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Microplastics (MPs) are a major environmental concern due to their possible
impact on water pollution, wildlife, and the food chain. Reliable, rapid, and high-
throughput screening of MPs from other components of a water sample after
sieving and/or digestion is still a highly desirable goal to avoid cumbersome
visual analysis by expert users under the optical microscope. Here, a new
approach is presented that combines 3D coherent imaging with machine
learning (ML) to achieve accurate and automatic detection of MPs in filtered
water samples in a wide range at microscale. The water pretreatment process
eliminates sediments and aggregates that fall out of the analyzed range.
However, it is still necessary to clearly distinguish MPs from marine microalgae.
Here, it is shown that, by defining a novel set of distinctive “holographic fea-
tures,” it is possible to accurately identify MPs within the defined analysis range.
The process is specifically tailored for characterizing the MPs’ “holographic
signatures,” thus boosting the classification performance and reaching accuracy
higher than 99% in classifying thousands of items. The ML approach in con-
junction with holographic coherent imaging is able to identify MPs independently
from their morphology, size, and different types of plastic materials.

1. Introduction

The largest percentage of marine litter consists of plastic wastes,
the biodegradation process of which can take decades to com-
plete.[1,2] The main concerns about the negative effects of plastics
in a marine environment are related to the severe impact that
such small particles have on wildlife and finally on humans.

The term microplastics (MPs) refers to
plastic material with diameter lower than
5mm. Mostly, MPs are generated from
breakup of larger items or mass produced
to match industrial and market needs.[3,4]

Wastewater treatment plants are an impor-
tant hub of MP pollutants as well, and their
direct release to the environment needs to
be continuously monitored.[5,6] However,
reliable identification of MPs in water is
still a challenging ambition and thus highly
demanded to map and understand their
impact on human health as well as marine
economic activities.[2,7] There are major
concerns that ingestion of MPs by marine
organisms could lead to toxicological
harm.[8–10] MPs can occur in high abun-
dances at the sea surface, in the water col-
umn, and on the seabed, including the
deep sea. Studies have recently detected
MPs in freshwater sources and drinking
water, alerting us about potential threats
for human health.[11] Despite these con-
cerns about MPs, protocols for sampling

campaigns and classification methods are not well assessed
yet.[3,10,11] So far, analytical methods for identifying and counting
MPs are still only at a basic developing stage, although research
about MPs is a vast emerging field.[12] Typically, analytical pro-
cedures for MP identification in environmental samples consist
of multiple steps, i.e., extraction, isolation, identification, and
classification. As long as the sizes of MPs stay in the range
1–5mm, visual sorting by expert users has been adopted for
detecting them. Therefore, an automated and robust identifica-
tion and counting method is highly demanded to perform effec-
tive ecological risk assessment, especially at micrometer
scales.[12] Indeed, under 1mm, the identification of each single
object inside a pretreated water sample is usually made by
unaided eyes at the optical microscope. Pretreatment steps
usually include digestion, sieving, or filtration of natural water
to exclude sediments falling outside the analysis range and to
avoid coating of MPs by bacteria biofilm or marine algae.

Basically, common approaches to identify MPs are based on
the combination of two analytical techniques, i.e., their physical
characterization, using optical microscopes, followed by their
chemical characterization through spectroscopy methods for
assessing the plastic type.[13–16] Stereomicroscopy is the most
used method to identify MPs in the range 0.1–1mm of sizes,[17]

whereas scanning electron microscopy (SEM) can identify
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plastic-like particles under 0.1mm.[18] Fluorescence microscopy,
atomic force microscopy, and polarized microscopy have been
used to identify specific classes of MPs.[12] All these methods
are intrinsically low throughput, time consuming, and not deploy-
able in situ for continuous and/or rapid monitoring. A processing
protocol for rapid and automatic MP recognition is still missing.

