
Received: 11 May 2018 Revised: 3 October 2018 Accepted: 5 October 2018

DOI: 10.1002/num.22326

R E S E A R C H A R T I C L E

Effective Chorin–Temam algebraic splitting schemes
for the steady Navier–stokes equations

Alex Viguerie1 Mengying Xiao2

1Department of Civil Engineering and

Architecture, University of Pavia, Pavia, Italy
2Department of Mathematical Sciences,

Clemson University, Clemson, South Carolina,

Correspondence
Alex Viguerie, Department of Civil

Engineering and Architecture, University of

Pavia, Pavia 27100, Italy.

Email: alexander.viguerie@unipv.it

Funding information
The authors (NS) acknowledges the support

provided by the Directorate for Mathematical

and Physical Sciences, 1522191. NSF,

DMS1522191.

This paper continues some recent work on the numerical solu-

tion of the steady incompressible Navier–Stokes equations.

We present a new method, similar to the one presented in

Rebholz et al., but with superior convergence and numerical

properties. The method is efficient as it allows one to solve

the same symmetric positive-definite system for the pressure

at each iteration, allowing for the simple preconditioning and

the reuse of preconditioners. We also demonstrate how one

can replace the Schur complement system with a diagonal

matrix inversion while maintaining accuracy and convergence,

at a small fraction of the numerical cost. Convergence is ana-

lyzed for Newton and Picard-type algorithms, as well as for

the Schur complement approximation.

KEYWORDS

algebraic splitting, finite element methods, grad-div stabiliza-

tion, Navier-Stokes equations

1 INTRODUCTION

In this work we consider efficient nonlinear iteration schemes to solve the incompressible steady

Navier–Stokes equations (NSE), which are given by

u ⋅ 𝛻u + 𝛻p − 𝜈Δu = f , (1.1)

𝛻 ⋅ u = 0, (1.2)

u|𝜕Ω = 0, (1.3)

where u and p represent velocity and pressure, respectively, f is a forcing, and 𝜈 is the viscosity.
We will assume homogeneous Dirichlet boundary conditions in our analysis for simplicity, but

†Mengying Xiao was partially supported by NSF grant DMS1522191.

Numer Methods Partial Differential Eq. 2018;1–25. wileyonlinelibrary.com/journal/num © 2018 Wiley Periodicals, Inc. 1

http://orcid.org/0000-0002-8556-3499
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnum.22326&domain=pdf&date_stamp=2018-11-29

2 VIGUERIE AND XIAO

in our numerical tests we will use both nonhomogeneous Dirichlet and zero-traction boundary

conditions.

The nonlinear nature of the problem requires the use of some type of iterative scheme, such as the

standard Picard iteration: given an initial guess u0, for k= 1, 2, ... find (uk, pk) such that:

uk−1 ⋅ 𝛻uk + 𝛻pk − 𝜈Δuk = f , (1.4)

𝛻 ⋅ uk = 0, (1.5)

u|k
𝜕Ω = 0. (1.6)

After discretization (using e.g. the finite element method), the above linear system at iteration k arises

in the following form: [
𝜈𝐾 + C(uk−1) BT

B 0

] [
uk

pk

]
=
[

F
0

]
, (1.7)

where K corresponds to the discretization of the diffusive term, C(uk− 1) to the convective term,

and B to the discrete divergence operator (with its adjoint BT corresponding to the discrete gradient

accordingly).

This saddle point system can be difficult to solve, especially when the nonsymmetric matrix

C(uk− 1) dominates the (1,1) block. The above system admits the following block-LU decomposition

(denoting A := 𝜈K +C(uk− 1) for the sake of notation):[
A 0

B −𝐵𝐴−1BT

] [
I A−1BT

0 I

] [
uk

pk

]
=
[

F
0

]
. (1.8)

Solving the block-LU system is often impractical, as the Schur complement S :=BA−1BT is difficult

to precondition and computing its action requires the solution of a system in A, which can be difficult,

especially for convection-dominated problems. Much work has been done on developing effective

preconditioners for the Schur complement [1, 2].

A popular approach in the unsteady (time-dependent) problem is to instead solve an approximate

version of (1.8) [3–6] as follows:[
A 0
B −𝐵𝐻1BT

] [
I H2BT

0 I

] [
uk

pk

]
=
[

F
0

]
. (1.9)

where H1 ≈A−1 and H2 ≈A−1. In these schemes one chooses H1 and H2 such that the approximated

Schur complement has favorable numerical properties (e.g. it may be symmetric positive-definite

(SPD)). In many instances, the Schur complement remains the same at each iteration, greatly simpli-

fying preconditioning. The Algebraic Chorin–Temam scheme corresponds to using the velocity mass

matrix for H1 and H2, while for the Yosida method one approximates H1 with the velocity mass matrix

but lets H2 =A−1 [3–5]. For this reason, we will hereafter refer to approximate LU factorizations in

which H1 =H2 as Chorin–Temam-type methods and H1 ≠H2 as Yosida-type methods, even if the

discrete operators corresponding to our approximations are not the same.

The extension of these methods to the steady setting is not immediate, as they require the presence

of a time derivative term. Recently, however, schemes have been developed specifically for the steady

problem that retain many of these advantages [7–9]. In this work, we present a direct follow-up to the

schemes studied in [7]. The schemes herein are somewhat less computationally intensive and demon-

strate superior stability and convergence properties when compared to those of [7], while retaining all

of those methods’ advantages. We also present a strategy to circumvent the Schur complement solves

entirely, replacing it with the inversion of a diagonal mass matrix. We analyze these methods in detail

and demonstrate their effectiveness with numerical results.

VIGUERIE AND XIAO 3

1.1 Mathematical preliminaries

We consider a domain Ω⊂Rd (d = 2, 3) that is open, connected, and with Lipschitz boundary 𝜕Ω.

Denote the L2-norm and inner product as ‖⋅‖ and (⋅,⋅), and L2
0
(Ω) is the zero mean subspace of L2(Ω).

Throughout this paper, it is understood by context whether a particular space is scalar or vector valued,

and so we do not distinguish notation.

The natural function space for velocity and pressure of Stokes and NSE are

X ≔ H1
0
(Ω) = {v ∈ H1(Ω), v = 0 on 𝜕Ω}, Q ≔ L2

0
(Ω) =

{
q ∈ L2(Ω),∫Ω

q 𝑑𝑥 = 0

}
.

In the space X, the Poincare inequality is known to hold: there exists 𝜆> 0, dependent only on the size

of Ω, such that for every v ∈ X, ‖v‖ ≤ 𝜆‖𝛻v‖.
The dual spaces of X will be denoted by X′, with norm ‖⋅‖−1.

Let 𝜏h be a conforming, shape-regular, and simplicial triangulation of Ω with hT denoting the

maximum element diameter. We denote with Pk the space of degree k globally continuous piecewise

polynomials with respect to 𝜏h, and Pdisc
k the space of degree k piecewise polynomials that can be

discontinuous across elements.

Throughout the paper, we consider only discrete velocity–pressure spaces (Xh, Qh)⊂ (X, Q) that

satisfy the Ladyzhenskaya–Babuska–Brezzi condition: there exists a constant 𝛽 satisfying

inf
q∈Qh

sup
v∈Xh

(𝛻 ⋅ v, q)‖q‖‖𝛻v‖ ≥ 𝛽 > 0. (1.10)

where 𝛽 is independent of h. Common examples of such elements are (P2, P1) Taylor–Hood (TH)

elements, and (Pk,Pdisc
k−1

) Scott–Vogelius (SV) elements on meshes with particular structure [10, 11],

and [12, 13]. Define the discretely divergence free velocity space by

Vh ≔ {v ∈ Xh, (𝛻 ⋅ vq) = 0 ∀q ∈ Qh}.

Define the skew-symmetric, trilinear operator b* : X ×X ×X →R by

b∗(u, v,w) ≔ 1

2
(u ⋅ 𝛻v,w) − 1

2
(u ⋅ 𝛻w, v),

and recall, from for example. [14], that there exists M depending only on Ω such that

∣ b∗(u, v,w) ∣≤ M‖𝛻u‖‖𝛻v‖‖𝛻w‖, (1.11)

for every u, v, w ∈ X.

1.2 Discrete steady NSE

The discrete steady NSE are given by: find (u, p) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

𝜉(𝛻 ⋅ u, 𝛻 ⋅ v) + b∗(u, u, v) − (p, 𝛻 ⋅ v) + 𝜈(𝛻u, 𝛻v) = (f , v), (1.12)

(𝛻 ⋅ u, q) = 0. (1.13)

The parameter 𝜉 ≥ 0 is the grad-div stabilization parameter. We will use 𝜉 ∼ 𝒪(1) in this paper,

which is known to give good results for P2/P1 TH finite elements (which we use for several numerical

simulations in this work) [15].

Recall that if

𝛼 ≔ M𝜈−2‖f‖−1 < 1, (1.14)

4 VIGUERIE AND XIAO

then (1.12) and (1.13) is well-posed and

‖𝛻u‖ ≤ 𝜈−1‖f‖−1. (1.15)

The classical Picard and Newton algorithms for solving the nonlinear problem are given below. In

general, the linear systems arising from both schemes are of the form (1.7) and thus are difficult to

precondition and solve, motivating the need for alternative schemes presented below.

Algorithm 1.1 Picard iteration for steady Navier–Stokes:
Step 1: Guess u0 ∈ Xh.
Step k: Find (uk, pk) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

b∗(uk−1, uk, v) − (pk, 𝛻 ⋅ v) + 𝜈(𝛻uk, 𝛻v) + 𝜉(𝛻 ⋅ uk, 𝛻 ⋅ v) = (f , v),
(𝛻 ⋅ uk, q) = 0.

Algorithm 1.2 Newton iteration for steady Navier–Stokes:

Step 1: Guess u0 ∈ Xh.
Step k: Find (uk, pk) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

b∗(uk−1, uk, v) + b∗(uk, uk−1, v) − b∗(uk−1, uk−1, v)
−(pk, 𝛻 ⋅ v) + 𝜈(𝛻uk, 𝛻v) + 𝜉(𝛻 ⋅ uk, 𝛻 ⋅ v) = (f , v),

(𝛻 ⋅ uk, q) = 0.

Newton is known to converge quadratically (under a small data condition), though its performance

is very sensitive to the quality of initial guess and may fail [14]. Picard converges linearly but it is signif-

icantly less sensitive to the initial guess and is preferred in many settings for this reason. It is not uncom-

mon to combine the iteration types, running several iterations of Picard before switching to Newton,

thus taking advantage of both Newton’s superior convergence rate and Picard’s superior reliability [16].

