Received: 17 February 2021 Accepted: 4 April 2021

DOI: 10.1002/cmm4.1166

RESEARCH ARTICLE WILEY

Numerical solution of third-order boundary value problems
by using a two-step hybrid block method with a
fourth derivative

Mufutau Ajani Rufai'® | Higinio Ramos??

IDipartimento di Matematica, Universita
degli Studi di Bari Aldo Moro, Bari, Italy Abstract
2Scientific Computing Group, Universidad This article proposes a two-step hybrid block method (TSHBM) with a fourth

de Salamanca, Salamanca, Spain derivative for solving third-order boundary value problems in ordinary dif-

*Escuela Politécnica Superior de Zamora, ferential equations. The mathematical formulation of the proposed approach
Zamora, Spain . . . .

P depends on interpolation and collocation techniques. The order of convergence
Correspondence of the TSHBM is showed to be seventh-order convergent and zero-stable. A few
Mufutau Ajani Rufai, Dipartimento di

. — HmEno &l numerical examples are given to evaluate its performance. Numerical outcomes
Matematica, Universita degli Studi di Bari

Aldo Moro, 70125 Bari, Ttaly. show that the TSHBM scheme is more efficient than some existing numerical
Email: mufutau.rufai@uniba.it techniques.
KEYWORDS

collocation and interpolation techniques, hybrid block method, linear and nonlinear problems,
ordinary differential equations, third-order boundary value problems

1 | INTRODUCTION

This article considers the third-order boundary value problem (BVP) of the form
V") =, y(x),y' (0, (),  x € [xo,xy] CR ey
with the boundary conditions of the form

V(%) = Yo, ¥ (X0) = ¥, YOm) = Yus ()

although any of them can be replaced by any of the following

81000,y (%), ¥ (X0)) = Yar 8200w,y o),y Cear)) = Yo, (3)

where y,, ¥, YM,Ya, Y are real constants. We assume that there exists a unique solution y(x). Problem (1) emerges in
the sandwich boundary layer and laminar flow beam, fluid mechanics and dynamics, the investigation of the obstacle,
thin-film flow, the motion of a rocket, the study of stellar interiors and draining and coating flows. These problems addi-
tionally have critical applications in a variety of engineering and applied sciences (see, e.g., References 1-7 and references
therein).

It is well known that not all BVP in (1) can be solved analytically. Due to this reason, numerical methods were intro-
duced to provide an approximate solution to the BVP given in (1). Ramos and Rufai® have reported three main types of
numerical methods for solving BVPs of ordinary differential equations (ODESs).
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There are other strategies in the available literature for approximating the solution of the problem given in (1),
for example, the modified Adomian decomposition technique, the automatic differentiation, spline technique, multi-
step methods, block strategies (see References 8-19). In this article, we introduce a new two-step hybrid block method
(TSHBM) that utilizes one-point fourth derivative to get the approximate solutions to the third-order BVP in (1)—(3)
directly.

2 | CONSTRUCTION OF THE BLOCK METHOD

We are interested in obtaining approximations of the solution y(x) at the grid points xo <X; < ... <Xy of the integration
interval [xo, x)], taking a constant step size h =xj,1 —X;j, j=0,1, ... ,M — 1. To get the discrete formulas, we consider that
¥(x) can be approximated on the interval [x,, X, ;] by the following polynomial g(x)

8
YX) = g(x) = Yan X", )
n=0

where a, € R are real unknown coefficients that will be determined by imposing collocation conditions at selected
points. Consider the intermediate points X, =Xy, + (1/2)h, Xp4s =X, + (3/2)h on [x,,, X,z ] and the approximation in (4),
its first and second derivatives applied to the point x,, its third derivative applied to the points Xy, Xy 11, Xnt1, Xntss Xnt2»
and its fourth derivative applied to the points x,.,. In this way, we get a system of nine equations with nine unknowns
an, n=0(1)8, given by

qn) = Yn, q' n) = Y. q" (X0) = ¥l
q”’(xn) = fa, q”'(xn+r) = fosrs q”’(xn+1) = fus1, q"'(xn+s) = futss qw(xn+2) = fnr2s
q"" (Xn42) = Kns2s (5)