Recently, digital holography (DH) has been used to image
MPs, demonstrating its preliminary potential use for the physical
characterization of plastic-like particles.[19,20]

DH can provide useful capabilities such as label-free 3D
imaging, flexible focusing of samples in microfluidic streams,
and high throughput. In addition, DH technology is mature
to provide low-cost field-portable systems for in situ environmen-
tal monitoring.[21,22]

Here we show a novel approach, named holographic plastics
identification (HPI), which combines DH with artificial intelli-
gence to achieve very accurate identification of MPs inside het-
erogeneous pretreated water samples. We used a machine
learning (ML) paradigm relying on features extracted from holo-
graphic images and used as the input of a well-established sup-
port vector machine (SVM).[23] We refer to this combination as
“holographic SVM” (H-SVM), having in mind that the HPI is a
more general paradigm and in principle different classifiers
could be embedded instead of the SVM.

Bucking the main trend of deep learning for image classifica-
tion in microscopy,[24–27] we show that the coherent nature of
holographic imaging in microscope configuration permits us
to extract such a rich information content that more complex arti-
ficial intelligence schemes are not necessary for this scope.
Therefore, we demonstrate that it is possible to determine an
optimal set of “holographic features” extracted from the digital
holograms, with the scope of identifying a distinctive marker
for the MP class. Thus, these can be thought of as a specific
“fingerprint” for the whole MP population.

Automatic recognition of MPs in a heterogeneous mix is an
ambitious goal, as marine water samples include organisms
sharing with plastics the same wide range of characteristic scales,
due to the abundant presence of plankton and nekton. In

particular, we have identified marine diatoms,[28] i.e., a popula-
tion of microorganisms belonging to the phytoplankton group, as
one of the most problematic classes of micro-objects that can be
easily confused with MPs, thus impairing automatic recognition
by optical microscopes even after pretreatment of natural water.

The methodology we propose can recognize MPs and is over
99% accurate[29] in discriminating them from diatoms in the
presence of a wide heterogeneity of sizes, shapes, and plastic
material types. The proposed method could be the first step to
automatize the MP identification procedure and to make it reli-
able by significantly augmenting the number of objects analyzed.
The aim of this work is to provide an automatic prescreening tool
that could replace unaided microscope observation of pretreated
water samples.

2. Working Principle

We consider ten populations of micro-objects (i.e., nine diatom
species [DS] and a heterogeneous mix of MPs, with size< 1mm)
to be imaged in our holographic microscope, and we implement
a fully automatic pipeline to detect and classify MPs. The hetero-
geneous mix of MPs consists of different types of materials such
as polystyrene (PS), polyethylene (PE), polypropylene (PP), poly-
vinylchloride (PVC), and PE terephthalate (PET) (see Supporting
Information for further details). The DS we analyzed will be here-
after indicated with DS1,…,DS9. The corresponding species
names are shown in Figure 1 along with the area intervals where
each species is distributed. The sizes of the MPs constituting the
sample under test vary uniformly in the chosen analysis range,
i.e., 20 μm to 1mm, while each DS provides a classical Gaussian
statistical distribution. We limited our analysis to this range of
sizes as larger items are more easily identifiable and can be
excluded from the liquid sample by net water filters during
the sampling operations.[12] To show the set of populations to
be classified, we selected for illustrative purposes just one ele-
ment per class and we have shown in Figure 1 the corresponding
modulus-2π phase images after refocusing. From the area inter-
vals shown in Figure 1, it can be inferred that MP areas are

Figure 1. Complexity of the MP identification problem. Synthetic image reporting the wrapped phase maps of one element per DS and a typical MP
(in the black box). The species/type names are reported on the right side along with the area intervals, A, where each population is distributed.
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spread over the entire region where the other classes are distrib-
uted, in part or entirely.

The physical principle that governs the adopted imaging
method is the theory of scalar diffraction, which is well estab-
lished and used to model phenomena of light diffraction and
propagation from objects of known regular shape. The DH prin-
ciple and imaging method derive from that and is able to recover
the diffracted wavefront signature of an object probed by coher-
ent light. Here we relied on a machine learning (ML) approach to
accurately identify MPs, as developing a model of diffraction
from these very complex objects would be an unfeasible task
due to the large heterogeneity of MPs in terms of shapes, sizes,
and attitudes to interact with the light beam.