In [7], the following alternative scheme was presented and shown to be convergent for 𝜉 ≥ 𝜈:

Algorithm 1.3 The grad-div stabilized Picard–Yosida iteration for the steady

Navier–Stokes:

Step 1: Guess u0 ∈ Xh and p0 ∈ Qh.
Step k consists of the following three steps:

k.1 Find zk ∈ Xh satisfying for all v ∈ Xh,

𝜉(𝛻 ⋅ zk, 𝛻 ⋅ v) + b∗(uk−1, zk, v) + 𝜈(𝛻zk, 𝛻v) = (f , v) + (pk−1, 𝛻 ⋅ v).

k.2 Find (wk, 𝛿
p
k) ∈ (Xh,Qh) satisfying for all (v, q) ∈ (Xh, Qh),

𝜉(𝛻 ⋅ wk, 𝛻 ⋅ v) − (𝛿p
k , 𝛻 ⋅ v) + 𝜈(𝛻wk, 𝛻v) = 0,

(𝛻 ⋅ wk, q) = −(𝛻 ⋅ zk, q).

k.3 Set pk ≔ pk−1 + 𝛿
p
k and then find uk ∈ Xh satisfying for all v ∈ Xh,

𝜉(𝛻 ⋅ uk, 𝛻 ⋅ v) + b∗(uk−1, uk, v) + 𝜈(𝛻uk, 𝛻v) = (f , v) + (pk, 𝛻 ⋅ v).

This is equivalent to solving the following block-LU system [7]:[
A + D 0

B −B(𝜈𝐾 + D)−1BT

] [
I A−1BT

0 I

] [
u
𝛿k

p

]
=
[

f − pk−1

0

]
, (1.16)

VIGUERIE AND XIAO 5

and setting pk = 𝛿k
p + pk−1, with D corresponding to matrix arising from the grad-div stabilization

term. This scheme requires the solution of two systems in A and the solution of the approximate Schur

complement B(𝜈K +D)−1BT .

The advantage of this approximation is that Schur complement is easy to precondition and solve

and remains the same at each nonlinear iteration. The diagonal of the pressure mass matrix gives

an optimal preconditioner for the Schur complement, ensuring that the required number of iterations

to solve the system remains small, and this preconditioner need only be assembled once. More-

over, both the approximate Schur complement and the matrix K +D are SPD, allowing one to use

conjugate-gradient iterations for both inner and outer solves. Although this inexact LU decomposi-

tion breaks the continuity equation, we add a grad-div stabilization term in the momentum equation to

force the incompressibility of the velocity field. It was shown in [7] that this scheme does not signif-

icantly increase the required number of nonlinear iterations while reducing the cost of each iteration,

resulting in substantial savings.

The Newton-type variant can be obtained by replacing b*(uk− 1, zk, v) with b*(uk− 1, zk, v)+ b*(zk,

uk− 1, v)− b*(uk− 1, uk− 1, v) at step k1 and a similar substitution for k3 (replacing zk with uk). In this

work, we present similar schemes to Algorithm 1.3 and analyze and test them.

2 GRAD-DIV ALGEBRAIC CHORIN–TEMAM PICARD ITERATION

It was shown in [9] that Algebraic Chorin–Temam-type schemes have superior stability and conver-

gence, compared to the Yosida-type schemes (such as Algorithm 1.3 for the steady problem) due to

favorable spectral properties. We therefore define the following scheme which can be regarded as the

Algebraic Chorin–Temam analogue of Algorithm 1.3:

Algorithm 2.1 The grad-div stabilized Algebraic Chorin–Temam Picard iteration for

the steady Navier–Stokes is defined by:

Step 1: Guess u0 ∈ Xh and p0 ∈ Qh.
Step k consists of the following four steps:

k.1 Find zk ∈ Xh satisfying for all v ∈ Xh,

𝜉(𝛻 ⋅ zk, 𝛻 ⋅ v) + b∗(uk−1, zk, v) + 𝜈(𝛻zk, 𝛻v) = (f , v) + (pk−1, 𝛻 ⋅ v).

k.2 Find (wk, 𝛿
p
k) ∈ (Xh,Qh) satisfying for all (v, q) ∈ (Xh, Qh),

𝜉(𝛻 ⋅ wk, 𝛻 ⋅ v) − (𝛿p
k , 𝛻 ⋅ v) + 𝜈(𝛻wk, 𝛻v) = 0,

(𝛻 ⋅ wk, q) = −(𝛻 ⋅ zk, q).

k.3 Find uk ∈ Xh satisfying for all v ∈ Xh,

𝜉(𝛻 ⋅ uk, 𝛻 ⋅ v) + 𝜈(𝛻uk, 𝛻v) = (𝛿p
k , 𝛻 ⋅ v) + 𝜉(𝛻 ⋅ zk, 𝛻 ⋅ v) + 𝜈(𝛻zk, 𝛻v).

k.4 Set pk ≔ pk−1 + 𝛿
p
k .

This yields the following discrete formulation:

(𝜈𝐾 + C(ûk−1) + 𝜉𝐷)̂zk = f̂ + BTp̂k−1, (2.1)

B(𝜈𝐾 + 𝜉𝐷)−1BT𝛿
p
k = −Bẑk, (2.2)

(𝜈𝐾 + 𝜉𝐷)ûk = (𝜈𝐾 + 𝜉𝐷)̂zk + BT𝛿
p
k , (2.3)

p̂k = 𝛿
p
k + p̂k−1, (2.4)

6 VIGUERIE AND XIAO

where D is the contribution of the grad-div stabilization term. This is equivalent to solving the

following block-LU system:[
A + D 0

B −B(𝜈𝐾 + D)−1BT

] [
I (𝜈𝐾 + D)−1BT

0 I

] [
u
𝛿k

p

]
=
[

f − pk−1

0

]
, (2.5)

and setting pk = 𝛿k
p + pk−1. Our numerical tests (presented later) confirm faster convergence of

Algorithm 2.1 compared to Algorithm 1.3. This scheme is also slightly less numerically demanding,

as we require only one solve of (𝜈𝐾 + C(ûk−1) + 𝜉𝐷) compared to two for the Yosida scheme. As

before, the Schur complement does not change over iterations and can be optimally preconditioned

with the diagonal of the scaled pressure mass matrix, which need only be assembled once. Following

our naming convention, as H1 =H2 in (2.5), we refer to this as a Chorin–Temam type method.

Remark To obtain the Newton version of the algorithm (presented later), we replace

step k.1 in Algorithm 2.1 with: find zk ∈ Xh satisfying for all v ∈ Xh,

𝜉(𝛻 ⋅ zk, 𝛻 ⋅ v) + b∗(zk, uk−1, v) + b∗(uk−1, zk, v) + 𝜈(𝛻zk, 𝛻v) = b∗(uk−1, uk−1, v) + (f , v) + (pk−1, 𝛻 ⋅ v).

2.1 Convergence

We now prove the convergence of Algorithm 2.1. The proof requires a small data assumption, a suf-

ficiently close initial guess, and the grad-div parameter 𝜉 ≥ 𝜈. In practice, we typically have 𝜉 = 𝒪(1)
for optimal accuracy, with 𝜉 = 1 being the most common choice.

Theorem 2.1 Assume the initial guess is good enough, in the sense that
𝜈‖𝛻(u− u0)‖2 + 𝜉−1‖p− p0‖2 ≤ ‖𝛻u‖2 and 𝜉 ≥ 𝜈, where (u, p) is the solution of (1.12)
and (1.13) and (u0, p0) ∈ (Xh, Qh) to be the initial guess. Letting (uk, pk) ∈ (Xh, Qh) be the
Step k solution of Algorithm 2.1, then the algorithm converges linearly to (u, p), provided
the condition:

𝛼 < min{𝜈(8𝛽−2(2𝜈 + 2𝜈1∕2 + 3) + 2(1 + 𝜈1∕2)2)−1, (16𝛽−2 + 3)−1, 1}

is satisfied.

Proof. Denote eu
k ≔ u − uk and ez

k ≔ u − zk. Our proof will assume 𝜈‖𝛻eu
k−1

‖2 +
𝜉−1‖p − pk−1‖2 ≤ ‖𝛻u‖2, and by proving that the sequence defined by 𝜈‖𝛻eu

k−1
‖2 +

𝜉−1‖p − pk−1‖2 is decreasing, this will imply the condition at the next iteration.

Subtracting step k.1 from the unique steady solution Equation (1.12), we obtain for

all v ∈ Xh,

𝜉(𝛻 ⋅ ez
k, 𝛻 ⋅ v) + 𝜈(𝛻ez

k, 𝛻v) = (p − pk−1, 𝛻 ⋅ v) − b∗(eu
k−1

, u, v) − b∗(uk−1, ez
k, v).

Choosing v = ez
k vanishes the last nonlinear term, and provides the bound

𝜉‖𝛻 ⋅ ez
k‖2 + 𝜈‖𝛻ez

k‖2 ≤ 𝜉−1‖p − pk−1‖2 + 𝜈𝛼2‖𝛻eu
k−1

‖2, (2.6)

thanks to the definition of 𝛼, the bound on the true solution u, Young’s inequalities and

(1.11).