/ /! —_ / /! — / /! 3 3 /
where Ynii, ¥, oo Vi oo Jovi = FOntis Ynris Voo Vi )s Knwi = KQni, Ynais ¥y, Vyy,) denote approximations of y(Xu+.:), Y (Xn+1),

V' i) f i, Y)Y i) ¥ (i) and KXt (1), ¥ (i), V' (Xn4i)) respectively, with

of of , of of
k,,,, M=y Ly gy ”/’ "y,
xp.y. ¥ = - ) oy ay,,f(x »Y. "

The system in (5) may be written in matrix form as

1 x, X2 x x4 X, x5 x) x8 ao Yn
0 1 2x, 3x2 4x 5x4 6x, 7x8 8x” a v,
0 0 2 6x, 12x2 20x; 30x} 42x; 56x8 || az v
0 0 0 6 24x, 60x2 1200 210x} 336x; ||as fu
0 0 0 6 24x,, 60x2,, 120x3,. 210x,,, 336x,,. |las|=|fosr
0 0 0 6 24x,, 60x2,, 120x,, 210x:, 336x,, |las| [fen
0 0 0 6 24x,, 60x2,, 120x . 210xt  336x,  ||as fots
0 0 0 6 24x,p 60x2,, 1200, 210x}, 336, [la7| |forz
0 0 0 0 24 120xn4, 360x2,, 840>, 1680x%,)\as) |Kns

After obtaining the values of a,, n=0(1)8 and changing the variable, x =x, + zh, the polynomial in (4) may be written as

q(Xn + 2h) = ao(@)yn + har ()Y, + W ax ()Y,
+ h3(ﬂ0(z)fn + ﬁr(Z)an + ﬂl(Z)an + ﬂs(z)fn+s + ﬁz(Z)fn+2) + 71(R)kn+2), (6)

where h is the step size and ay(z), a1(2), 22(2), fo(2), $r(2), 1(), Bs(2), B2(2), y1(2) are continuous coefficients.
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2.1 | Main formulas

Substituting the values of ay(z), a1(2), 2(2), o(2), pr(2), p1(2), Bs(2), f2(2), y1(z) into (6) and evaluating g(x), ¢’ (x), g" (x) at
the point x> =X, + 2h, we obtain the following main two-step formulas of the proposed method

4 2
VYns2 = Yn + 20y, + 2% + %}ﬁ (224f4r + 96fn1s + 66, — 36fn11 — 35fu12) + éh“km,
1 2
Vira = Yo+ 2+ G2l (1088fisr + 576furs + 2790 + 72fnan = 125ws2) + ki,
1
y;{+2 =y;1, + 4_5h (32 (fn+r +fn+s) + 7fn + 12fn+l + 7fn+2)- (7)

To form the TSHBM, we need to complete the above formulas. To get these formulas, we evaluate g(x), ¢’(x), and q” (x)
at the points x,,4r, Xn+1, Xn+s- The resulting formulas are given by

