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SIMULTANEOUS HEAT A N D  MASS TRANSFER O N  
OSCILLATORY FREE CONVECTION BOUNDARY LAYER FLOW 
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SUMMARY 

'The problem of simultaneous heat and mass transfer in two-dimensional free convection from a semi-infinite vertical Hat 
plate is investigated. An integral method is used to find a solution for zero wall velocity and for a mass transfer velocity at  
the wall with small-amplitude oscillatory wall temperature. Low- and high-frequency solutions are developed separately 
and are discussed graphically with the etlects o f the  parameters C;r (the Cirashofnumber for heat transfer). C ; c .  (the Cirashol' 
number for mass transfer) and Sc (the Schmidt number) for P r  = 0.71 representing aid at 20 C. 
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LNTRODUCTION 

The study of laminar boundary-layer in oscillatory flow with steady mean was first studied by Lighthill (1954) 
considering the effects of fluctuations in the free stream velocity on the skin-friction and heat transfer for plates 
and cylinder. Stuart (1955) in an attempt to verify certain results of Lighthill's analysis, discussed the problem 
of Row over an infinite flat plate with suction, when the main stream oscillates in time about a constant mean. 
The theory developed by Lighthill has later been extended for free convection boundary-layer Row along a 
semi-infinite vertical plate by Nanda and Sharma (l963), Eshghy er a/. (1965), and Kelleher and Yang (1968). 
O n  theother hand, Muhuri and Maiti (1967)and Singh ut uf. (1978) have investigated the free-convection flow 
and heat transfer along a semi-infinite horizontal plate when the plate temperature oscillates about a constant 
and variable mean respectively. 

But in many processes mass transfer and heat transfer occur simultaneously. In free convection these may 
either hinder or aid one another. The effects of mass transfer on free convection was studied by Somers (1956), 
Wilcox (1961), Gill er a/. (1965), Adams and Lowell (1968), Gebhart and Pera (1971)and many others. All these 
studies were confined to steady flows only. The present paper is therefore devoted to a study of mass transfer 
effects on the unsteady free convection boundary-layer flow along a vertical flat plate, when the plate 
temperature oscillates in time about a constant non-zero mean, the free-stream is isothermal and the species 
concentration at the plate is constant. The treatment is restricted to small amplitude oscillations only. This 
enables us to effect linearization. Two different solutions for low- and high-frequency ranges are developed 
considering the fluid to be air only. In the present analysis we have adopted the method developed by Lighthill 
(1954) for both high- and low-frequency solutions. I t  is found that in the low-frequency range, the oscillating 
component of the skin friction always lags behind the plate temperature oscillations while the rate of heat 
transfer has a phase lead in the presence of foreign species. In the high-frequency range, the velocity and 
temperature in the boundary-layer are of 'shear-wave' type, predicting a phase lead of 45 ' in the rate of heat 
transfer fluctuation and an equivalent phase lag in the skin friction oscillations. 
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BASIC EQUATIONS 

A two-dimensional unsteady free convection boundary-layer flow of a viscous incompressible fluid along a 
vertical flat plate in the presence of foreign species is considered, assuming that the plate temperature oscillates 
in time about a non-zero mean, the species concentration at  the plate is constant, and the free stream is 
isothermal. The level of species concentration being very small, the Soret-Dufour effects can be neglected from 
the energy equation. Under the usual Boussinessq's approximation the flow, the heat transfer, and the mass 
transfer processes are governed by the following equations: 

where u a n d  care, respectively, the x- and y-components of the velocity field, y the acceleration due to gravity, v 
the kinematic viscosity, T the temperature of the fluid, T ,  the temperature of the free stream, C the 
concentration at a point, C ,  the species concentration at the free stream, [f the temperature densification 
coeficient, f i *  the concentration densification coefficient, k the thermal conductivity and D is the molecular 
diffusivity of the species. In equation (4) the chemical reaction term is neglected. 