Next, we bound ‖p− pk‖. Begin by adding steps 1 and 2, which gives for all v ∈ Xh,

𝜉(𝛻 ⋅ (wk + zk), 𝛻 ⋅ v) + 𝜈(𝛻(wk + zk), 𝛻v) = (pk, 𝛻 ⋅ v) − b∗(uk−1, zk, v) + (f , v),

VIGUERIE AND XIAO 7

and we note that (wk + zk) ∈ Vh. Subtracting the unique steady solution Equation (1.12)

from this, we obtain the error equation

𝜉(𝛻 ⋅ (wk + zk − u), 𝛻 ⋅ v) + 𝜈(𝛻(wk + zk − u), 𝛻v)
= (pk − p, 𝛻 ⋅ v) − b∗(eu

k−1
, ez

k, v) − b∗(u, ez
k, v) − b∗(eu

k−1
, u, v) ∀v ∈ Xh. (2.7)

Choosing v= (wk + zk − u) ∈ Vh vanishes the pressure term, and yields the bound

𝜉‖𝛻 ⋅ (wk + zk − u)‖2 + 𝜈‖𝛻(wk + zk − u)‖2

≤ 2M2𝜈−1‖𝛻eu
k−1

‖2‖𝛻ez
k‖2 + 𝜈𝛼2‖𝛻ez

k‖2 + 𝜈𝛼2‖𝛻eu
k−1

‖2, (2.8)

thanks to (1.11), Young’s inequality, and the bound on u. Using the assumption that

𝜈‖𝛻eu
k−1

‖2 ≤ ‖𝛻u‖2, this reduces to

𝜉‖𝛻 ⋅ (wk + zk − u)‖2 + 𝜈‖𝛻(wk + zk − u)‖2 ≤ (𝜈 + 2)𝛼2‖𝛻ez
k‖2 + 𝜈𝛼2‖𝛻eu

k−1
‖2. (2.9)

We now use this bound to bound the pressure error, after applying inf-sup to (2.8) to find

𝛽‖p − pk‖ ≤ 𝜉‖𝛻 ⋅ (wk + zk − u)‖ + 𝜈‖𝛻(wk + zk − u)‖
+ M‖𝛻u‖‖𝛻ez

k‖ + M‖𝛻u‖‖𝛻eu
k−1

‖ + M‖𝛻eu
k−1

‖‖𝛻ez
k‖

≤ 𝜉‖𝛻 ⋅ (wk + zk − u)‖ + 𝜈‖𝛻(wk + zk − u)‖ + 𝛼(𝜈 + 𝜈1∕2)‖𝛻ez
k‖ + 𝛼𝜈‖𝛻eu

k−1
‖.

Squaring both sides, using that 𝜉 ≥ 𝜈, and reducing yields

𝛽2‖p − pk‖2 ≤ 4𝜉(𝜉‖𝛻 ⋅ (wk + zk − u)‖2 + 𝜈‖𝛻(wk + zk − u)‖2)
+ 4𝜉((𝜈1∕2 + 1)2𝛼2‖𝛻ez

k‖2 + 𝛼2𝜈‖𝛻eu
k−1

‖2).

Using the bound (2.11) and multiplying both sides by 𝜉−1 reduces this estimate to

𝜉−1‖p − pk‖2 ≤ 4𝛽−2((2𝜈 + 2𝜈1∕2 + 3)𝛼2‖𝛻ez
k‖2 + 2𝜈𝛼2‖𝛻eu

k−1
‖2). (2.10)

Next, we use (2.10) and (2.6) to bound ‖𝛻eu
k‖. Adding step 1 and step 3, and then

subtracting this from (1.12) obtains

𝜉(𝛻 ⋅ eu
k , 𝛻 ⋅ v) + 𝜈(𝛻eu

k , 𝛻v) = (p − pk, 𝛻 ⋅ v) − b∗(eu
k−1

, u, v) − b∗(u, ez
k, v) − b∗(eu

k−1
, ez

k, v).

Letting v = eu
k and applying Cauchy-Schwarz inequality, (1.11) and assumption‖𝛻eu

k−1
‖2 ≤ 𝜈−1‖𝛻u‖2 produces

𝜉‖𝛻 ⋅ eu
k‖2 + 𝜈‖𝛻eu

k‖2 ≤ ‖p − pk‖‖𝛻 ⋅ eu
k‖ + (𝜈𝛼‖𝛻eu

k−1
‖ + (𝜈 + 𝜈1∕2)𝛼‖𝛻ez

k‖)‖𝛻eu
k‖.

Applying Young’s inequality yields

𝜉‖𝛻 ⋅ eu
k‖2 + 𝜈‖𝛻eu

k‖2 ≤ 𝜉−1‖p − pk‖2 + 2𝜈𝛼2‖𝛻eu
k−1

‖2 + 2(1 + 𝜈1∕2)2𝛼2‖𝛻ez
k‖2. (2.11)

Adding this to (2.10) and combining with (2.6) and (2.10), we obtain

𝜉−1‖p − pk‖2 + 𝜈‖𝛻eu
k‖2

≤ (2(1 + 𝜈1∕2)2 + 8𝛽−2(2𝜈 + 2𝜈1∕2 + 3))𝛼2𝜈−1𝜉−1‖p − pk−1‖2

+ ((2(1 + 𝜈1∕2)2 + 8𝛽−2(2𝜈 + 2𝜈1∕2 + 3))𝛼2𝜈−1 + 2 + 16𝛽−2)𝛼2𝜈‖𝛻eu
k−1

‖2.

Applying the small data condition 𝛼 <min {𝜈(8𝛽−2(2𝜈 + 2𝜈1/2 + 3)+ 2(1+ 𝜈1/2)2)−1,

(16𝛽−2 + 3)−1, 1}, we find that

𝜉−1‖p − pk‖2 + 𝜈‖𝛻eu
k‖2 ≤ 𝛼𝜉−1‖p − pk−1‖2 + (𝛼 + 16𝛽−2 + 2)𝛼2𝜈‖𝛻eu

k−1
‖2

≤ 𝛼(𝜉−1‖p − pk−1‖2 + 𝜈‖𝛻eu
k−1

‖2).

8 VIGUERIE AND XIAO

FIGURE 1 Bifurcation geometry [Color figure can be viewed at wileyonlinelibrary.com]

We have thus proven that 𝜉−1‖p − pk‖2+𝜈‖𝛻eu
k‖2 is a contractive sequence in k, and hence

it converges. Since the solution of the (finite dimensional) problem (1.12) and (1.13) is

unique and bounded by the data, we have that the limit of the incremental Picard–Yosida

iteration converges linearly to the solution of (1.12) and (1.13). ▪

3 NUMERICAL TESTS FOR PICARD–CHORIN–TEMAM SCHEMES

In this section, we present two numerical tests: a two-dimensional (2D) flow in a bifurcated domain

and three-dimensional (3D) flow in a coronary artery. Here we want to show several things: that

our incremental method converges linearly to the solution of discrete steady Navier–Stokes system

(1.12) and (1.13), that the convergence rate is similar to standard Picard, and that the solution method

outperforms or is competitive with standard Picard in terms of efficiency.

3.1 2D bifurcation flow

We first test our proposed Algorithm 2.1 by solving the 2D steady Navier–Stokes problem in the same

bifurcated domain shown in Figure 1. For the discretization, we employ TH P2/P1 elements on a fine

mesh of 8,988 elements (h= .05), leading to 41,589 total degrees of freedom (DOF). We prescribe a

parabolic inflow profile with peak velocity 2.0 and assign traction-free boundary conditions at both

outflows. We solve for 𝜈 = .0133 and 𝜈 = .0067 for 𝜉 = 1 and 𝜉 = 2 using the software FreeFEM++ on

a 2017 MacBook Pro.

We compare the solutions computed by Algorithm 1.3 (iPY) and Algorithm 2.1 (GISACT)

to the reference solution from the standard Picard iterations up to a very high level of accu-

racy (1e-12). To ensure the best possible accuracy, we solved the full saddle-point system with

UMFPACK at each iteration to compute the reference solution. For iPY and GISACT, we solve

both velocity systems with UMFPACK (step k.1 and step k.2), and the Schur complement with

CG preconditioned by the lumped pressure mass-matrix for outer solve and UMFPACK for inner

solve.

For the purposes of comparison, we also computed the solution for the same problem configuration

with a standard Picard scheme (1.1). At each iteration we solved the full saddle-point system with

http://wileyonlinelibrary.com

VIGUERIE AND XIAO 9

FIGURE 2 Bifurcation test streamlines; 𝜈 = .0133 (top) and 𝜈 = .0067 (bottom)

GMRES preconditioned with the following block-triangular preconditioner found in [17]:

P−1 =
[

A𝜉 BT

0 −(𝜈 + 𝜉)−1Mp

]−1

(3.1)

where Mp is the lumped pressure mass matrix and A𝜉 the velocity block with grad-div stabilization.

Mp is simply a diagonal matrix inversion and we solve A𝜉 with UMFPACK. We set the outer solve

tolerance to 1e-6.

For 𝜈 = .0133 (Figure 3), we observe a similar rate of convergence for standard Picard and GISACT.

iPY converges more slowly, with 𝜉 = 1 being noncompetitive and 𝜉 = 2 converging faster but still more

slowly than standard Picard or GISACT. For 𝜈 = .0067 (Figure 4), we see that iPY with 𝜉 = 1 is again

not competitive, converging very slowly. However, GISACT with both values of 𝜉 and iPY with 𝜉 = 2

are both comparable or slightly superior to standard Picard. Although we varied the value of 𝜉 for

standard Picard as well, we found that it did not impact the convergence rate significantly in this case.

For the sake of clarity, we display only the convergence of standard Picard with 𝜉 = 2 in Figures 3 and 4.

We note that in the figures above that although the convergence is rate of iPY and GISACT shows

a linear trend, it is not always monotonic and some oscillations may be present. This phenomenon

appears more pronounced for iPY but we observe it for GISACT as well. Increasing 𝜉 seems to reduce

its effect. Note that standard Picard does not show this behavior. Although we are not certain as to what

causes this, the fact that increasing 𝜉 reduces its effect suggests it may be related to mass conservation.

This would also explain why it affects iPY more than GISACT, as GISACT globally mass-conservative

while iPY is not. This phenomenon requires further investigation to understand properly.

10 VIGUERIE AND XIAO

0 10 20 30 40
10

−

10
−

10
−4

6

8

10
2−

10
0

Iterations

L
2
 E

rr
o
r

Vel. Convergence, ν=.0133

Picard

iPY, ξ=1

GISACT,ξ=1

iPY, ξ=2

GISACT,ξ=2

0 10 20 30 40
10

−

10
−

10
−

10
0

2

4

6

10
2

Iterations

Pres. Convergence, ν=.0133

L
2
 E

rr
o
r

Picard

iPY, ξ=1

GISACT,ξ=1

iPY, ξ=2

GISACT,ξ=2

0 10 20 30 40
10

−

10
−

10
−

10
−

10
0

2

3

4

6

Iterations

Residuals, ν=.0133

L
2
 E

rr
o
r

Picard

iPY, ξ=1

GISACT,ξ=1

iPY, ξ=2

GISACT,ξ=2

FIGURE 3 Comparison of convergence for test case 1, 𝜈 = .0133 [Color figure can be viewed at wileyonlinelibrary.com]

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

L
2
 E

rr
o
r

Vel. Convergence, ν=.0067

Picard

iPY, ξ=1

GISACT,ξ=1

iPY, ξ=2

GISACT,ξ=2

0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Pres. Convergence, ν=.0067

Iterations

L
2
 E

rr
o
r

Picard

iPY, ξ=1

GISACT,ξ=1

iPY, ξ=2

GISACT,ξ=2

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Residuals, ν=.0067

Iterations

L
2
 E

rr
o
r

Picard

iPY, ξ=1

GISACT,ξ=1

iPY, ξ=2

GISACT,ξ=2

FIGURE 4 Comparison of convergence for test case 1, 𝜈 = .0067 [Color figure can be viewed at wileyonlinelibrary.com]

In Table 1 we provide information regarding the numerical cost of each nonlinear iteration. Here,

outer Krylov iterations refers to the number of outer GMRES iterations for standard Picard and the

number of outer preconditioned conjugate-gradient (PCG) iterations for the approximate Schur com-

plement solve for iPY and GISACT. The average solve time is the time required to solve the systems

at each nonlinear iteration, and does not factor in the assembly costs (similar across all algorithms and

therefore excluded to more clearly show the differences between methods). For all three methods, the

number of outer iterations does not appear to change significantly with 𝜈. Standard Picard shows a mild

but observable dependence on 𝜉 for its required outer iterations, but both iPY and GISACT appear less

sensitive in this regard. Overall, the splitting schemes require fewer outer iterations per solve, resulting

in clear computational savings at each step.

