable behavior
without the need of special finite elements and/or procedures to model the typical compression
and bending stiffness that are about zero. As an example, a dynamic analysis is performed on a
simply supported cable, loaded with the horizontal force HðtÞ at the support A (in order to give
the initial axial force N; pretension, to the cable) and the self weight PP; lumped on the nine
joints (Figure 3(a)). The cable is released in the horizontal direction at support A, linearly
decreasing the pretension to zero. After that, the cable motion under its self weight is followed.
The cable starts its motion from the initial configuration shown in Figure 3(a) and finds the
equilibrium position reported in Figure 3(b). The obtained response time history together with
the configuration at the equilibrium position demonstrates the ability of the numerical model to
describe the cable’s geometrically nonlinear behavior, in particular, the flying-stay configuration.

In order to compare the effect of the truss system on the structural response, two numerical
models are used (Figures 4(a) and (b)). Only the first three orders of stays of the structures
shown in Figures 1 and 2 are considered, neglecting the higher two, which are directly connected
to the post in both structures. A simplified model for the shelter and the two pipe rods is also
used and the effects of the structure–foundation–soil interaction are neglected since they are not
crucial in the comparison under investigation. Both models use 15 elements for the mast and 10
elements for each of the cables that are considered pre-tensioned with a force of 5KN
simulating a severe working condition with 50% of cable slackening from the original design
pre-tension.

The properties (mechanic and dynamic) of these numerical models were identified using the
on-site experimental data obtained in [2].

The main action to be concerned about when dealing with such lightweight and slender
structures is the wind load whose instantaneous along-wind velocity is modeled as a correlated,

(a) (b)

Figure 3. Cable modeling: (a) initial configuration and (b) final configuration.
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Gaussian, stationary stochastic n-variate vector process with components [8]:

Vðzi; tÞ ¼ %VðziÞ þ vðzi; tÞ; i ¼ 1; . . . ; n ð3Þ

where %VðziÞ is the mean wind speed at height zi; and vðzi; tÞ is the along-wind turbulence
component at height zi: The cross-power spectral density function between two points on the
mast at heights zi and zj is given by

Svðzi; zj; f Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Svðzi; f ÞSvðzj ; f Þ

p
Cohðzi; zj; f Þ; i; j ¼ 1; . . . ; n ð4Þ

where the coherence function is the one proposed by Davenport [9]:

Cohðzi; zj; f Þ ¼ exp
�2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

z ðzi � zjÞ
p

%VðziÞ þ %VðzjÞ

" #
; i; j ¼ 1; . . . ; n ð5Þ

Cz being the exponential decay coefficient, and the power spectrum of the longitudinal
turbulence at height zi is [10]

Svðzi; f Þ ¼
s2vðziÞ
f

6:868*f ðziÞLvðziÞ=zi

ð1þ 10:302*f ðziÞLvðziÞ=ziÞ
5=3
; i ¼ 1; . . . ; n ð6Þ

where *f ðziÞ ¼ fzi= %VðziÞ is the reduced frequency, LvðziÞ is the integral length scale of turbulence,
and svðziÞ is the turbulence standard deviation.

The boundary layer is modeled as far as open country exposure, using the parameters
suggested by CEN [11].

Samples of the velocity time histories are generated using a procedure based on the sampling
theorem [12] proposed in [13]. In particular, correlated wind speed fluctuations at n ¼ 15
locations (model joints of the mast) along the structure’s height are simultaneously generated to
load the structural model using

Fðzi; tÞ ¼ 0:5rACpVðzi; tÞ
2; i ¼ 1; . . . ; n ð7Þ

(a) (b)

Figure 4. 3D numerical models: (a) OS elevation and (b) NS elevation.
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where A is the tributary area, r is the air mass density, the pressure coefficients, Cp; are
considered constant neglecting the effect of the flow–structure–truss system interactions, and the
wind load on the cables is not considered because of its limited amplitude.

4. STABILITY ANALYSIS

Given the lightweight and the slenderness of the structures under investigation, large
displacements and nonlinear load–displacement curves exhibiting softening or the snap-through
phenomenon (i.e. system suddenly going into a different equilibrium state far away from the
initial configuration, see Von Mises truss in [14]) are expected. A stability analysis of these types
of structures aims at the estimation of the load level that causes considerable deformation or
that initiates the snap-through, the nonlinear critical load PNL

cr ; that can be obtained accurately
only with time-consuming geometrically nonlinear analysis.