Introducing the dimensionless quantities 

XI = x / L ,  J' = y / L ,  1, = vt/L2, u' = uL/v ,  r3 = E t / Y  

T '  = ( T - T , ) / (  T,-T,), C' = (C-C,  ) / ( C w - C r z )  

where L is the characteristic length, T,  the mean plate temperature and C ,  the species concentration at  the 
plate, in equations (1)-(4) and dropping the primes for brevity we get 

a u  su au P U  
- + u - + u - =  G r T + G c C + ,  
at ax a y  dY 

au atl - + - = o  
nx dy 

dT dT dT 1 d2T -+ u-+v- z -___ 
dt ax dy P r a y 2  

ac ac ac 1 a2c 
at ax ay s c a y 2  
- + u- + l ; -  = -~ 

( 5 )  

(7) 

where Gr( = g f l (  T,,, - T, )L3 /v2 )  and Gc( = gfl*(C, - C , ) L 3 / v 2 )  are, respectively, the overall Grashof number 
for heat and  mass transfer, Pr( = v / k )  the Prandtl number and  Sc( = v / D )  the Schmidt number. 

The boundary conditions to  be satisfied by the equations (5)-(8) are 

u = O , v = O , T =  l + E c o s w t , C =  1 at y = O  
u-+O,T-+O,C-+O as y - * z  

, t ;  < 1 (9) 

where (u is the dimensionless frequency w L ~ / v .  
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METHOD O F  SOLUTIONS 

In order to solve the above problem it is convenient to adopt the complex notations for harmonic functions. 
The solutions will be obtained in terms of complex functions, the real parts of which would be of-our interest. 

For small amplitude oscillations, we assume the solutions of the equations (5 ) - - (8 )  in the following form: 

u = u s  + eu,  exp"'', u = 11, + E U ,  exp"" 
T = T, + r;T, exp"", C = C, + cC, exp"" 

where ( u s ,  P ~ ,  T,, C,) is the steady mean flow and satisfies 

--+" ac, ?C, 1 c:", 
dx ?y s c  dy2 

with the boundary conditions 

u,  = u ,  = 0, T, = 1, C, = 1 at y = 0 

~ , - + 0 ,  T p 0 ,  C,-0 as y --+ A 

and ( u , ,  i l l ,  T I ,  C , )  is the unsteady part of the flow and satisfies 

au ,  do ,  - + - = 0  
ax d y  

a u ,  au du,  au ,  du, 
dy dy ayz 

itou, + u ,  - (jx +us+ ax + 1-+u -= -  + Gr TI + GcC, 

ic, + u ,  ac - s+u, - - - i+u, - .S+v dc ac ac 1 azc, 
ax ax dy dy sc dy2 

which are obtained neglecting E' and dividing by exp(iwt). The boundary conditions to be satisfied by the 
equations (16)-(19) are as follows: 

u ,  = 0, u ,  = 0, TI = 1, C, = 0 at y = 0 
(20) u ,  +0,  TI -0, C, - 0  as y +  ;CI 

Equations (1 I)-( 14) are well known boundary-layer equations which describe the steady two-dimensional 
convection flow along a vertical flat plate with mass transfer. Approximate integral solutions of these equations 
are obtained by Wilcox (1961) and numerically by Callahan and Marner (1967). The approximate expressions 
for u,,  T, and C,, as obtained by Wilcox (1961), are given as below: 
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where 6, 6' and 6" are the boundary-layer thickness for the velocity, the temperature, and the concentration 
boundary-layers respectively, and 

us = 4.42 J( G r + r G r  - ----)x 

Sc + 0.625 

Sc(Gr + rGc) 

where r = 6'/6", which is connected with the Prandtl number Pr and the Schmidt number Sc by the following 
relation: 

- - r +  -r (25)  Pr 8 48 112 

According to Wilcox (1961) the value of r 2 J ( P r / S c )  or J ( S c / P r )  accordingly as Pr > Sc or Pr < Sc. In this 
paper we shall always consider r 2 J ( P r / S c ) ,  since for most gases the values of Sc < Pr in air at 20°C and 
1 a t m  (Gebhart, 1965). 

Low frequency fluctuation 

follows: 
We now write the functions u , ,  zil, TI and C1 as the sum of the in-phase and out-of-phase component as 

(26 1 ( u l ,  u l r  TI, C l )  = (u,, vr. T,, C,)+i(u,, L ' ~ ,  T2 ,  C 2 )  
and substituting in equations (l6)-(19) and then separating the real and imaginary parts we get 

au, av, -+- 
(7x i?v 

with the boundary conditions 

U, = U ,  = 0, T, = I ,  C, = 0 at y = 0 
u,+O, T,-+O, C , + O  as y-* ,a 

and 

au ,  au2 au  au, a z U 2  
ax ax ay vy a y 2  

u , + u 2  - + u s  - + V ~ - ~ + V  - = - - + G r T 2 + G c C 2  

(32) 