Overall, from this test we conclude that the convergence of GISACT is roughly the same, or slightly

faster, than standard Picard for both values of 𝜉. iPY is somewhat slower than both Picard and GISACT

for 𝜉 = 1, but performs comparably for 𝜉 = 2. Changing 𝜉 appears to affect the convergence of GISACT

somewhat, but on the whole it is less sensitive to 𝜉 than iPY. Like the convergence oscillations discussed

earlier, we believe that this reduced sensitivity to 𝜉 for GISACT may be related to mass conservation.

As GISACT satisfies the continuity equation, it is mass conservative by construction; however since

iPY does not satisfy the continuity equation, the enforcement of mass conservation comes from the

grad-div penalization and therefore depends on 𝜉. This behavior may also be caused by the small data

assumption no longer holding. In terms of cost per iteration, we find both iPY and GISACT to be

cheaper than standard Picard, resulting in around 50% savings in solve time.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

VIGUERIE AND XIAO 11

TABLE 1 Iteration statistics for 2D bifurcation test

GISACT iPY Standard Picard

𝝃

Outer
Krylov
iter.

Avg.
solve
time

Outer
Krylov
iter.

Avg.
solve
time

Outer
Krylov
iter.

Avg.
solve
time

2D bifurcation: 𝝂= .0133 (Re= 200)
1.0 11 .600 s 11 .594 s 30 1.346 s

2.0 10 .549 s 10 .552 s 25 1.134 s

2D bifurcation: 𝝂= .00667 (Re= 400)

1.0 11 .603 s 11 .595 s 30 1.409 s

2.0 11 .598 s 11 .593 s 25 1.146 s

FIGURE 5 The geometry for test case 3.2. Γin is the inlet and Γ1, Γ2, and Γ3 are outlets. Our variable of interest is the

pressure value at Γ3 [Color figure can be viewed at wileyonlinelibrary.com]

3.2 3D test case: flow in a coronary artery

We next test our method on a reconstructed coronary artery taken from the left circumflex branch of an

actual patient. The goal of this simulation is to compute the pressure distal to the stenosis at the outlet

indicated as Γ3 in Figure 5. The input data is the pressure at the inlet Γin, measured to be 92 mmHg. The

reconstructed mesh consists of 50,165 tetrahedra and is pictured in Figure 5. We use iterative linear

solvers to solve each linear system in this test, as problems of this type are often too large to employ a

direct solver. This test is intended to demonstrate the method’s applicability for realistic problems of

practical interest and to show that it remains effective when one employs iterative solvers instead of

direct approaches.

We run our simulation with P2/P1 TH elements on a moderately fine mesh with 50,165 tetrahe-

dra. We set the kinematic viscosity 𝜈 = .033 cm2/s,2 based on the values found in [18]. At the inflow,

2Note that the true physical parameters are actually a fluid density of 1.06 g/cm3 and dynamic viscosity of .035 g/cm-s. From a

simulation standpoint this does not make a practical difference; however one must multiply the pressure by the density to recover

the correct units. Alternatively, one may avoid the need for scaling by setting 𝜈 = .035 and multiplying the trilinear form b* by

𝜌= 1.06.

http://wileyonlinelibrary.com

12 VIGUERIE AND XIAO

TABLE 2 Iteration statistics for 3D coronary flow test

GISACT Standard Picard
Nonlinear
iter.

Avg. outer
SC iter.

Avg. inner
SC iter.

Avg. solve
time

Nonlinear
iter.

Avg. outer
GMRES iter.

Avg.
solve time

34 51 10 70.1 s 28 1816 216.7 s

we prescribe a parabolic Poiseulle profile with a flow rate of 1.75 mL/s, estimated based on litera-

ture values for coronary arteries [19, 20], resulting in a Reynolds number of approximately 250. As

our parameter of interest is the outlet pressure, we assign the outlet boundary conditions using the

minimization method found in [21]. We set 𝜉 = 2 and end our computation when the difference in L2

norm of velocity between consecutive iterations falls below 1e-3.

At each step, we solve the initial velocity step using GMRES with an ILU(1) preconditioner and a

stopping tolerance of 1e-7 and the velocity correction step with Jacobi-preconditioned CG. To solve

the Schur complement, we use PCG preconditioned with the lumped pressure mass matrix for the outer

solves and CG preconditioned with ILU(1) for the inner solves. We used a stopping tolerance of 1e-3

for the inner solves and 1e-7 for the outer solve. All computations were performed on a 2017 MacBook

pro using the finite element software package FEniCS, with the linear systems solved using the PETSc

linear algebra library [22].

For the purposes of comparison, we also computed the solution for the same problem configu-

ration with a standard Picard scheme (1.1). At each iteration we solved the full saddle-point system

with GMRES using a preconditioner similar to (3.1); however instead of solving A𝜉 directly, we now

approximate with ILU(2). While replacing A𝜉 with an approximation increased the number of outer

iterations, the cheaper cost of each iteration made this approach faster than solving A𝜉 iteratively (even

for high stopping tolerances).

We found that our method performed favorably in comparison to standard Picard. We report per-

formance statistics in Table 2. Though GISACT required slightly more nonlinear iterations to reach

convergence (28 compared to 35), this is offset by the reduction in cost of each iteration. One GISACT

iteration took an average of 70.1 s compared to 216.7 s for standard Picard. This resulted in GISACT

requiring only 40% as much time as the comparison.

In terms of accuracy, the solutions were identical and each computed a distal pressure of 82 mmHg,

in good agreement with the measured value of 84 mmHg. We note that 2 mmHg is well within expected

variability for blood pressure across different measurement times and methods from the available

medical literature [23–25]. We show the pressure gradients of the computed solutions in Figure 6.

4 GRAD-DIV ALGEBRAIC CHORIN–TEMAM NEWTON ITERATION

We now present and study a higher order of Algebraic Chorin–Temam iteration for steady

Navier–Stokes system, which is defined as follows.

Algorithm 4.1 The higher order algebraic Chorin–Temam iteration for the steady

Navier–Stokes is given by:
Step 1: Guess u0 ∈ Xh, p0 ∈ Qh.
Step k consists of the following four steps:

k.1 Find zk ∈ Xh satisfying for all v ∈ Xh,

𝜉(𝛻 ⋅ zk, 𝛻 ⋅ v) + b∗(uk−1, zk, v) + b∗(zk, uk−1, v) + 𝜈(𝛻zk, 𝛻v) = (f , v) + (pk−1, 𝛻 ⋅ v) + b∗(uk−1, uk−1, v).

VIGUERIE AND XIAO 13

FIGURE 6 Computed pressure profiles for the 3D coronary flow test; GISACT solution (left) and standard Picard (right)

[Color figure can be viewed at wileyonlinelibrary.com]

1 2 3 4 5 6 7

iterations

10
-8

10
-6

10
-4

10
-2

10
0

L
2
E

rr
o
r

velocity convergence

Newton

INY

ACTN

1 2 3 4 5 6 7

iterations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

L
2
E

rr
o
r

pressure convergence

Newton

INY

ACTN

FIGURE 7 Shown above are the velocity and pressure convergence of three methods (Newton’s iteration (red), incremental

Newton–Yosida (blue), algebraic Chorin–Temam Newton (green)) [Color figure can be viewed at wileyonlinelibrary.com]

k.2 Find (wk, 𝛿
p
k) ∈ (Xh,Qh) satisfying for all (v, q) ∈ (Xh, Qh),

𝜉(𝛻 ⋅ wk, 𝛻 ⋅ v) − (𝛿p
k , 𝛻 ⋅ v) + 𝜈(𝛻wk, 𝛻v) = 0,

(𝛻 ⋅ wk, q) = −(𝛻 ⋅ zk, q).

k.3 Find uk ∈ Xh satisfying for all v ∈ Xh,

𝜉(𝛻 ⋅ uk, 𝛻 ⋅ v) + 𝜈(𝛻uk, 𝛻v) = (𝛿p
k , 𝛻 ⋅ v) + 𝜉(𝛻 ⋅ zk, 𝛻 ⋅ v) + 𝜈(𝛻zk, 𝛻v),

k.4 Set pk = pk−1 + 𝛿
p
k .

The standard Newton method for steady NSE, converges and has unique solution under the condi-

tion 𝛼 = (1 + 𝜀)M𝜈−1‖f‖−1 < 1, see [7]. Here we state a theorem that the Algorithm 4.1 converges to

the solution of (1.12) and (1.13) under a more restrictive condition.

Theorem 4.1 Let 𝜀> 0 and define

𝛼 < min{1, (9 + 10𝛽−2)−1, 𝜈−1(1 + 𝜀)2‖f‖2
−1
(2(1 + 12𝛽−2) + (8 + 80𝛽−2)−1)−1}.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

14 VIGUERIE AND XIAO

Denote by (u, p) the solution of system (1.12) and (1.13), (u0, p0) ∈ (Xh, Qh) the
initial guess of Algorithm 4.1, and (uk, pk) the step k solution. Then if 𝜉 ≥ 𝜈 and
𝜈‖𝛻(u− u0)‖2 + 𝜉−1‖p− p0‖2 ≤ ‖𝛻u‖2, the sequence (uk, pk) converges to (u, p).