1 h3 (62480f,4» + 45744f, 15 + 46731f, — 54684f,1 — 19631f,,2)  139h%*k,.2
= + —h(4 / + h i’ + ’
Ynar =Yn T3 (490 + hy) 3870720 129024
h3 (4544f . + 2304f,.s + 1881f, — 2700f,11 — 98Ys2)  htkniz
= Yu + hy, + Py + +—=,
Yn+1 Yn Vn Yn 30240 144
3 Oh3 (7344f 41 + 2960, s + 2409, — 2484f,1 — 1269f,12)  243h*k,.n
=y, + =h (4, +3hy)) + . 8
Yavs =yn+ Sh (475 + 3hy]]) 143360 14336 ®
Vomyt hy! . h? (539204, + 35424f 45 + 29223f,, — 42948f,41 — 15139f,12)  107h3kpys
nir =Vnt = 483840 16128
h? (33444, + 1296f;,15 + 1053f,, — 1350f,11 — 563fns2)  hikpin
/ - / + ]’l 1 + n+r n+s n n n + n+. ,
Yur1 = Vn ¥ fn 7560 63
V=gt 3hy! N 3h? (47684 + 1760f 45 + 1297, — 39651 — 709f,12)  45h3kyn ©)
nts = Yn ) 17920 1792
N h (5888f,.r + 3008fs + 1873f, — 3732f 41 — 1277f,42) N 3h%k,yn
ntr = Vn 11520 128
Vo =yt h (1568fpsr + 288fnss + 333f + 108f41 — 137fn42) N h*kpaz
nkl 2160 72
h (896f4r + 576fn1s + 201f;, + 396f,41 — 149 3%k,
y:l,+s — y;/;/ + ( fn+r fn+s 1285)1 fn+1 fn+2) + 12§+2 ) (10)

The local truncation errors of the above formulas are obtained using the usual Taylor expansion tool, resulting in

B 1931h°y®(x,,)

L . h. — 10
), hl 264436400 O
193h°y 9 (x,) 1
L[y(Xpt1), h] = 557600 + O
27h%u® (x,)
r __shruiXe) 10
[V(ns), Bl 409600 +OMh™)
h9 (9) X
£, 1l = =28 4 o)
781h8y9 (x,)
LI o) h] = = TSHEVOC) o
' Xer). 1] 30965760 T O
Y0
/ _ n 9
L[y (xps1), h] = GE + OM)
111439 (x,)
LY (nps), h] = ————"= + O(W®
' Gnss), hl 1146380 T O")
nSyO(x,
LIV Conaa) 1] = =250 o)

7560
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B 33707y (x,)

LY (nir), h] = =00+ O(h®)

LY (Xps1), h] = —% +OH®)

LY Xnts) ] = —%;9)6(;”‘) +O(h®)

LY (Xnt2), h] = —% +O(h®), (11)

from which we observe that each formula has a precision of at least sixth order.

In order to apply the above formulas to solve the BVPs under consideration, we consider the formulas in
(7)-(10) for n=0,2, ... ,M —2 together with the given boundary conditions. In this way, we obtain a discretiza-
tion of the given problem that allows us to approximate values at all the grid points. Considering the grid points
Xo<X1 <Xz < ... <Xp-_1 <Xy with M € N, M an even positive integer, we obtain a system of 6M + 3 equations, including
the boundary conditions, with 6M + 3 unknowns. The solution of this system provides the approximate solutions required.

3 | ANALYSIS OF CONVERGENCE

We begin by stating the definition of convergence of a numerical method for solving a BVP.

Definition 1. Let u(x) be the exact solution of a BVP of the form in (1) with given boundary conditions as in (2), and let
{y };‘i , be the numerical approximations of y(x) at the corresponding grid points, obtained by the proposed scheme. The
method is said to have pth order of convergence if for sufficiently small step size h, there exists a constant K such that

) — vl < P
gg})@llly(&) Yill £ Kh

Theorem 1. Let y(x) be the exact solution of the BVP in (1)-(2), and {y; }}‘i o the discrete solution provided by the proposed
global method. Assuming that y(x) is smooth enough, the proposed method has seventh order of convergence.

Proof. Let A be the 6M x 6M matrix defined as

A Ap A
A=|An Axn Ax|.
Az Az Az

where the A;;,j=1, 2, 3, are sub-matrices of dimension 2M X (2M — 1) as follows

10 0 0 0 0 0O 0 0 0 O
010 O O0O0O0OO 0 0 0 O
001 0 O0O0O0O 0 0 0 O
00 0 1 O0O0O0O 0 0 0 O
00 0 -1 1000 0 0 0 O
00 0 -1 0100 0 0 0 O
00 0 -1 0010 0 0 0 O
An=]0 0 0 -1 0 0 0 1 0 0 0 0],
00 0 O O0O0O0OO -1 1 0 O
00 0 O O0O0O0OO -1 01 O
00 0 O O0O0O0OTO -1 0 0 1
00 0 O O0O0O0OTDO -1 0 0 O
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=1, 2, 3, have dimension 2M X 2M and are given as follows