After recording digital holograms of the samples, we apply
holographic object detection and automatic refocusing to recon-
struct the complex wavefronts of each object in the field of view
(FoV).[30] Then, we extract the modulus-2π or “wrapped” phase
images, from which we segment the detected objects. Details
of the proposed processing pipeline are reported in the following.

2.1. Holographic Recording and Reconstruction

We performed several experiments for recording holographic
data of each population. For each experiment, a drop of seawater

containing MPs and/or diatoms was imaged under the holo-
graphic microscope. The experimental setup is shown in
Figure 2a and described in detail in the Supporting
Information. The HPI processing pipeline is shown in
Figure 2b. This can be conceptually thought of as made up of
three parts. The first is devoted to detect the objects inside the
FoV and reconstruct the complex object in sharp focus. The sec-
ond extrapolates the complete set of features from the object
complex information. These have to be informative enough to
take into account the large heterogeneity of the MP population,
in terms of shapes, sizes, and compositions of the materials
involved and thus light absorption properties. Actually, over
90% of them are made of PE, PP, PET, nylon, PMMA, PS,
and PVC aggregated in clusters of various sizes.[31,32] Optical
microscope photographs of the MPs belonging to the mix used
in our experiments are shown in Figure 2c and show their large
heterogeneity on different scales.

The last block uses the feature set to classify the objects and is
described in detail in the Supporting Information. Let H be the
hologram recorded in off-axis configuration in transmission
geometry, and let HF be the corresponding complex image after
demodulation and selection in the Fourier domain of the first
order of diffraction.[33] Then, a first stage of segmentation pro-
vides the estimate of the centroid of each object. Once the

Figure 2. HPI. a) Sketch of the experimental setup used for sample recording. SSL, solid state laser; FC, fiber coupler; OF, optical fiber; S, sample; L, lens;
MO, microscope objective; M, mirror; BS, beam splitter; CCD, charge coupled device. b) Image processing pipeline used to reconstruct the DHs, extract
the features, and accomplish the classification task (scale bar: 5 μm). c) Optical microscope photographs of various MPs belonging to the mix used in our
experiments.
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centroid of an object is localized, automatic focusing yields its
best focus distance, zF. This is trivially obtainable by optimization
of the proper contrast metrics, e.g., the Tamura coefficient or the
Tamura of gradient operators.[34] Numerical propagation returns
the complex object O ¼ ASfHF; zFg, where ASf : : : g denotes the
angular spectrum propagation operator.[33] Extracting the ampli-
tude pattern from the complex object is not the best choice when
MP samples are imaged. Depending on the plastic type, for any
fixed visible wavelength of the probing beam, these are
characterized by different absorption characteristics, some of
them behaving as highly absorbing samples, others as almost
transparent objects. For this reason, any classification method
based on the sole amplitude or intensity pattern would fail.
Instead, we extract the modulus-2π, or “wrapped” phase contrast,
ψ ¼ AnglefO=CRg, where we denote with CR ¼ ASfHF�R; zFg
the reconstruction at distance zF of a demodulated reference
hologram, HF�R, used to compensate the wavefront aberrations
introduced by the optics in the setup. This procedure is repeated
for all diatoms and MPs.

2.2. Holographic Feature Extraction

Examples of MPs extracted from the reconstructed population
are shown in Figure 3a, where their modulus-2π phase-contrast
images are reported and sorted by area. The large scales and
shape variability of MPs make arduous their classification from
DS by looking at the sole morphological parameters. Therefore, a
more distinctive set of features needs to be defined.

In DH, to measure the sample optical thickness, phase unwrap-
ping is usually operated.[35] However, we noted that the structure
of the MP samples provokes sudden phase jumps that make the
unwrapping procedure unfeasible or not reliable enough for most
of the objects. The large spatial density of the phase jumps in the
wrapped phase-contrast map of MPs has not been recognized in
natural objects such as algae of comparable size.[36,37]

Although this is generally a drawback for imaging the sam-
ples, we believe it is an opportunity for the purpose of classifica-
tion. Indeed, the high spatial density of the phase jumps in the
wrapped phase-contrast map could be a distinctive feature for the
wide MP class.