Remark 4.2 Even though Newton’s method converges quadratically, we would not

expect Algorithm 4.1 to converge quadratically, since approximations are being made.

From the proof, in particular (4.10), observe that if the pressure terms are small, then

quadratic convergence of the velocity is recovered.

Proof. We begin the proof by giving one assumption that the sequence {u− uk} is

bounded by min{𝜈−1/2, 𝜀‖𝛻u‖} for all k∈N, where 𝜀 is the same constant used in the

definition of 𝛼. Hence for all k, we have

‖𝛻uk−1‖ ≤ ‖𝛻(u − uk−1)‖ + ‖𝛻u‖ ≤ (1 + 𝜀)𝜈−1‖f‖−1. (4.1)

by using the triangle inequality, and the upper bound of true solution u.

Also, we assume that

𝜈‖𝛻(u − uk−1)‖2 + 𝜉−1‖p − pk−1‖2 ≤ ‖𝛻u‖2, (4.2)

and by proving that the sequence defined by 𝜈‖𝛻(u− uk− 1)‖2 + 𝜉−1‖p− pk− 1‖2 is

decreasing, this will imply the condition at the next iteration.

Denote eu
k ≔ u − uk and ez

k ≔ u − zk. Subtracting step k.1 of Algorithm 4.1 from the

unique steady solution Equation (1.12), we obtain for all v ∈ Xh,

𝜉(𝛻 ⋅ ez
k, 𝛻 ⋅ v) + 𝜈(𝛻ez

k, 𝛻v)
= (p − pk−1, 𝛻 ⋅ v) − b∗(eu

k−1
, eu

k−1
, v) − b∗(ez

k, uk−1, v) − b∗(uk−1, ez
k, v).

Choosing v = ez
k vanishes the last term, we get

𝜉‖𝛻 ⋅ ez
k‖2 + 𝜈(1 − 𝛼)‖𝛻ez

k‖2 ≤ 𝜉−1‖p − pk−1‖2 + M2

𝜈(1 − 𝛼)
‖𝛻eu

k−1
‖4, (4.3)

thanks to Young’s inequality, (4.1), and the definition of 𝛼.

Next, we give a bound of ‖p− pk‖. Begin by adding step k.1 and step k.2, and subtract-

ing it from the unique steady solution Equation (1.12). We then obtain the error equation

for all v ∈ Xh,

𝜉(𝛻 ⋅ (zk + wk − u), 𝛻 ⋅ v) + 𝜈(𝛻(zk + wk − u), 𝛻v)
= (pk − p, 𝛻 ⋅ v) + b∗(eu

k−1
, eu

k−1
, v) + b∗(uk−1, ez

k, v) + b∗(ez
k, uk−1, v). (4.4)

Choosing v= zk +wk − u ∈ Vh vanishes the pressure term and yields the bound

𝜉‖𝛻 ⋅ (zk + wk − u)‖2 + 𝜈‖𝛻(zk + wk − u)‖2 ≤ 8𝜈𝛼2‖𝛻ez
k‖2 + 2M2𝜈−1‖𝛻eu

k−1
‖4. (4.5)

thanks to Young’s inequality, (4.1), and the definition of 𝛼.

Applying the inf-sup condition to (5.19) gives

𝛽‖pk − p‖ ≤ 𝜉‖𝛻 ⋅ (zk + wk − u)‖ + 𝜈‖𝛻(zk + wk − u)‖ + M‖𝛻eu
k−1

‖2 + 2𝜈𝛼‖𝛻ez
k‖.

Squaring both sides, using that 𝜉 ≥ 𝜈, and reducing yields

𝛽2‖pk − p‖2 ≤ 4𝜉(𝜉‖𝛻 ⋅ (zk + wk − u)‖2 + 𝜈‖𝛻(zk + wk − u)‖2

+ 𝜈−1M2‖𝛻eu
k−1

‖4 + 2𝜈𝛼2‖𝛻ez
k‖2).

VIGUERIE AND XIAO 15

Applying the bound (5.20) reduces this estimate to

‖p − pk‖2 ≤ 4𝜉𝛽−2(10𝜈𝛼2‖𝛻ez
k‖2 + 3𝜈−1M2‖𝛻eu

k−1
‖4). (4.6)

Combining (5.17) and (4.6) and multiplying both sides by 𝜉−1 produces

𝜉−1‖p − pk‖2 ≤ 4𝛽−2

(
10𝛼2

1 − 𝛼
𝜉−1‖p − pk−1‖2 + 𝜈−1M2

(
3 + 10𝛼2

(1 − 𝛼)2

)‖𝛻eu
k−1

‖4

)
. (4.7)

Now we are going to use (4.7) and (5.17) to bound ‖eu
k‖. Adding step k.3 and step k.1

and then subtracting from (1.12), we have

𝜉(𝛻 ⋅ eu
k , 𝛻 ⋅ v) + 𝜈(𝛻eu

k , 𝛻v) = (p − pk, 𝛻 ⋅ v) − b∗(eu
k−1

, eu
k−1

, v)
− b∗(ez

k, uk−1, v) − b∗(uk−1, ez
k, v). (4.8)

Choosing v = eu
k yields

𝜉‖𝛻 ⋅ eu
k‖2 + 𝜈‖𝛻eu

k‖2 ≤ 𝜉−1‖p − pk‖2 + 2𝜈−1M2‖𝛻eu
k−1

‖4 + 8𝛼2𝜈‖𝛻ez
k‖2, (4.9)

thanks to Young’s inequality, (4.1) and the definition of 𝛼.

Adding this bound with (4.7) gives

𝜉−1‖p − pk‖2 + 𝜈‖𝛻eu
k‖2 ≤ 8𝛼2

1 − 𝛼
(10𝛽−2 + 1)𝜉−1‖p − pk−1‖2

+
(

2𝜈−2M2(12𝛽−2 + 1) + 8𝛼2M2

𝜈2(1 − 𝛼)2
(10𝛽−2 + 1)

)
𝜈‖𝛻eu

k−1
‖4.

Using the assumptions 𝛼 < (9 + 10𝛽−2)−1 and 𝛼 < 𝜈−1(1 + 𝜀)2‖f‖2
−1

(2(1 + 12𝛽−2) + (8 + 80𝛽−2)−1)−1,

𝜉−1‖p − pk‖2 + 𝜈‖𝛻eu
k‖2 ≤ 𝛼𝜉−1‖p − pk−1‖2 +

(
2(12𝛽−2 + 1) + 𝛼

1 − 𝛼

)
M2

𝜈3
𝜈2‖𝛻eu

k−1
‖4

≤ 𝛼𝜉−1‖p − pk−1‖2

+ (2(12𝛽−2 + 1) + (8 + 80𝛽−2)−1) 𝛼2𝜈‖f‖2
−1
(1 + 𝜀)2

𝜈2‖𝛻eu
k−1

‖4

≤ 𝛼(𝜉−1‖p − pk−1‖2 + 𝜈2‖𝛻eu
k−1

‖4). (4.10)

By (4.2), we then have 𝜈‖𝛻(u− uk)‖2 ≤ 1. We have therefore proved that

𝜈‖𝛻(u− uk− 1)‖2 + 𝜉−1‖p− pk− 1‖2 is a contractive sequence in k, and thus converges.

Since the solution of the problem (1.12) and (1.13) is unique and bounded by the data,

we have that the limit of Algorithm 4.1 converges to the solution of (1.12) and (1.13). ▪

4.1 Numerical test: 3D lid driven cavity

We now compare the convergence of three algorithms: the usual Newton iterations, the incremental

Newton–Yosida (INY, proposed in [7]), and our Algorithm 4.1 (ACTN). We test using the 3D lid driven

cavity problem on a barycenter mesh with 413,748 DOF, with SV elements (P3,P𝑑𝑐
2
), for a Reynolds

number of 100 and a grad-div stabilization parameter 𝜉 = 1.

Although Newton’s iteration converges slightly faster than INY and ACTN, the computational cost

of INY and ACTN is much lower. From Table 3, both INY and ACTN methods have an average linear

solve time of around 20 s while standard Newton requires 2,000 s. Furthermore, standard Newton fails

when using a fine mesh (e.g. barycenter mesh with 1,593,444 DOF) due to memory limits. However,

the ACTN does not have this problem.

16 VIGUERIE AND XIAO

TABLE 3 Iteration times for 3D lid-driven cavity test

Method Newton INY ACTN

Avg. solve time 1.7623e+ 3 1.7291e+ 01 1.6395e+ 01

0 0.2 0.4 0.6 0.8 1

z

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
1
(0

.5
,0

.5
,z

)

Centerline x velocity for Re=100 driven cavity steady state

Wong/Baker
Iter. ACT (=1)

0 0.2 0.4 0.6 0.8 1

z

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
1
(0

.5
,0

.5
,z

)

Centerline x velocity for Re=100 driven cavity steady state

Wong/Baker

Iter. ACT (=1)

0 0.2 0.4 0.6 0.8 1

z

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
1
(0

.5
,0

.5
,z

)

Centerline x velocity for Re=100 driven cavity steady state

Wong/Baker

Iter. ACT (=1)

FIGURE 8 Shown above is the centerline x-velocity for the algebraic Chorin–Temam Newton solution with Re= 100, 𝜉 = 1,

found using Scott–Vogelius elements with three different mesh levels: 33540 DOF (top-left), 413,748 DOF (top-right),

1,593,444 DOF (bottom) [Color figure can be viewed at wileyonlinelibrary.com]

Figure 8 shows the centerline x-velocity of computed solution (red) and the reference solution

(black) from [26] on different mesh levels (DOF= 33,540, 413,748, 1,593,444). For a coarse mesh,

the solution from Algorithm 4.1 is slightly off in the middle. This problem is fixed when using a

finer mesh. Solutions on the moderate and fine mesh levels align with the literature results very well.

Figure 9 are the centerplane slices of the velocity field of ACTN solution on a mesh with 413,748

DOF using SV elements. It matches the results from [26] well.