Ay and A3z, are null sub-matrices. The sub-matrices A, j

s

0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 00 0O
0 0 0 0O
0 0 0 0 O
0 0 0 0 O

000 O 0O O0OO0OTO
00 0 0 0O O0OO0OTO
00 0 0 OO0 O0OO0OTO
00 0 0O OO0 O0OO0OTO O

0 0 0 0O
0 0 0 0O
0 0 0 0O
0 0 0 0O

0 0 0 o
0 0 0 m
0 0 0 a3

00 0 0 0O O0OO0OTO
00 0 0 OO0 O0OO0OTO O
00 0 0 OO0 O0OO0OTO O
0 00 0O OO O OO

0 0 0O
0 0 0O
0 0 0O
0 0 0O

a

a

a3

273

A12=h 0 0 0 oy

—3/2, Ay =

= —1/2,0(2 = —1,(13

where a;

)

0 0 0 O

0
0
0
0
0
0
0
0

0 0 0 O

0
0
0

1
-1 1 0 0 0

-1 01 0 O
-1 0 01 0
-1 0 0 01

0
0
1
0

0
1
0
0
0 0 O
0 0 O
0 0 O

00 0O

00 0O

00 0O

00 0O

00 0O

00 0O

00 0O

00 0O

00 0O

00 0O

-11 0 0 O
-1 01 0 O
-1 0 01 0
-1 0 0 0 1

00 0O

0
0
0
0

0
0
0
0

0
0
0
0

00 0O

00 0O

00 0O

Axn=|0 0 0

and Aj; is a null sub-matrix. We note that removing the last column in the sub-matrix A,, we get the sub-matrix Ay;.

1,2, 3 have dimension 2M X (2M + 1) and are given as follows

The sub-matrices A3, j

s

0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O

00 0 O 0 00O
00 0 O 00O
00 0 O 0 00O
00 0 0 0 00O

pr

b

Ps

Ps

0 0 O
0 0 O
0 0 O

0 000 B

0 00 0 B

0 00 0 ps

0 0 00 0 0 0O
0 0 00 0 0 0O
0 0 00 0 0 OO
0 0 00 0 0 OO

0 0 0O
0 0 0O
0 0 0O
0 0 0O

B

iz}

B3

Pa

Az=h*l0 0 0 0 B4 0 0 O
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-2,

where i = —1/8,, = =1/2, 5 = =9/8, fu

i

0 0 0 0 O
0 0 0 0O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O

0 00 0 00O
00 0 O O0O0UO
00 0 0 0 OO
00 0 O O0O0UO

a

a;

a3

a4

0 0 O
0 0 O
0 0 O
0 0 O

0 0 0 0 o

0 0 0 0 m

0 0 0 0 a3

0 0 0O

a

0O 00 0O O O 0O
0 0 00O 0 00O

00 0O

a

00 0O

a3

0 000 0 0 0O
0 000 0 0 0O

0 0 0 O

Qg

Ayp=h|l0 0 0 0 a4

with the «; the same as in the sub-matrix A;,, and

0 0 0O
0 0 0O
0 0 0O
0 0 0O
0 0 0O
0 0 0O
0 0 0O
0 0 0 O]

0
0
0
0
0
0
0
0

0 0 0O
0 0 0O
0 0 0O
0 0 0O

0
0
0
1

-1 1 0 0

-1 01 0

-1 0 0 1

-1 0 0 O

0
0
0
0

-1 1 0 0 O
-1 01 0 O
-1 0 01 0
-1 0 0 0 1

0 0 O
0 0 O
0 0O
0 0 O

-1 1 0 0 O
-1 01 0 O
-1 0 0 1 0
-1 0 0 0 1

0 0 0O
0 0 0O
0 0 0O
0 0 0O

0
0
0
0

0
0
0
0

0

0
0

Aszz =

Note that if we remove the first column in the sub-matrix A;; we get the sub-matrix Ay;.