We use ψ to extract the complete set of descriptors we rely on
(see Supporting Information). Let Fi (i¼ 1,…,28) be the features
we extract. These are calculated from a set of four maps

Σ ¼ ½ψ ;Rψ ; S; S2� (1)

In Equation (1), Rψ ¼ ψ � ψLP is the phase roughness, calcu-
lated from ψ by subtracting its low-pass-filtered version, ψLP, S is
the binary object support (i.e., the mask), and S2 ¼ ðFSjjSðψ>0ÞÞ is
the result of the logical or between the support frontier FS and the
binary map, Sðψ>0Þ, obtainable by segmenting ψ using a zero
threshold. The stack Σ is sufficient to provide a complete char-
acterization of the objects through the set of features extracted
from it. Table S1, Supporting Information, summarizes the
descriptors we used to train the SVM and the element of Σ from
which each of them is calculated. A short description of each of
them is also provided. The element ψ allows calculating the most
common texture-based parameters that are widely used in the
image processing framework. In addition, four parameters

are trivially obtainable from the roughness map, Rψ .
Morphological properties based on the object support, e.g., the
area, perimeter, eccentricity, length, and breadth of the bounding
box, are obtained from S. The number of vertexes of the bound-
ing box is in principle a good identifier of MPs with very irregular
silhouettes in the hologram plane, as natural water samples tend
to be more regularly shaped. However, due the wide variety of
diatom populations present in water samples, this feature alone
would not be sufficient to guarantee high classification accuracy,
so the dimensionality of the descriptor space needs to be
extended. In addition to these parameters, we included new fea-
tures that have been conceived to measure the spatial density of
the phase jumps and, in general, the attitude of the support S2 to
occupy a 2D space. Similarly to fractal objects with fractal dimen-
sion lower than 2, we note that the map S2 obtained from an MP
sample tends not to completely fill the 2D domain included
inside S. Thus, we also calculate the object solidity and define
three new features, namely, the fill ratio, FR, the support fractal-
ity, SFr, and the total variation density, TVD, as

FR ¼ AfSg
AfS2g

; SFr ¼ 1� PfSg
PfS2g

; TVD ¼ TVfψ⊙Sg
AfSg (2)

where we denote with Af : : : g and Pf : : : g the operators that
measure the area and perimeter, respectively, TVf : : : g follows
the common definition of total variation, and ⊙ is the element-
wise product.

As a guide criterion for the selection of the descriptors consti-
tuting the parameter space, we used the Pearson correlation
matrix analysis[38] to discard parameters that would have pro-
vided redundant dimensions. Following this criterion, we based
the SVM on a 28-dimension space, whose features are listed in
Table S1, Supporting Information, and represented by the matri-
ces in Figure 3b,c. The Pearson matrix itself can be thought as a
marker of a specific class of objects. Indeed, in Figure 3c, the
Pearson matrices obtained by nine different diatom populations
are well distinguishable by the matrix calculated from the MP
training set (Figure 3b), as detailed in the following.

2.3. New Informative Features from DH Data

First, we selected the 19 most used descriptors related to
morphology and texture of the imaged objects, typically
used in image classification by ML[38,39] (see the Supporting
Information for a comprehensive description of the proposed
set). A synthetic statistical representation that describes how
much a set is able to separate one population from the others
is provided by the Pearson correlation coefficients matrix, which
measures the mutual correlation among features.[40] The higher
the correlation between two features, the higher the redundancy
introduced by the use of both of them. In other words, the opti-
mality of a set of descriptors is strictly related to the minimization
of their mutual correlations. The Pearson matrices correspond-
ing to the diatoms show in some cases a significant decorrelation
between the features, thus suggesting that these could be infor-
mative enough to characterize some DS (see the red boxes in
Figure 3c). However, by evaluating the section of Pearson matri-
ces corresponding to the sole selected 19 descriptors in the MP
case, we can notice that some of them are highly correlated with
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each other (see the red box in Figure 3b), thus suggesting the
nonoptimality of this feature set for the purpose of MP classifi-
cation. Consequently, we designed a new set of nine descriptors
based on the holographic nature of the phase images of MPs. By

adding them to the previous 19 ones, we can define new Pearson
correlation coefficient matrices that provide a more accurate
representation of the samples (see green boxes in Figure 3b,c).
The new set is tailored to identify MPs with high accuracy and the