5 APPROXIMATION OF THE SCHUR COMPLEMENT

We can improve the numerical efficiency of the scheme in Algorithm 2.1 by several orders of mag-

nitude if we use an approximated Schur Complement, as we will show below. As seen in [17], at the

http://wileyonlinelibrary.com

VIGUERIE AND XIAO 17

x

y

x

z

y

z

FIGURE 9 Shown above are centerplane slices of the velocity field for the algebraic Chorin–Temann Newton solution with

Re= 100, 𝜉 = 1, found using Scott–Vogelius elements and 413,748 total degrees of freedom. These plots are in good

agreement with those found in the literature [26]

discrete level, the matrix 𝜉D has the following form, where Mp denotes the pressure-mass matrix and

R is some remainder:

𝜉𝐷 = 𝜉BTM−1
p B + 𝜉ℎ𝑅. (5.1)

We can therefore regard 𝜉D as a very close approximation to 𝜉BTM−1
p B when h is small enough. We

will make use of the following lemma:

Lemma 5.1 B(𝜈K+ 𝜉D)− 1BT can be expressed as B(𝜈𝐾 + 𝜉BTMpB)−1BT + 𝒪(h).

Proof. Begin by recalling the following formula for two invertible matrices X and Y
(see for example, . [27]):

(X + Y)−1 = X−1 − X−1Y(I + X−1Y)−1X−1 (5.2)

By (5.1):

(𝜈𝐾 + 𝜉𝐷)−1 = (𝜈𝐾 + 𝜉BTM−1
p B + 𝜉ℎ𝑅)−1 (5.3)

Applying formula (5.2) with X = 𝜈𝐾 + 𝜉BTM−1
p B and Y = 𝜉 hR:

(𝜈𝐾 + 𝜉𝐷)−1 = (𝜈𝐾 + 𝜉BTM−1
p B)−1 − ℎ𝜉(𝜈𝐾 + 𝜉BTM−1

p B)−1R(I + ℎ𝜉(𝜈𝐾 + 𝜉BTM−1
p B)−1R)−1

× (𝜈𝐾 + 𝜉BTM−1
p B)−1 (5.4)

Call the second term in (5.4) H. We will analyze the growth order of H with respect

to the parameters 𝜉, 𝜈, and h. Clearly:

(𝜈𝐾 + 𝜉𝐵𝑀−1
p B)−1 ∼ 𝒪((𝜈 + 𝜉)−1) (5.5)

From (5.5) we then have:

H ∼ 𝒪(ℎ𝜉(𝜈 + 𝜉)−1(1 + ℎ𝜉(𝜈 + 𝜉)−1)−1(𝜈 + 𝜉)−1)

∼ 𝒪

(
ℎ𝜉

(𝜈 + 𝜉)2

(
1 + ℎ𝜉

𝜈 + 𝜉

)−1
)

∼ 𝒪
(

ℎ𝜉

(𝜈 + 𝜉)2
𝜈 + 𝜉

𝜈 + 𝜉 + ℎ𝜉

)
∼ 𝒪

(
ℎ𝜉

(𝜈 + 𝜉)(𝜈 + 𝜉 + ℎ𝜉)

)
(5.6)

18 VIGUERIE AND XIAO

We recall now that 0<𝜈 < 𝜉 by hypothesis and therefore we assume:

𝒪((𝜈 + 𝜉)−1) ∼ 𝒪(𝜉−1) (5.7)

And so the last line of (5.6) becomes:

H ∼ 𝒪
(

ℎ𝜉

𝜉2 + h𝜉2

)
∼ 𝒪

(
h

(1 + h)𝜉

)
∼ 𝒪(h∕𝜉) (5.8)

Left and right multiply (5.4) by B and BT , respectively to obtain:

B(𝜈𝐾 + 𝜉BTM−1
p B)−1BT + 𝐵𝐻𝐵T (5.9)

which together with (5.8(gives:

B(𝜈𝐾 + 𝜉BTM−1
p B)−1BT + 𝒪(h∕𝜉) (5.10)

completing the proof. This suggests that we must have 𝜉 ≫ h for B(𝜈𝐾 + 𝜉BTM−1
p B)−1BT

to be an effective approximation of B(𝜈K + 𝜉D)−1BT ; for 𝜉 ∼ 𝒪(h), this approximation

becomes less reliable as the other term is no longer small. However, throughout this work

we take 𝜉 ∼ 𝒪(1), in which case this is not an issue. ▪

We will also use this identity (see [1]):

(B(𝜈𝐾 + 𝜉BTM−1
p B)−1BT)−1 = 𝜈(𝐵𝐾−1BT)−1 + 𝜉M−1

p . (5.11)

It is well-known ([1, 2]) that the matrix BK−1BT is spectrally equivalent to Mp. Based on this fact and

the preceding lemma, we propose to use the following approximation for the Schur complement:

(B(𝜈𝐾 + 𝜉𝐷)−1BT)−1 ≈ (𝜈 + 𝜉)M−1
p , (5.12)

where Mp is lumped. This approximation replaces the inverse of the Schur complement with a diagonal

matrix, which can be solved easily using direct solves even for very large system. Hence the systems

(2.1)–(2.4) become:

(𝜈𝐾 + C(ûk−1) + 𝜉𝐷)̂zk = f̂ + BTp̂k−1, (5.13)

(𝜈 + 𝜉)−1Mp𝛿
p
k = −Bẑk, (5.14)

(𝜈𝐾 + 𝜉𝐷)ûk = (𝜈𝐾 + 𝜉𝐷)̂zk + BT𝛿
p
k , (5.15)

p̂k = 𝛿
p
k + p̂k−1. (5.16)

it works for both Picard’s Algorithm 2.1 and Newton’s Algorithm 4.1 with different C(ûk−1).
Before we continue, let’s first take a closely look at the new system by converting it back to finite

element setup. (5.13)–(5.16) is equivalent to: find zk ∈ Xh such that for any v ∈ Xh

𝜈(𝛻zk, 𝛻v) + 𝜉(𝛻 ⋅ zk, 𝛻 ⋅ v) + b∗(uk−1, zk, v) = (f , v) + (pk−1, 𝛻 ⋅ v), (5.17)

then find (uk, pk) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh)

(𝜈 + 𝜉)−1(𝛿p
k , q) = −(𝛻 ⋅ z, q), (5.18)

𝜈(𝛻uk, 𝛻v) + 𝜉(𝛻 ⋅ uk, 𝛻 ⋅ v) = 𝜈(𝛻zk, 𝛻v) + 𝜉(𝛻 ⋅ zk, 𝛻 ⋅ v) + (𝛿p
k , 𝛻 ⋅ v), (5.19)

pk = 𝛿
p
k + pk−1. (5.20)

VIGUERIE AND XIAO 19

Equations (5.17)–(5.20) are essentially the penalty projection methods shown in [28], suitably

adapted for steady problems. Both have the same intermediate velocity solved by (5.17). As the pro-

jection step in [28] is heavily dependent on timestep, in our work we must adjust the projection step in

[28] as (5.18) and (5.19) so that uk is divergence-free. Finally, we recover the pressure by (5.20).

In the following sections, we will demonstrate through algebraic arguments to show that this

penalty-projection method gives a good approximation. Using this approach, computational costs are

reduced by several orders of magnitude. Our numerical tests confirm this efficiency and this method

has the same accuracy as the direct one, though it does generally require more iterations than solving

the full system. Numerical tests and a rigorous error analysis will follow.

5.1 Analysis

In this section we rigorously analyze the approximation error incurred by the use of (5.12). Let S̃ ≔
B(𝜈𝐾 + 𝜉BTM−1

p B)−1BT , S :=BK−1BT , and recall that B(K + 𝜉𝐷)−1BT = S̃ + 𝒪(h∕𝜉).
We will proceed as follows: we will first show that ‖I − (𝜈 + 𝜉)M−1

p S̃‖N is bounded continuously

by 𝜉 in an appropriate norm ‖ ⋅ ‖N . That result combined with (5.1) will imply that the approximation

error is controlled by the mesh level h and the user controlled parameter 𝜉.

Recall that S and Mp are spectrally equivalent (see e.g. [1, 2]) implying that

0 < dmin < 𝜎(S−1Mp) < dmax < ∞ (5.21)

where dmin and dmax are independent of the mesh size h. Fix 𝜀> 0. As the spectral radius of

𝜌(S−1Mp)< dmax there exists a matrix norm ‖⋅‖N such that:

‖S−1Mp‖N < 𝜌(S−1Mp) + 𝜀 < dmax + 𝜀 < 2dmax (5.22)

Theorem 5.1 ‖I − (𝜈 + 𝜉)M−1
p S̃‖N is bounded by 𝜈/𝜉 independently of h.

Proof. Observe that:

I − (𝜈 + 𝜉)M−1
p S̃ = I −

(
S̃−1 1

𝜈 + 𝜉
Mp

)−1

(5.23)

Applying (5.11):

I − (𝜈 + 𝜉)M−1
p S̃ = I −

(
𝜈

𝜈 + 𝜉
S−1Mp +

𝜉

𝜈 + 𝜉
I
)−1

(5.24)

= I −
(

𝜉

𝜈 + 𝜉

(
I + 𝜈(𝜈 + 𝜉)

(𝜈 + 𝜉)𝜉
S−1Mp

))−1

(5.25)

= I − 𝜈 + 𝜉

𝜉

(
I + 𝜈

𝜉
S−1Mp

)−1

(5.26)

Let 𝜉 be such that: ‖‖‖‖𝜈𝜉 S−1Mp
‖‖‖‖N

≤ 1

2
(5.27)

with ‖⋅‖N defined as (5.22). Note that the choice of 1/2 here is simply for convenience and

one could use any value less than one without loss of generality. By (5.27) the Neumann

series converges: (
I + 𝜈

𝜉
S−1Mp

)−1

=
∞∑

j=0

(
−𝜈

𝜉
S−1Mp

)j

(5.28)

20 VIGUERIE AND XIAO

And therefore:

I − (𝜈 + 𝜉)M−1
p S̃ = I − 𝜈 + 𝜉

𝜉

∞∑
j=0

(
−𝜈

𝜉
S−1Mp

)j

(5.29)

= −𝜈

𝜉
I −

∞∑
j=1

(
−𝜈

𝜉
S−1Mp

)j

(5.30)

= −𝜈

𝜉
I − 𝜈

𝜉
S−1Mp

∞∑
j=0

(−1)j+1

(
𝜈

𝜉
S−1Mp

)j

(5.31)

We then take norms using the norm defined in (5.22):

‖I − (𝜈 + 𝜉)M−1
p S̃‖N =

‖‖‖‖‖‖−
𝜈

𝜉
I − 𝜈

𝜉
S−1Mp

∞∑
j=0

(−1)j+1

(
𝜈

𝜉
S−1Mp

)j‖‖‖‖‖‖N

(5.32)

≤ 𝜈

𝜉
+ 𝜈

𝜉
‖S−1Mp‖N

∞∑
j=0

‖‖‖‖𝜈𝜉 S−1Mp
‖‖‖‖

j

N
(5.33)

≤ 𝜈

𝜉
(1 + 4dmax) (5.34)

Noting that dmax is independent of h completes the proof. ▪

This then immediately implies our main result:

Theorem 5.2 The splitting error ‖I − (𝜈 + 𝜉)M−1
p B(𝜈𝐾 + 𝜉𝐷)−1BT‖ incurred by the

approximation (5.12) is bounded by 𝜈/𝜉 and h/𝜉 and tends to zero as 𝜉→∞.