(33) 
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dTs aT, aT, dT2 1 d2T, 
dy ' d y  Pr C7y2 dX 

T , + u , - + u ~ - + v ~  - - + v  - =  -- - 

ac, ac, ac ac, 1 PC, c,+u2 - - + u u , - - + v  - + v  --=-- 
dX a x  ay ay sc ?L.2 

with the boundary conditions 

u 2 = v 2 = 0 ,  T 2 = C z = 0  at y = O  

u2 -+ 0, T, + O ,  C, + 0 as y -, x 
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(34) 

(35) 

The difference in phase between the velocity, the temperature and the concentration fluctuation at a point 
within the boundary layer and in the plate temperature fluctuations is 

t an- '  (:t) tan-'(?), and tan-'(:) 

When the frequency of oscillation is small, it is to be expected that the phase shift will be small. Therefore, u 2 ,  T, 
and C, would be small in comparison with u,, T, and C , .  Thus, when w is small, the terms - (uu2, - (uT, and 
- cuC2 can be neglected in equations (27)-(30). u,, T,  and C, will then be quasi-steady solutions corresponding 
to (1) = 0. This can be seen from the fact that the same equations can be obtained by substituting u = u, + cur,  
u = v, + E V , ,  T = T, + ET, and C = C, + EC, in the steady-flow boundary layer equations. Following Lighthill 
(1954), u,, u , ,  T, and C ,  can be easily obtained as 

We now use Karman-Pohlhausen approximate integral method to solve the equations (32k(35). Accordingly, 
we assume the following expression for u 2 ,  T2 and C,: 

which should satisfy the following averaging conditions 
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Substitution of the equations (37)-(39) into (40)-(42) yields 

c2(bldz + b,d,) - 126b,c1 
A ,  = - O X  

cz(aid2 - ~ a , d 1 ) + ~ , ( 1 2 6 ~ ~ 2  + 51d2) 1 A z =  - WX 

A ,  = 126(a,bz +a2b,)+51(b,d,+b,d,)Ox~ 
c,(a,b, + a,b,)+ 51c, b, 

c(aIb,+a,bl)+51c,b, 

cz(alb2 +a ,b l )+51~ ,b ,  

(44) 

where 

Gc+rGr 
( S c  + 0.625) 

a ,  = (31.01 + 10.26Gc) 

Gc+rGr ’ 
b, = 1.36+88.0r - - - r+-r3  __- [ (1: :4 140 )](Sc+0.625) 

c1 = 18.OGc, c2 = 119.47 

Gc + rGr Sc+O.625 
(Scfn.625)’ ( Gc+rGr ) d, = 22.15 ____ -23.39Gr 

1 2  
- - -r + --I2 
60 105 168 

Values of A l  and A ,  are entered in Table I for different values of the parameters. In the present analysis, the 
values of the Grashof numbers Gr are taken considerably large and positive. The value of the Grashof number 
Gc for mass transfer is taken arbitrarily. In order to be realistic, the value of the Prandtl number Pr is chosen in 
such a way that it represents air (Pr = 0.71). The values of the Schmidt number Sc are also chosen in such a way 
that they represent the diffusing chemical species of most common interest in air and less than the values of Pr. 
From Table I it can be seen that the values of A l  and A ,  are always negative. Finally, the equations (37) and (38) 
together with (43) give the expressions for u, and T, . 

High frequency jfuctuations 

Lighthill (1954) has shown that, for high frequency, the oscillatory flow is to a close approximation to an 
ordinary ‘shear-wave’ unaffected by the mean flow. The flow field can be described as a superposition of the 
steady mean flow and a shear-wave flow corresponding to the oscillating component of the plate temperature. 

Table 1. Values of A ,  and A, for Pr = 0.71 

Gr Gc Sc A1 A, 

2 0 -  -4.22 -4.90 
2 1 0.22 - 3 4 1  -4.66 
4 1 0.22 -3.80 -3.38 
2 2 0.22 -2.95 -443 
2 1 0.30 - 1.82 -2.75 
2 1 0.60 -0.58 - 1.23 
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For high-frequency the differential set equations ( 1  7)-( 19) reduces to 

from which we easily obtain 

Gr 
u1 ( y )  = p- [exp( - j ( i w ) y ) - e x p ( -  J(itoPr)y)] 

i ~ (  Pr - 1 )  

T, (y) = exp( - J ( h P r ) y )  