Further, let V be the matrix of dimension 6M X (4M + 2) given by

],

~ NS
— N
~ ~ P
— — ~
— N o
A A~ 7

|

where the v;; are sub-matrices of dimensions 2M X (2M + 1) given by

|4
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with @d=_187 328 3_ 3 3 47 3 1277 43 37 p3 98 43 1 43 2 43 137 3
Cm g r G S e g I M M B e e
1280° 2 10> 73 3207 4 20”75 12807 1 45° 72 45773 15 74 45775 45’
0 0 0O vi 00 0 0 O 0 0 00 O
0 0 0O v% 00 0 O O 0 0 00 O
0 0 0O v; 00 0 0 O 00 0 0 O
0 0 0O v}1 00 0 0 O 00 0 0 O
00 00 0 0 O0UO v% 0 00 0 0 O
0 00O 0 O O0UDO vé 0 0 0 0 0 O
0 000 0 O O0UDO vé 0 00 0 0 O
vo=h[0 0 0 0 0 0 0 0 v} 0 0000 0
0 00O 0 00O O O 0 0 0O vi
0 000 0 00O O O 0 0 0O v§
00 00O 0 O OO OO 0 0 0O v;
00 00 O O0OOO0O O O 0 00O vi
with vy = _121930924’ ) = _ﬁ’]% - —%,vi - _%;
0 0 0O vf 00 0 0 O 00 0 0 O
0 0 0O v; 00 0 0 O 00 0 0 O
0 0 0O vg 00 0 0 O 0 0 0 0 O
0 0 0O vi 00 0 0 O 00 0 O0 O
0 00O 0 O O0UDO v% 0 00 0 0 O
0 00O 0 O O0UDO v% 0 0 0 00 O
0 000 0 O O0UDO vg 0 00 0 0 O
vp=h0 0 0 0 0 0 0 0 V2 0 0000 0
00 00 O 0O O0OO0O O O 0 0 0O vf
00 00 0 0O O0OO0O O O 0 0 0O vg
00 00 0 00O O O 0 0 0O vg
00 00O 0 0O OO O O 0 0 0O vi
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Withv§=—%, %:—é,vi:—%, i:—%;
000O0UWV O0O0O0O0 0O 00000
000O0W P 00000 00000
00 00UV 0O0O0O0 0 0000 O
000O0UW W O0O0O0O0 0 00000
00000 O0O0O0 1V 0 00000
0000O0O0O0O0WV O 00000
0000O0O0O0O0 V; O 0000 O
vp=h|0 0 0 0 0 0 0 0 v; O 0000 0f
0000O0OUOOO0O0 O 000 0 v
0000O0OUO0OOO0O0 O 000 0 v
0000O0OUOOO0O0 O 000 0 v
0000O0OUO0OOO0O0 O 0000 v

with v} = —1—28,1); = —%,vi = —%,vi =0

Now, let y(x) be the true solution of the considered BVP, and define the 6 M-vector W as follows
T
W = (y(xr)s y(xl)’ y(xs)ay(xz)s “ee sy(xN—2+S)s y/(xr)s y/(xl)y e 7y/(xM)s y//(xo)s e 7y//(xM)) s

and the (4M + 2)-vector F by

F= (f(x()’y(x0)9y,(x0)9y”(x0))’f(xr’y(xr)sy/(xr)9y”(xr))s ’f(xM’y(xM)’y,(xM)uy”(xM))’
KXo, Y(X0), Y (0), Y (¥0)), Ky Y06), Y (5,7 () - s Kaag, YOon0), Y Gaa), ¥ Genn)))

Using the above vector-matrix notation, the exact representation of the global system may be expressed as
follows