Figure 3. Holographic characterization of MPs. a) Examples of wrapped phase images of MPs sorted by area (from top left to bottom right), highlighting
the random spreading of their sizes, shapes, and phase jumps (scale bar: 20 μm). b) Pearson correlation matrices calculated for the MP and the diatom
classes using the complete set of the 28 proposed descriptors. The red and green boxes correspond to the Pearson matrices obtainable from the sole
classical and holographic feature sets, respectively.
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HPI works well in the presence of different MP materials of vari-
ous morphologies and characteristic scales. Introducing param-
eters measured from phase-contrast maps allows enlarging the
dimensionality of the conventionally used classification space
by adding new basis vectors, thus creating the conditions to sep-
arate the populations through a trained SVM. Indeed, by inspect-
ing the entire Pearson matrix in Figure 3b, the significant degree
of decorrelation of the added features, among each other (see the
green box area in Figure 3b) and, above all, with respect to the
classical set (see the areas outside both the green and the red
boxes in Figure 3b), is evident. To quantify such decorrelation,
we calculated the average value of mutual correlation in the areas
highlighted with the red and green boxes of the Pearson matrices
in Figure 3b,c and over the entire Pearson matrix. As the ideal
condition would be to have descriptors generating an identity
Pearson matrix, i.e., minimizing the mutual correlation, we
quantified the decorrelation using the root mean square error
(RMSE) estimator

RMSEPearson�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjPc � Ij2iB
q

(3)

where P is the Pearson matrix, h : : : i is the expectation operator,
c ¼ 1, : : : , 10 denotes the class, B denotes the box, and I is the
identity matrix. The results of such analysis (see Figure S1,
Supporting Information) show that the RMSE corresponding
to the classical descriptors (including morphological and texture
information) stays above 78% for the MP class, whereas the
RMSE between the holographic features for the same class is
below 31%. By measuring the average value of mutual correla-
tion over the yellow box in Figure S1, Supporting
Information, it is possible to assess how much the new holo-
graphic descriptors are correlated to the classical ones, i.e.,
how informative the new set is. It is interesting to note that
the mutual correlation between new and classical features stays
below 26% when these are applied to MP items, suggesting the
possibility to enrich the classical set with new information. The
correlation difference between the red and green areas of the MP
Pearson matrix is the largest among the ten classes. Moreover,
the yellow bar in Figure S1, Supporting Information, is the low-
est among the classes (with the sole exception of DS5), thus con-
firming that the new feature set is highly discriminative for the
MP population. Nevertheless, the blue bar (denoting the com-
plete set of descriptors) shows a decrease in the RMSE for all
ten classes with respect to the classical set (red bar), suggesting
that the new set may be able to improve the overall classification
performance. The analysis of the Pearson matrices is a first clue
of the advantage deriving from the introduction of nonredundant
information content for this specific recognition problem.

3. Results

To measure the discriminative power of the set of features
for MP identification, we solve a classification problem. To
this aim, we use the H-SVM and we carry out K-folding cross-
validation tests.[29] We captured holograms of liquid samples
(i.e., sterile seawater; see Supporting Information) containing
homogenous populations; i.e., each of the ten classes of objects
was sampled separately through the holographic system. Thus,

for each of the reconstructed objects, a labeling indicating the
belonging class was available. We exploited this information
for both training and validation purposes.