Proof. Applying the previous theorem and Lemma 5.1 gives:

‖I − (𝜈 + 𝜉)M−1
p B(𝜈𝐾 + 𝜉𝐷)−1BT‖

≤ ‖I − (𝜈 + 𝜉)M−1
p S̃‖ + ‖(𝜈 + 𝜉)M−1

p 𝒪(h∕𝜉)‖
≤ 𝜈

𝜉
C1 +

h
𝜉

C2 (5.35)
▪

Theorem 5.3 The local splitting error at an iteration incurred by replacing
(B(𝜈K+ 𝜉D)−1BT)−1 with (𝜈 + 𝜉)M−1

p at an iteration k in the discrete version of (2.1) is
bounded by 𝜈/𝜉 and h.

Proof. By direct inspection we may find that one step of the discrete problem given

by (2.1) is equivalent to solving the following system in the block matrix AF (letting

K̃ = (𝜈𝐾 + 𝜉𝐷) and S̃F = BK̃−1BT for the sake of notation):

AF =
[

A AK̃−1BT

B 0

] [
uk

𝜹k
p

]
=
[

f + BTpk−1

0

]
(5.36)

Letting M̃p = (𝜈 + 𝜉)Mp, the approximate inverse of AF using (5.12) is given by:

A−1
𝑎𝑝𝑥 =

[
(I − K̃−1BTM̃−1

p B)A−1 K̃−1BTM̃−1
p

M̃−1
p 𝐵𝐴−1 −M̃−1

p

]
(5.37)

Let vF be the solution vector computed by solving the system (5.36) and vapx the approxi-

mated solution computed by applying (5.37) to the same right hand side b given in (5.36).

VIGUERIE AND XIAO 21

Then we define the splitting error vector es = [eu, ep]T as:

es = vF − v𝑎𝑝𝑥 = vF − A−1
𝑎𝑝𝑥b = vF − A−1

𝑎𝑝𝑥(AFvF) = (I − A−1
𝑎𝑝𝑥AF)vF (5.38)

Expanding this expression:

(I − A−1
𝑎𝑝𝑥AF)vF =

[
0 K̃−1BT (I − M̃−1

p S̃F)
0 I − M̃−1

p S̃F

] [
uF
𝜹p,F

]
(5.39)

Note that neither the momentum nor mass equation is satisfied, unlike the full solution

which conserves mass. By our bounds from part 1,

‖es‖ ≤
(
𝜈

𝜉
C1 +

h
𝜉

C2

)‖𝜹p,F‖ (5.40)

With a bound on the local splitting error, we can now prove a bound for the global

splitting error. ▪

Theorem 5.4 Let vapx = [uapx, papx] be the solution obtained from Picard iteration
given by approximating the Schur complement solve with (5.12) and vF = [uF, pF] be the
solution obtained from (2.1). Then:

‖v𝑎𝑝𝑥 − v𝑒𝑥‖ ≤ C1
𝜈

𝜉
+ C2

h
𝜉

for suitable 𝜉 and h.

Proof. We will proceed by induction. Starting with the same initial guess v0 = (u0, p0),

the local splitting error derived in the previous theorem implies:

‖e1
s‖ <

(
𝜈

𝜉
C1 +

h
𝜉

C2

)‖𝜹1
p,F‖

Define 𝜀 ≔ 𝜈

𝜉
C1 + h

𝜉
C2. The above bound implies the existence of a vector 𝜼 such that

v1
𝑎𝑝𝑥 ≔ v1

F + 𝜀𝜼. Similarly, there exists a matrix Δ such that A2
𝑎𝑝𝑥 ≔ A2

F + 𝜀Δ. Note that

the 𝜀 are both 𝒪(𝜀) but possibly distinct.

Now assume that ‖ek−1
s ‖ ∼ 𝒪(𝜀) and that vF, k− 1 is bounded. Then we again have

vk−1
𝑎𝑝𝑥 ≔ vk−1

F + 𝜀𝜼 for some 𝜼 and Ak
𝑎𝑝𝑥 ≔ Ak

F + 𝜀Δ for some Δ. We seek to show that‖ek
s‖ ∼ 𝒪(𝜀) (note that the base case holds for iteration ‖e1

s‖). This establishes that vk
𝑎𝑝𝑥

is always in an 𝜀-neighborhood of vk
F for each k, implying that as k→∞, vapx converges

to a solution within an 𝜀 neighborhood of vF.

Ak
Fvk

F = rk−1
F (5.41)

(Ak
F + 𝜀Δ)vk

𝑎𝑝𝑥 = rk−1
F + 𝜀�̃� (5.42)

As the right-hand side depends on the solution at the last iteration. Then:

‖vk
F − vk

𝑎𝑝𝑥‖ = ‖((Ak
F)

−1 − (Ak
F + 𝜀Δ)−1)rk−1

F − (Ak
F + 𝜀Δ)−1𝜀�̃�‖ (5.43)

≤ ‖(Ak
F)

−1 − (Ak
F + 𝜀Δ)−1‖‖rk−1

F ‖ + 𝜀‖(Ak
F + 𝜀Δ)−1‖‖𝜼‖ (5.44)

≤ 𝜀(‖rk−1
F ‖ + ‖(Ak

F + 𝜀Δ)−1‖‖𝜼‖) (5.45)

where the last line follows from the continuity of matrix inverses. This completes the

proof. ▪

22 VIGUERIE AND XIAO

0 10 20 30 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

L
2

 E
rr

o
r

Vel. Convergence, ν=.0133

Picard

GISACT

Apx. GISACT, ξ=1

Apx. GISACT, ξ=2

Apx. GISACT, ξ=3

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Pres. Convergence, ν=.0133

Iterations
L

2
 E

rr
o

r

Picard

GISACT

Apx. GISACT, ξ=1

Apx. GISACT, ξ=2

Apx. GISACT, ξ=3

0 10 20 30 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Residuals, ν=.0133

Iterations

L
2

 E
rr

o
r

Picard

GISACT

Apx. GISACT, ξ=1

Apx. GISACT, ξ=2

Apx. GISACT, ξ=3

FIGURE 10 Bifurcation test case, 𝜈 = .0133 [Color figure can be viewed at wileyonlinelibrary.com]

Note that strictly speaking Theorem 5.4 does not imply the convergence of (uapx, papx) to (uF,

pF), but only convergence to within a certain neighborhood. The (true) convergence of (uF, pF) to the

solution (u, p) of (2.1) then implies that (uapx, papx) converges to within a certain neighborhood of (u,

p) as well. This neighborhood can be made arbitrarily small for large 𝜉; however for any fixed 𝜉 this

only establishes convergence up to a fixed level of accuracy.

This theorem shows the practical limitations of this scheme. As stated previously, large 𝜉 can make

the problem difficult to solve. In practice, with 𝜉 ∼ 𝒪(1), the bound predicted by Theorem 5.4 may

be small due to low values of 𝜈 and h; however for problems with higher viscosity or relatively coarse

meshes, it is possible that 𝜉 ∼ 𝒪(1) is not sufficiently large to make the splitting error suitably small,

and taking 𝜉 extremely large is not a viable option in general. While the substantial numerical savings

offered by this approach make it potentially worthwhile, we acknowledge it has significant limitations

and may not be applicable for some problems. Nonetheless, in our tests we still found that it performed

quite well. Although we did observe some evidence of limiting behavior likely arising from the global

splitting error, the effect was small.

5.2 Numerical test: bifurcation flow

We repeat the same 2D bifurcation test previously used to compare the solutions computed

by Algorithm 2.1 (GISACT), and Algorithm 2.1 using the approximated Schur complement (5.12)

(Apx. GISACT) to the reference solution from the standard Picard iterations up to a very high level of

accuracy (1e-12). For the reference case, we solved the full saddle-point system with UMFPACK at

each iteration. For ACT, we solve both velocity systems with UMFPACK (step k.1 and step k.2), and

the Schur complement with CG preconditioned by the lumped pressure mass-matrix for outer solve

and UMFPACK for inner solve. For Apx. GISACT, we use UMFPACK for the velocity solves (step

k.1 and step k.2), and solve the Schur complement system by multiplying a diagonal matrix. For our

comparison Picard method, we use the same solver configuration as used in Section 3.1. We will test

the method for 𝜉 = 1, 2, 3.

We display the L2 norm of velocity and pressure convergence, as well as the nonlinear residuals,

in Figures 10 and 11. Note here that 𝜉 = 2 for the plotted Picard and GISACT comparisons.

For 𝜈 = .0133 (Figure 10), the approximated Schur complement solution converges more slowly

than GISACT with 𝜉 = 1, as might be expected, but we clearly observe monotonic convergence to

the desired solution. For 𝜉 = 2 the convergence is still slower than full GISACT, but the gap narrows

considerably, while for 𝜉 = 3 the convergence is the same as standard Picard and full GISACT in the

http://wileyonlinelibrary.com

VIGUERIE AND XIAO 23

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

L
2

 E
rr

o
r

Vel. Convergence, ν=.0067

Picard

GISACT

Apx. GISACT, ξ=1

Apx. GISACT, ξ=2

Apx. GISACT, ξ=3

0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Pres. Convergence, ν=.0067

Iterations
L

2
 E

rr
o

r

Picard

GISACT

Apx. GISACT, ξ=1

Apx. GISACT, ξ=2

Apx. GISACT, ξ=3

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Residuals, ν=.0067

Iterations

L
2

 E
rr

o
r

Picard

GISACT

Apx. GISACT, ξ=1

Apx. GISACT, ξ=2

Apx. GISACT, ξ=3

FIGURE 11 Bifurcation test case, 𝜈 = .0067 [Color figure can be viewed at wileyonlinelibrary.com]

velocity space. This is expected based on our bound (5.35), which suggests that large 𝜉 implies a better

approximation. In the pressure space for 𝜉 = 3, we see the convergence start comparably to GISACT

and Picard, but then flatten out. Recall from Theorem 5.4 that the approximate Schur complement

scheme converges only to within a certain neighborhood, the size of which depends on 𝜉; we suspect

this flattening is caused by the solution reaching the threshold of convergence. Unsurprisingly, the

average solve time across all cases was .091 s, a small fraction of the times shown in Table 1.