Asmxem Ve + hVepxan+2Fansz + Koy = L(M)ey. (12)

The subscripts in (12) denote the corresponding dimensions of vectors and matrices. The vector K¢y, contains the
known values, provided by the given boundary conditions, that is,

h 3h
K6M = (_yO - Eyé)? —Yo — hyéy —Yo — 7}76, —Yo — 2hy(,)’ O’ cee 303yM9 _y69 _y69 _y69 _y69 09 .. 70)T9

and the vector L(h)ey consists of the local truncation errors of the formulas, given by
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L[y(x), k]
L[y(x1), h]
L[y(xs), hl
L[y(x2), h]

L[y(xm), hl
L[y (x), h]
L[y (1), hl
£h) = L[y (x5), h]
L[Y (x2), h]
L[y (), hl
LIy" (%), h]
L[y"(x1), hl
L[y"(xs), hl
L[y" (x2), h

£ Gah
Now, consider the system of approximate values of the problem expressed as follows
AsysemWenr + hV6M><(4N+2)1_:4N+2 + Kenr =0,
where Wy, is used to denote the vector of approximate values of Wy, that is,
Wert = Wrs V1. Y5 V2 oo s VM2t V0o Vis oo s Vo VooV oo s VDT

and Fapy is given by

F4M+2 = (ﬁ)aﬁ’fl’j.;af2’ e ’fMa kO’ kra kla kS’ k27 ey kM)T'
By subtracting (13) from (12), after some simplifications we get
DepxemEsm + WVenxans2)(F — Flanrszr = L(Ren,

where
€6M = WﬁM _WGM = (EF7E1’ES,E2’ (X ’EM—2+S7E;" (XX ’EI/W’E(/),’E;',? oo 9E;\,4)T

consists of the errors at off-steps and nodal points.
On the other hand, using the Mean Value Theorem, one can consider for i=0,r,1,5,2,2+7,3,2+5,4,
identities

/ /! / /! af / / af
S, ya), Y (x), "' (0a)) = f 6, 01, V3, 7 ) = (%) —Yi)a)(fi) + (V' () —yi)a—y,(&‘)
/! /! af
+ 0700 - y; )_y” (&,
’ " ’on ok , ;. 0k
k(xi, y(xi), ¥ (6), ' () — k(xi, yi, ¥;, ¥ ) = 0(x0) _yi)a_y("li) + () —yi)a—y,(m)

ok
—(m),
Y

00 =)=

(13)

14

... .M the

15)
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where &; and #; stand for intermediate points on the line segment joining (x;, y(x;), ¥ (), ¥ () to (x;, yi, ylf , ylf’ ). Now, using

the formulas in (15), we have

o S o
2e) .. o L) ..o 0 L&) 0
0o .. 0 0 .. 0 0 0
N %((:M) 0o .. j—;”,(gM) 0 %{,@M)
F-F= ok 0 ok 0 ok 0
5('10) a—y,(ﬂo) W(ﬂo)
0 ... 0 0... 0 0 0... 0
ok ok ok
0 a—y(ﬂM) 0 a—y,(nM) 0 W("IM)
0o .. 0 0o .. 0 %{,(go) 0
of of
E(fr) 0 a_y,(ér) 0 0 0
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EM
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En—1

En_a4s

!
EM—2+s
EI
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EO

"
EM—2+s

!
EM

In the above expressions, we have used the fact that the exact boundary conditions are known, that is,
Eo=y(X0) —y0=0,E;, =y'(xo) =y, =0, and Ey =y(xy) — ym =0. Finally, from Equation (14), we have that

AsmxemEsm + WV smxam+a)Jam2xemEsm = L(M)eu-
The formula in (16) may be rewritten as
(Asmxenm + hVenxam+2pTams2xem ) Eom = L(MWeu,

and putting M = A + hVJ we have

MemxemEsm = L(M)epm.