3.1. Holographic Support Vector Machine

From the acquired sequences of reconstructed holograms, we
identified a total of N¼ 2000 objects evenly distributed among
the ten classes. For each object, we calculated the stack of maps
from which the set of 28 features has been extracted and used to
classify through the SVM. At the scope of studying the effect of
the introduction of the new distinctive descriptors based on the
wrapped phase map, we repeated the test by removing them and
maintaining only the 19 “classical” ones used for object classifi-
cation.[38] We will hereafter refer to this choice as “C-SVM.” The
classifier performance metrics were measured in both cases. The
K-folding tests were repeated varying the K-folding factor,
K¼ {5,10,20}. Once the parameter K is set, N is divided in
K balanced subsets; K� 1 subsets are used to train the SVM,
and the one out of K� 1 subsets is used for validation. Thus,
the number of objects used for training and validation, TK

and VK , respectively, is set as well. When K¼ 5, the set N is
divided in K groups so that T5 ¼ 1600 and V5 ¼ 400.
Similarly, when K¼ 10, we have T10 ¼ 1800 training objects
and V10 ¼ 200 validation objects, while with K¼ 20 it follows
T20 ¼ 1900 and V20 ¼ 100. For each value of K, classification
was performed, and the confusion matrix was extracted, from
which we calculated the performance metrics. We repeated this
classification process M¼ 5000 times. Then we calculated aver-
age values for each metric and the corresponding uncertainty. In
the case of metrics indirectly measured from the values directly
available from the confusion matrix, the propagation of uncer-
tainties rule was followed. The estimated performance metrics
of the classifier are shown in Figure S3a–d, Supporting
Information, and summarized in Table 1. In particular, from
the first row of Table 1, it can be observed that the H-SVM is
able to classify the ten populations with accuracy up to
99.31%� 0.19%, whereas the accuracy obtainable by C-SVM
can drop below 88% with a larger uncertainty (up to 0.62%).
Figure S3a–d, Supporting Information, compares the H-SVM
and the C-SVM in terms of the main performance metrics mea-
sured for different values of K, namely, precision, specificity, sen-
sitivity, and F1 score.

[41] The H-SVM is estimated to classify with
precision up to 99.10%� 0.41% (see Figure S3a, Supporting
Information). Remarkably, the precision reduces up to
60.07%� 0.58% if the C-SVM is used, i.e.; the gain in precision
obtained adding the new holographic set approaches 40%.
Similarly, the classifier sensitivity is higher than 96.7% if
the complete set of features is used, whereas it drops down
to 90.78%� 0.64% in the case of C-SVM (Figure S3b,
Supporting Information). The specificity of the classifier is esti-
mated to range between 99.8% and 99.9%, as shown in the plots
of Figure S3c, Supporting Information, and shown in Table 1.
The F1 score, which is an average measure of precision and
recall, reaches the estimated value of 97.61%� 0.41% for
K¼ 10 when the H-SVM is used, while it lowers to
72.92%� 0.38% when the sole conventional features are
used; i.e., a 25% gain in F1 score is obtained (Figure S3d,
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Supporting Information). The four plots show also a small vari-
ance over the metrics on the various K-folding as the average on
the 5000 trials. The benefit of the holographic descriptors is evi-
dent along all the metrics, and the variance of the sensitivity is
wider due to MPs’ higher variability. The sensitivity of the tested
classifier has higher values due to its capabilities in correctly clas-
sifying the true positive rates. These results show the effective-
ness of the HPI in identifying plastic items spanning over a wide
range of scales and with large variability of shapes and material
types, when these have to be recognized inside a heterogeneous
mixture, e.g., in a microfluidic flow.

After validating the classifier performance, we conducted a
new campaign of experiments and we used it to classify objects
belonging to the ten populations from a wider set of samples. In
particular, we identified hundreds of objects per class and a total
of T¼ 10 000 elements, evenly distributed among the ten classes
(i.e., 1000 training elements per class), was obtained by data aug-
mentation. Then, in a subsequent set of acquisitions, we cap-
tured with the same setup holograms of liquid volumes from
which we identified a total of V¼ 500 validation objects evenly
distributed among the populations. We trained the SVM using
the features extracted from the T objects and used it to measure
the rate of correct detections from the data of the V objects
acquired in the second experiment. The correct detection rate
is measured as the ratio between the true positives and the total
number of validation objects, V, resulting in 99.8% of correct
detections. If the complete holographic set is used as the input
of a linear classifier, this can discriminate between the ten pop-
ulations with 98.2% of accuracy. When we used a 19-feature sub-
space that did not include the highly distinctive basis
components, the accuracy of the classifier approached only
81%; i.e., the linear classifier gained 17% in accuracy. In other
words, the HPI embedding a linear classifier enriched by holo-
graphic descriptors outperformed the C-SVM in terms of classi-
fication accuracy. Above all, if the H-SVM is thought of as a
binary MP identifier taking a yes/no decision between plastic
items and diatoms (i.e., without including classification among
the DS), the accuracy value reaches 100%, with no false positives