For 𝜈 = .0067 (Figure 11), we notice that Apx. GISACT is still slower than GISACT for 𝜉 = 1,

however the difference is much less pronounced than for the case 𝜈 = .0133. For 𝜉 = 2 and 𝜉 = 3, we

see nearly identical convergence behavior for GISACT and Apx. GISACT. This is consistent with our

expectation based on Theorem 5.4, as the quality of the approximation depends on 𝜈/𝜉 and therefore

as we decrease 𝜈 or increase 𝜉 the approximated scheme should perform more similarly to GISACT.

As expected, the convergence of the approximate GISACT depends both on the grad-div parameter

𝜉 and the viscosity parameter 𝜈. For cases with higher 𝜈, it appears one must use a relatively high value

of 𝜉 in order for the approximate scheme to converge at a similar rate; however as 𝜈 decreases the

schemes behave more similarly, to where one must use a higher value of 𝜉 anyway in order for GISACT

to converge rapidly (as seen in Section 3.1). In these instances, it appears the approximate scheme

offers a similar convergence rate at a fraction of the cost. Although we only expect the approximate

scheme to converge up to a certain level of accuracy, in this test this we found 𝜉 ∼ 𝒪(1) provided a

small enough threshold for us to obtain accurate solutions.

5.3 Numerical test: Newton-type version

We now compare the convergence of the Newton and Picard formulations of our scheme and the effect

of the approximate Schur complement. We run the same bifurcation test with 𝜈 = .0133 as in Section

5.2. We again compare the standard GISACTN scheme with the approximate GISACTN scheme for

𝜉 = 1, 5, 10. We plot the results in Figure 12.

The first thing we note is that the approximate GISACTN algorithm does not converge as quickly

as standard GISACTN for any value of 𝜉. For 𝜉 = 1, approximate GISACTN does not seem to converge

at all. We clearly see in the pressure plot that the approximate version GISACTN with 𝜉 = 10 reaches

its neighborhood of convergence around 10 iterations, after which it does not converge further. This is

the expected behavior based on Theorem 5.4. Interestingly, in this test this does not seem to happen in

the velocity space.

http://wileyonlinelibrary.com

24 VIGUERIE AND XIAO

0 5 10 15 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

L
2

 E
rr

o
r

Vel. Convergence, ν=.0133

Picard

Newton

GISACTN, ξ=1

Apx. GISACTN, ξ=1

GISACTN, ξ=5

Apx. GISACTN, ξ=5

GISACTN, ξ=10

Apx. GISACTN, ξ=10

0 5 10 15 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Pres. Convergence, ν=.0133

Iterations

L
2

 E
rr

o
r

Picard

Newton

GISACTN, ξ=1

Apx. GISACTN, ξ=1

GISACTN, ξ=5

Apx. GISACTN, ξ=5

GISACTN, ξ=10

Apx. GISACTN, ξ=10

0 5 10 15 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Residuals, ν=.0133

Iterations

L
2

 E
rr

o
r

Picard

Newton

GISACTN, ξ=1

Apx. GISACTN, ξ=1

GISACTN, ξ=5

Apx. GiSACTN, ξ=5

GISACTN, ξ=10

Apx. GISACTN, ξ=10

FIGURE 12 Bifurcation test, GISACTN and approximate GISACTN [Color figure can be viewed at wileyonlinelibrary.com]

6 CONCLUSIONS

We have developed new efficient solvers for the steady incompressible NSE. These new solvers are

closely related to the recently developed Yosida-type methods but demonstrate faster convergence

and greater robustness for high Reynolds numbers. Like the aforementioned Yosida methods, the Schur

complement system is easy to precondition and does not change, greatly reducing computational costs.

We have also shown that one may eliminate the Schur complement system and replace it with a diag-

onal matrix inversion; though this slows convergence, it appears to be robust to increasing Re and the

numerical savings may nonetheless make this formulation practical in many settings.

For future work, one may wish to further study the convergence and robustness properties of these

with analytical or numerical tools to determine how they are affected by changes in 𝜉 or the Reynolds

number. This would be especially useful for the approximate Schur complement version of the scheme.

Determining an optimal value of 𝜉 that gives rapid convergence for this approximation while not harm-

ing the problem conditioning too much could yield further improvements. It may also be worthwhile

to see if the convergence can be improved through the use of nonlinear acceleration techniques, such

as Anderson acceleration.

ORCID

Alex Viguerie http://orcid.org/0000-0002-8556-3499

REFERENCES

[1] M. Benzi, M. Olshanskii, An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comput.

vol. 28 (2006) pp. 2095–2113.

[2] H. Elman, D. Silvester, A. Wathen, “Finite elements and fast iterative solvers with applications in incompressible
fluid dynamics,” in Numerical mathematics and scientific computation, Oxford University Press, Oxford, 2014.

[3] P. Gervasio, F. Saleri, A. Veneziani, Algebraic fractional-step schemes with spectral methods for the incompressible
Navier–Stokes equations, J. Comput. Phys. vol. 214 (2006) pp. 347–365.

[4] A. Quarteroni, F. Saleri, A. Veneziani, Analysis of the Yosida method for incompressible Navier–Stokes equations,

J. Math. Pures Appl. vol. 78 (1999) pp. 473–503.

[5] A. Quarteroni, F. Saleri, A. Veneziani, Factorization methods for the numerical approximation of Navier–Stokes
equations, Comput. Methods Appl. Mech. Eng. vol. 188 (2000) pp. 505–526.

[6] L. Rebholz, M. Xiao, Improved accuracy in algebraic splitting methods for Navier–Stokes equations, SIAM J. Sci.

Comput. vol. 39 (2017) pp. A1489–A1513.

http://wileyonlinelibrary.com
http://orcid.org/0000-0002-8556-3499
http://orcid.org/0000-0002-8556-3499

VIGUERIE AND XIAO 25

[7] L. Rebholz, A. Viguerie, M. Xiao, Incremental Picard–Yosida and Newton–Yosida iterations for the efficient

numerical solution of steady Navier–Stokes equations, in preparation.

[8] L. Rebholz, M. Xiao, On reducing the splitting error in Yosida methods for the Navier–Stokes equations with
grad-div stabilization, Comput. Methods Appl. Mech. Eng. vol. 294 (2015) pp. 259–277.

[9] A. Viguerie, A. Veneziani, Algebraic splitting methods for the steady incompressible Navier–Stokes equations at
moderate Reynolds numbers, Comput. Methods Appl. Mech. Eng. vol. 330 (2018) pp. 271–291.

[10] D. Arnold, J. Qin, “Quadratic velocity/linear pressure Stokes elements,” in Advances in Computer Methods for
Partial Differential Equations VII, R. Vichnevetsky, D. Knight, G. Richter (Editors), IMACS, New Brunswick,

1992, pp. 28–34.

[11] S. Zhang, A new family of stable mixed finite elements for the 3d Stokes equations, Math. Comput. vol. 74 (2005)

pp. 543–554.

[12] R. Falk, M. Neilan, Stokes complexes and the construction of stable finite elements with pointwise mass
conservation, SIAM J. Numer. Anal. vol. 51 (2013) pp. 1308–1326.

[13] J. Guzmán, M. Neilan, Conforming and divergence-free Stokes elements on general triangulations, Math. Comput.

vol. 83 (2014) pp. 15–36.

[14] V. Girault, P.-A. Raviart, Finite element methods for Navier–Stokes equations: theory and algorithms,

Springer-Verlag, Berlin, 1986.

[15] V. John et al., On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev.

vol. 59 (2017) pp. 492–544.

[16] H. Vande Sande et al., “Accelerating nonlinear time-harmonic problems by a hybrid Picard–Newton approach,”

in Proceedings: 10th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering:
September 16–18 2002, Graz, Austria, Verlag d. Techn. Univ. Graz, Graz, 2002, pp. 342–347.

[17] T. Heister, G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using grad-div
stabilization, Int. J. Numer. Methods Fluids vol. 71 (2013) pp. 118–134.

[18] M. A. Castro, J. R. Cebral, C. M. Putman, Computational fluid dynamics modeling of intracranial aneurysms:
Effects of parent artery segmentation on intra-aneurysmal hemodynamics, Am. J. Neuroradiol. vol. 27 (2006) pp.

1703–1709.

[19] W. W. Nichols, M. F. O’Rourke, McDonald’s blood flow in arteries, Oxford University Press, Oxford, 2005.

[20] P. Spiller et al., Measurement of systolic and diastolic flow rates in the coronary artery system by X-ray
densitometry, Circulation vol. 68 (1983) pp. 337–347.

[21] A. Viguerie, Efficient, stable, and reliable solvers for the steady incompressible Navier-Stokes equations in
computational hemodynamics. Ph.D., Emory University, 2018.

[22] M. S. Alnæs et al., The FEniCS project version 1.5, Arch. Numer. Softw. vol. 3 (2015), Online publication. https://

journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553.

[23] M. E. Lacruz et al., Short term blood pressure variability- variation between arm side, body position, and
successive measurements: a population-based cohort study, BMC Cardiovasc. Disord. vol. 17 (2017) p. 31.

[24] V. M. Musini, J. M. Wright, Factors affecting blood pressure variability: lessons learned from two systematic
reviews of randomized controlled trials, PLoS One vol. 4 (2009) pp. S19–S25

[25] G. Pannarale et al., Bias and variabiity in blood pressure measurement with ambulatory recorders, Hypertension

vol. 22 (1993) pp. 591–598.

[26] K. L. Wong, A. J. Baker, A 3d incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm,

Int. J. Numer. Methods Fluids vol. 38 (2002) pp. 99–123.

[27] H. V. Henderson, S. R. Searle, On deriving the inverse of a sum of matrices, SIAM Rev. vol. 23 (1981) pp. 53–60.

[28] A. Linke et al., A connection between coupled and penalty projection timestepping schemes with FE spatial
discretization for the Navier-stokes equations, J. Numer. Math. vol. 25 (2018) pp. 229–248.

How to cite this article: Viguerie A, Xiao M. Effective Chorin–Temam algebraic splitting

schemes for the steady Navier–stokes equations. Numer Methods Partial Differential Eq.
2018;1–25. https://doi.org/10.1002/num.22326

https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
https://doi.org/10.1002/num.22326