(16)

an

(18)
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Hence, the equation in (18) is rewritten as
Eovt = Mgy LMo (19)

We consider the maximum norm in R®™, ||€|| = max;|E;|, and the corresponding induced matrix norm in R6M*6M,

Then, expanding each term of M, . in a series about h, and after some simplification we have || M, Il = O(h™?).

Finally, from Equation (19) and assuming that y(x) has enough bounded derivatives, we get
1€amll < IMgyenell ILMsull = 1OGR)] |OR)] < Kh.
As we are interested only in the grid points, looking at the vector L(h), we see that
leil = ly(a) —yil S 1O OB < KR, i=1,2, ..., M,

which proves that the proposed method exhibits a seventh-order convergence. L]

4 | IMPLEMENTATION ISSUES

The proposed method is implemented in a block mode. We rewrite the systems in (12) as W(u) = 0, and the unknowns as

/ /! / / /! /!
{y},y}uyj }j:O M U {yj+rayj+s’yj+r,yj+sayj+r’yj+s}

j=0,... M=2

Then, we use Newton’s method to solve nonlinear equations since the TSHBM is an implicit scheme. The i-step iteration
of the Newton method is given by

~i+1

ot =0 - (1) 7'F,

where J represents the Jacobian matrix of F. The starting values for solving the systems on each iteration are taken as those
provided by the linear interpolation obtained throughout the boundary values, while the stopping criterion considers a
maximum number of 100 iterations and an error between two successive approximations less than 10716,

We summarize how the TSHBM is used to give numerical solutions to third-order BVPs:

1. Letustake M > 0 € N, and define h = ’% to generate the partition

Py = {xo +jh}ico, . m U {xo+(c+Ph}eers jmo,... M2

2. Using equations in (8)—(10), form the system of equations with variables

/ /! / / /! /!
{y],yj,yj } =0, M U {yf”’yf“’yf+r’yf+s’yf+r’yf+s } im0, M2

3. Make just one block matrix equation by joining all the equations generated in the previous step on the partition Py,
with the given boundary conditions.
4. Solve the single block matrix equation to get the approximate solutions for the BVP on the whole interval [xo, Xp/]-

5 | NUMERICAL EXAMPLES

This section will give four numerical experiments to confirm and verify the proposed method’s accuracy and efficiency.
The codes considered for comparisons are:

« TSHBM: The two-step hybrid block method developed in this article.
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« NPST: The non-polynomial spline technique in Reference 20.

« CSM: The cubic spline method proposed in Reference 21.

« PAM: The Padé approximation method presented in Reference 22.
« QSM: The quartic spline method in Reference 23.

« FDM: The finite difference method of algebraic order-six in Reference 24.

51 | Examplel

Consider the following singularly perturbed model problem in fluid mechanics and engineering

{—ey’ "(x) + y(x) = 81€? cos(3x) + 3e sin(3x),

(20)
y(0) = 0,y(1) = 3esin(3),y’(0) = 0,0 <x < 1.
The exact solution is y(x) = 3e sin(3x).
5.2 | Example 2
Consider a model BVP in References 20 and 21
V(%) = xp(x) + (x> = 2x% — 5x — 3) exp(x), 1)
¥(0)=10,0)=1,y1)=0,0<x < 1.
The exact solution is given as y(x) = x(1 — x) exp(x).
5.3 | Example3
Consider the following sandwich beam BVP given in Tirmizi et al.*
Y =y ) +m=0,
Y©=0,ym=0,y(})=0 0sxs1, (22)

2 _ (G.L?) _ (ar)
Where ¢* = (D,4.)(C,A~C?)" " T (D,A,)’

area of cross-section of the beam, C; and C, are shear parameters, D, is shear rigidity, and G, is face shear moduli. The

exact solution is y(x) = <g> [(sinh <§> - sinh(cx)) +c (x - %) + tanh ((cosh(cx) — cosh <§>)>] .