As an alternative approach, let the configuration at time t be the fundamental equilibrium
state where tR ¼t

t F: The instability limit is reached when there exists an adjacent equilibrium
configuration at time tþ Dt with the same load level tþDtR ¼t

t F that makes Equation (2)
homogeneous and leads to the condition

det½ttKT� ¼ 0 ð8Þ

for the fundamental equilibrium state at the arbitrary time t; indicating that the tangent stiffness
matrix is singular at the critical load level (i.e. the nodal displacements vector increases toward
infinity for an infinitesimal increment of the load vector). The solutions of (8) can be found with
several linear eigenvalue analyses differing in the assumption on the relationship between the
load parameter tl and the elements of t

tKT: The most used formulations of this problem are

det½0Ke þ
t
t Ku þ

t lttKNL� ¼ 0 ð9Þ

and

det½0Ke þ
t lðttKu þ

t
t KNLÞ� ¼ 0 ð10Þ

where the elastic component t
tKL of the tangent stiffness matrix has been divided into the two

contributions of the linear elastic stiffness matrix in the initial configuration (non-deformed) 0Ke

and the stiffness matrix depending linearly on the nodal displacement vector t
tKu: Both

formulations give the classical linear buckling analysis if the fundamental equilibrium position is
the undeformed configuration where the initial displacement matrix t

tKu vanishes.
Equations (9) and (10) give accurate critical load predictions only if the structural system has

a linear prebuckling path but can also be applied to structures with a nonlinear behavior with
a bifurcation or a limit value giving estimates that can be both conservative and overestimated.
Brendel and Ramm [15] proposed to combine the nonlinear and linear buckling analysis,
estimating the critical value for different fundamental equilibrium configurations (at load levels
tR) obtaining a curve of estimates that would intersect the nonlinear load–deflection diagram at
the value initiating the instability, if it exists. The shape of this curve also indicates the degree of
nonlinearity of the prebuckling behavior. Chang and Chen [16] applied this combined analysis
on a group of 12 structures obtaining curves varying considerably in shape when using (9) while
having significantly less variations when using (10). In the latter case, it was possible to obtain
predictions of the stability limit of the structure, accurate for practical design purposes, using
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a linear extrapolation based on two values of the estimated critical load, thus reducing the
number of nonlinear analyses.

One of the reasons motivating the introduction of the truss system for the structures
investigated in this work can be introduced by comparing its different response to wind action.
Figure 5 shows the displacements and bending moment diagrams, at a generic time t; of the two
systems affected by a sample of the correlated wind forces described in the previous section. The
bending moment distribution changes dramatically because of the combined effect of the
diagonal and horizontal elements of the truss system that carry mainly tensile and compression
forces, respectively. In particular, this effect determines the inversions from positive values to
negative values, which are not present in the bending moment diagram of the OS. It follows that
higher values of the instability level are expected given the reduction of the effective length
associated with the bending moment inversions. This expectation can be demonstrated with
a simple test case. The structural model is a simply supported beam under axial load P with the
classical critical linear buckling load given by the Euler load PE: Two different perturbations are
given on this structure to obtain bending moment distributions that are similar in shape to those
of Figures 5(b) and (d): the first is a series of joint loads F ; orthogonal to the beam axis, case 1
(Figure 6(a)), and the second adds to case 1 three pairs of joint loads Fc; case 2 (Figure 6(b)). In
order to estimate the nonlinear buckling load, a new algorithm is proposed. First, the
perturbation is applied and the corresponding equilibrium position is assumed as the
fundamental state at time tv evaluating the tangent stiffness matrix tv

tvKT: Second, different
axial load levels, P ¼t R; are applied and the corresponding tangent stiffness matrix t

tKT is
calculated at equilibrium. Finally, the linear critical load predictions for each of the axial load
levels are performed using

det½tvtvKT þ
t lðttKT �

tv
tv
KTÞ� ¼ 0 ð11Þ

which represents a slight modification of Equation (10) and seeks the load level beyond the
fundamental state at tv so that the stiffness tv

tvKT is completely degraded by the increments of the
elastic and geometric matrices. Figures 6(c) and (d) show the results of the combined linear–
nonlinear stability analysis using (9) and (11) plotting the predicted critical loads PNL

cr against
the applied axial load P so that the shape of these curves does not depend on the selected degree

(a) (b) (c) (d)

Figure 5. Snapshot of the animation describing displacements and bending moment time series: (a) OS
displacements; (b) OS bending moment; (c) NS displacements; and (d) NS bending moment.
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of freedom and the instability occurs at the point of coordinates ðPNL
cr ;P

NL
cr Þ: These results are

consistent with the findings in [16] since the curves obtained with (9) turn sharply near the
expected critical load and those evaluated with (11) are very close and parallel to the 458 line,
both indicating that no instability occurs. In these cases, it is always possible to extrapolate the
obtained curves to predict the critical load to be used for practical design purposes since the
deflections become unacceptably large as it is shown in Figure 6(e) for the horizontal
displacement u at the support in B. It is worth noting that the predicted critical load for case 2 is
an increasing function of the magnitude of Fc as it is shown in Figure 6(f). The results reported
in Figures 6(c)–(e) are obtained for Fc=PE ¼ 7:1:

The procedure used to analyze the previous cases is now used on the numerical models of
Figure 4. In this case the axial load is applied at the free end of both structures (�z direction in
Figures 1 and 2) and the perturbation is given by the wind action (x direction) considered as the
equivalent static loads on the mast joints given by [11] for open country exposure. Figure 7(a)
shows the predicted critical load curves obtained using (9) and (11) on the two structural
models. The significant beneficial effect of the truss system on the estimated PNL

cr (about 20 and
52 kN for OS and NS, respectively) and the nonlinear behavior of the two systems before this
load level are rather evident. In this case, the complexity of the investigated structures influences
the shapes of the predicted curves that deviate from the straight line also when using (11).

(a) (b)

(c) (d)

(e) (f)

Figure 6. Test cases: (a) model for case 1; (b) model for case 2; (c) estimated PNL
cr ; case 1; (d) estimated PNL

cr ;
case 2; (e) load–deflection diagrams; and (f) effect of the forces Fc on the estimated PNL

cr :

MOVABLE GUYED MASTS: BUCKLING AND STOCHASTIC RESPONSE 307

Copyright # 2008 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2008; 15:299–314

DOI: 10.1002/stc



The linear extrapolation proposed in [16] should, therefore, be modified with extrapolation of
higher orders that can still be based on a limited number of nonlinear analysis. The axial-
load–deflection diagrams, which are shown in Figure 7(b) for the displacements of the free end
in the x and y directions of Figures 1 and 2 testify both the nonlinear behavior of the structures
and the increase of the stiffness given by the truss system. Furthermore, both the numerical
models reach an axial load level where the nodal displacements increase considerably. In this
study, it is not possible to verify whether or not a snap-through phenomenon is occurring since
the developed solver is based on the Newton–Raphson algorithm, but it can clearly be stated
that a critical load level is obtained, which initiates large deformations. Figure 8 bears out this
last statement. Figure 8(a) reports the calculated configuration for the OS at a time where the
load–deflection curve exhibits a plateau region where the structure is very flexible with some
flying stays (point marked with (x) in Figure 7(b)), while Figure 8(b) shows a configuration of
the actual structure during its service life. Both figures testify the existence of an equilibrium
position far off the designed undeformed configuration. It is worth noting that to completely

(a) (b)

Figure 7. Linear–nonlinear analysis: (a) estimated PNL
cr and (b) load–deflection diagrams.

(a) (b)

Figure 8. Case of instability for OS: (a) numerical model and (b) actual configuration.
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investigate the actual stability of the structural systems analyzed in this paper, the dynamic
equilibrium should be considered given the non-conservative nature of the wind action, which may
induce unbounded motion rather than having the system going into another equilibrium state.

5. STOCHASTIC ANALYSIS

The main stochastic features of the structural response are estimated using the Monte Carlo
approach under the assumption of ergodic process. The stationary response is, therefore,
evaluated for a single time series of the wind vector process (7) applied in the x direction of both
models (Figures 1 and 2) and performing the numerical integration of the dynamic equilibrium
equations for a duration of 10min with a time step of 0.02 s (30 000 samples). This procedure
permitted to save a notable amount of time that would have been otherwise required in order to
perform ensemble averages, given the complexity of the analysis and the need to discharge the
initial transient response.

The first 60 s of the stationary response displacements time histories at the free end of the two
structures in both x and y directions are shown in Figures 9(a) and (b), whereas the
corresponding power spectral densities of the normalized series (zero mean and unit variance)
are reported in Figures 9(c) and (d). The different behavior caused by the truss system is
confirmed both in the response amplitudes and the resonant peaks. The dynamic response is
dramatically reduced by the truss system for the combined effect given by the increased stiffness
on the static displacements and the system’s natural frequencies. Figures 9(e) and (f) effectively
demonstrate the different behavior in the x–y plane showing the trajectories of the free end of
both structures in the same scale. Figures 9(a), (b) and 9(e), (f) also show a special effect of the
truss system on the cross-wind fluctuations that are in the same order of magnitude as the along-
wind oscillations in the OS, while they are almost cancelled out in the NS.

In order to have information on the stochastic features associated with the effect of the truss
system on the bending moment distribution, the cross-covariance functions of two bending moment
time series in sections (A) and (B) in Figure 5 were estimated. Figure 10 clearly shows the differences
in the two structural models. In particular, the two sections considered experience the same bending
moment sign (positive covariance at t ¼ 0) in the OS (Figure 10(a)) and opposite sign (negative
covariance at t ¼ 0) when the truss system is introduced (Figure 10(b)). Furthermore, the values of
the joint bending moments are less dispersed in the NS. This can be highlighted more completely if
the joint probability density functions (JPDFs) are estimated (Figure 11).