CI ( Y )  = 0 

(45) 

DISCUSSIONS AND CONCLUSIONS 

For small-frequency, the longitudinal component of the velocity and temperature may be written in the form 

Now we shall compare the frequency response to the heat transfer and the friction factor. The local heat 
transfer from the surface to the fluid may be calculated from the following non-dimensional relation: 
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The  temperature gradient in 'shear-wave' flow is given by 

I ts  amplitude increases with frequency and its phase is ahead of that of the fluctuation in the surface 
temperature by 45". For the low-frequency we have 

where 

The variations of phase angle and amplitude of the wall temperature gradient as a function of x, are shown in 
Figures 1 and 2, respectively. The corresponding asymptotic values of x I  are obtained from 

81 
X~ = - A ; '  

16 (54) 

and entered in Table 11. The high- and low-frequency solutions may be matched on the basis of heat-transfer 
oscillation, taking the  matching point as the frequency at which the low-frequency solution predicts a phase 
advance equal to the shear-wave solution. Thus values of x,  may be taken as the boundary between the regions 
of applicability of high- and low-frequency solutions. The temperature profiles obtained on the basis of high- 
and low-frequency are compared in Figure 3. 

We now obtain the expression for skin-friction from the following non-dimensional relation: 

T =  (%) + r.exp"" ("' ) 
(b , 0 (?Y , 0 

The velocity gradient in the 'shear-wave' flow is given by 

00 0 9  0 8  1 2  
x1 - 

Figure 1 Phase angle of temperature gradient for P r  = 0 71 Curve I I S  for G r  = 2, Gc = 0 (Nanda and Sharma, 1063) 

( 5 5 )  
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"i 

Gr Gc Sc 
I 2 0  - 
II 2 1 0 2 2  
m L 1 0 . 2 2  
IIT 2 2 0 . 2 2  
Y 2 1 0.30 
PI - 2  1 0 .6p  I 

0 0  O L  .8 1.2 I-- - X l  - 
Figure 2. Amplitude of temperature gradient for Pr = 0.71. Curve I i s  for Gr = 2, Gc = 0 (Nan& and Sharma, 1963) 

1 0  

6 

2 

00 2 0  L O  - I+, - 
Figure 3. Amplitude of the temperature profiles for P r  = 0.71. Curve 1 is for Gr = 2, Gc = 0 (Nanda and Sharma, 1963) 

Table 11. Values of critical x1 for Pr = 0.71 

Temperature Velocity 
Gr Gc s c  field field 

2 0 - 0.2 1 10.54 
2 1 0.22 0.23 19.97 
4 1 0.22 0.44 2955 
2 2 022 0.25 33.61 
2 1 0.30 067 58.76 
2 1 0.60 0.31 3401 1 
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the amplitude of which decreases with frequency and its phase lags behind the plate temperature oscillation by 
45 . For low-frequency we have 

where 
I) = tan ' ( $ A ,  Jxl) 

As before the variations of amplitude and phase angle of the friction factor at the surface of the plate as a 
function of xl are shown in Figures 4 and 5, respectively. The corresponding asymptotic values of x1 may be 

O F  Gr GC SC 

1 0.30 Y 
1 0.60 IT 

2 0 -  I 
2 1 022 n 
L 1 0 2 2 m  
2 2 022 IY 

_ -  
She ar-wove I '  

0 20 LO 60 
X I  - - 

Figure 4. Phase angle of velocity gradient for P r  = 0.71. Curve I is for Gr = 2. Gr = 0 (Nanda and Sharma, 1963) 

0 1 2 3 
x 1  - 

Figure 5.  Amplitude of velocity gradient for P r  = 0.71. Curve 1 I S  lor G r  = 2, Gr = 0 (Nanda and Sharrna, 1963) 
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0 6  

O L  

0 2  0 2  

0 0  1 2 2 1 00 

Figurc 6. Amplitude of the veloclry profiles for Pr = 0.71. Curve I is for Gr = 2. Gr = 0 (Nanda and Sharma, 1963) 

obtained from the following relation: 

x i  = 32-55( Gc - ~ + rGr ) A ,  
SC. + 0-625 (57)  

The values of which for different values of the parameters are given in Table 11. It is also of interest to compare 
the velocity profiles obtained on the basis of low- and high-frequencies. The comparison of the velocity profiles 
is made in Figure 6 with different asymptotic values of xl. 
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