L is the span of the beam, u represents shear wrapping, A, represents the effective

5.4 | Example4

Consider the following general third-order BVP with mixed boundary conditions

Mixy = Y0 L y© , 1
{y (x)_ X + X2 +x9 (23)

y(2)=10,y"(1)+0.3y’1)=0,y"(2) +0.15//2) = 0,1 <x < 2.

The exact solution is given as y(x) = ¢; + ¢; log(x) + ¢3x? — xzz + %xz log(x),

whquq:%.,.w e, = —20le@) o 7 log@

21 > 2= 21 3 104 3
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FIGURE 4 Numerical results of the TSHBM and T T T T R
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TABLE 1 Maximum absolute errors (MAXAE) for problem (20) M . Methods M E
10 % TSHBM 2.50472%107°
20 % TSHBM 3.97180 x 10~
10 % QSM 2.50000 x 1073
20 ﬁ QSM 1.90000 x 10~
10 é TSHBM 9.02593 x 10710
20 % TSHBM 1.43122x 1071
10 % QSM 6.80000 X 10~
20 % QSM 5.70000 X 10~5
10 é TSHBM 3.00527 x 10710
20 6i4 TSHBM 4.67482 x 10712
10 6i4 QSM 1.20000 x 104
20 61—4 QSM 1.30000 X 10~5

5.5 | Explanation of results

This section reports the numerical results. The data obtained with the proposed TSHBM are presented in Tables 1-4.
The new method has been utilized to solve various third-order problems. The numerical results are compared with the
results of some existing techniques, such as the non-polynomial spline technique in Reference 20, the cubic spline method
presented by Al-Said and Noor,?! the Padé approximation method introduced by Tirmizi et al.,* the quartic spline method
proposed by Akram,? and the finite difference method in Reference 24. Comparison of the theoretical versus numerical
solutions obtained with the proposed TSHBM for problems (20)-(23) are displayed in Figures 1-4. The numerical results
confirm that the proposed TSHBM is an efficient scheme for solving the problems considered.

6 | CONCLUDING REMARKS

This article has applied the collocation and interpolation techniques to derive a uniform seventh-order TSHBM with
a fourth derivative for solving third-order BVPs of ODEs directly. The basic properties, including the convergence and
stability analysis of the technique, have been well studied. Comparisons of the absolute and maximum errors show that the
new approach performs better than some existing methods. The TSHBM introduced in this article has been used to solve
some model third-order BVPs, and it presents good performance. Hence, it might be considered for solving third-order
BVPs in ODEs.
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=

2l- 2l= 5= Bl= 8= 217 5]~ 5]~ 1=

x-value
0.0000
0.1000
0.2000
0.3000
0.4000
0.6000
0.7000
0.8000
0.9000
1.0000

=

&l &1- Bl= Bl- Bl= 5= 2= ==

TABLE 2 Maximum absolute error (MAXAE) for problem (21)

AE with PAM

6.65300x 10~°
6.50000 X 10~°
5.25400 x 1073
3.63000 x 10~>
1.87500 x 1073
1.73400 x 103
3.40500 x 1073
4.98000 x 10~>
6.20100 % 107°
6.34700 X 107>

Methods MAXAE
TSHBM 6.14072 x 10711
NPST 5.29920 x 10~/
CSM 1.68610x 1073
TSHBM 2.58404 x 10713
NPST 2.61270x 1078
CSM 4.45100x 10~*
TSHBM 1.11022 x 10716
NPST 1.49990 x 10~
CSM 1.12930 x 107*

AE with TSHBM

1.37308 x 10~

1.29817 x 10711

1.02789 x 10~

6.81773 x 10712

3.39005 x 10712

3.39005 x 10712

6.81773 x 10712

1.02789 x 10~

1.29817 x 10711

1.37308 x 10711
Methods MAXAE
TSHBM 8.17298 x 107
FDM 1.40000 x 10~°
TSHBM 1.44941 x 1078
FDM 2.91000 x 107
TSHBM 2.37099 x 10710
FDM 5.00000 x 10~°
TSHBM 6.26244 x 1071
FDM 1.33000 x 10~
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