Other interesting information on the stochastic response of the two structures comes from the
analysis of the displacements. Table I reports the first four statistical moments (mean m;
standard deviation s; skewness g3; and kurtosis g4 coefficients) of the displacements at the free
end of the structures. These results confirm the reduction of the response amplitudes and also
manifest a significant reduction of the response variability, especially in the cross-wind
displacements. The skewness and kurtosis coefficients indicate a slight deviation from the
Gaussian model, which should be associated with the nonlinear structural behavior. Within this
context, the truss system seems to keep the NS closer to the linear behavior for the considered
wind action. The results obtained for the cross-wind response of the NS differ significantly from
the others. At a first look these results might suggest a strong deviation from the Gaussian
model, but the variance of this fluctuations has such a small amplitude that this process might be
considered almost deterministic.
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Figure 12 shows estimates of the marginal probability density functions (MPDFs) of
the processes described so far (histograms) together with the Gaussian density function
(continuous line) estimated from the first two statistical moments. All these response
probabilistic features have to be carefully considered when peak values and fatigue analysis
are of interest.

Additional information useful to compare the stochastic response differences is provided by
Figure 13 with the estimates of the joint probability density functions between the displacements
x and y at the free end of the structures. This figure confirms that the truss system makes the
response more likely to be confined in the along-wind plane with respect to the original system.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Dynamic response: time histories of the x (above) and y (below) displacements at the free end of
(a) OS, (b) NS; power spectral densities of the x (above) and y (below) displacements at the free end of (c)

OS, (d) NS; trajectories of the free end in the two models: (e) OS, (f) NS.
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6. CONCLUSIONS

A new structural system to be used for cable-stayed communication towers is presented in this
paper and its performances are compared with currently used cable-stayed masts in terms of
stability and stochastic features. A preliminary description of the OS and the motivations of the
structural changes introducing a truss system were briefly reported. In order to evaluate the
structural response of the two systems, suitable nonlinear numerical models were developed and
identified using on-site experimental tests. A combined linear–nonlinear approach that should

(a) (b)

Figure 10. Cross-covariance functions for the moment time series in A and B (Figure 5): (a) OS and (b) NS.

(a)

(b)

Figure 11. JPDFs for the bending moment time series in A and B (Figure 5): (a) OS and (b) NS.
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reduce the computation time with respect to fully nonlinear analysis was proposed to estimate
the critical loads initiating the static instability. The Monte Carlo approach was used to obtain
estimates of the probabilistic features of the structural response. The results’ comparison
confirmed what was expected in the design stage, i.e. the new cable-stayed mast with the truss
system has overall improved behavior when compared with the original one. The results of this

Table I. Statistical moments of the displacements at the free end of the structures.

Original structure New structure

x y x y

m 0.1686 �0:0095 0.0380 �4:07e� 004
s 0.0780 0.0482 0.0161 5:91e� 004
g3 0.1883 �0:0547 0.1323 0.3504
g4 3.1090 2.7716 3.0402 7.5125

(a)

(c)

(b)

(d)

Figure 12. MPDFs of the displacements at the free end: (a) OS x; (b) OS y; (c) NS x; and (d) NS y:
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study can be used as a first step in order to estimate the reliability and the managing costs of the two
structures, which are other essential parameters for the phone company in order to make a definitive
selection of one of the two structural systems. Furthermore, a more complete investigation into the
actual stability of the two structural layouts can be obtained by dynamic equilibrium which
accounts for the non-conservative nature of the wind action. Finally, the obtained results can also be
used to design control strategies in order to further reduce the dynamic displacements and rotations
and satisfy the severe serviceability limit states imposed by the phone companies.

ACKNOWLEDGEMENTS

This work was supported by the Italian Ministry for Scientific Research (MIUR)-Cofin 2004 Research
Project and CAEL s.r.l (Rome, Italy). The authors are grateful to Ing. Stefano Morbidoni of
Elettromontaggi s.r.l. for his useful comments and criticism and for providing the picture in Figure 8(b).

REFERENCES
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14. Bažant ZP, Cedolin L. Stability of Structures. Elastic, Inelastic, Fracture and Damage Theories. Dover: New York,

2003.
15. Brendel B, Ramm E. Linear and nonlinear stability analysis of cylindrical shells. Computers and Structures 1980;

12:549–558.
16. Chang S-C, Chen J-J. Effectiveness of linear bifurcation analysis for predicting the nonlinear stability limits of

structures. International Journal for Numerical Methods in Engineering 1986; 23:831–846.
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