(FPs) and no false negatives (FNs). At first analysis, these
results could be considered somehow expected due to the
larger dimensionality of the 28-feature space with respect to the
19-feature space of conventional descriptors. Thus, we conducted
a further assessment test using the linear classifier as a bench-
mark. In particular, we compared the classification performance
we obtained using the same linear classifier when this takes deci-
sions based on the 19 conventional descriptors and the sole nine
new features we introduced. Contrary to expectations, the linear
classifier based on the lower dimensionality space was 84.6% accu-
rate, i.e., 3.2% better than the classifier working on a significantly
larger dimensionality space. Only a 2.6% classification error was
associated with the MP class, whereas this value approached 10%
when the larger but less distinctive set of conventional features
was used. These results prove the effectiveness of the holographic
approach proposed here as an optical marker for the MP class.
To show the advantage of adopting the proposed approach in
the case of a reduced number of data available for training, in the
Supporting Information we report a comparison between the
obtained performance and the results obtainable using a well-
established deep neural network architecture.[42]

3.2. Solving Misclassifications

To show how the stack Σ allows for solving ambiguities between
“similar” populations, in Figure 4 we report two examples of
binary classification between MPs and diatoms with comparable
morphologies and sizes. In particular, Figure 4a shows the maps
ψ, S, and S2 obtained from one of the MPs (top row) and one of
the elements of the population DS3 (bottom row). In this case,
the two objects have similar morphological characteristics, e.g.,
in terms of area, perimeter, or eccentricity, so C-SVM is likely to
fail in discerning between them. To have an indication of the
frequency of this type of error, we extracted from the K-folding
tests the sole elements describing a binary classifier devoted to
discern between MPs and DS3. The table in Figure 4b shows the
results obtained in the case K¼ 5. The number of FNs and FPs
has been calculated from the confusion matrix obtained after
averaging the set of T¼ 5000 confusion matrices estimated dur-
ing the K-folding tests. Results indicate that the sole class DS3
generates 20% of FPs and a few FNs, meaning that MPs would be
overestimated in the presence of small-sized algae. However,
when we introduce the new parameters devoted to assess the
capability of S2 to fill a 2D space and the irregularities of its sil-
houette, both the FN and FP percentages drop to zero; i.e., all the
2L¼ 400 objects are correctly classified. Indeed, the maps S2 in
the top and bottom row of Figure 4a do not fill their own supports
to the same extent, and the new features are sensitive to this dif-
ference. A similar comparison is shown in Figure 4c,d, where we
show the performance of a binary classifier devoted to discern
between plastic items and objects belonging to the population
DS1. In particular, the example reported in Figure 4c shows
the case of an MP that has been classified as a DS1 through the
use of the C-SVM. Instead, this is correctly classified when the
H-SVM is used. The table in Figure 4d shows that the sole class
DS1 would generate 28% of FPs and 3.5% of FNs. However, the
H-SVM is almost error free in this case, with 0% of FPs and 0.5%
of FNs. This explains the increase of specificity and sensitivity

Table 1. Classifier performance. Comparison between C-SVM (gray
shading) and H-SVM (no shading) in terms of the main performance
metrics, measured for different values of K. The performance gains for
each metric are also reported. The most remarkable results are
highlighted by red color.

K ¼ 5 K ¼ 10 K ¼ 20

Accuracy [%] 99.13 � 0.23 þ11.90% 99.26 � 0.20 þ11.56% 99.31 � 0.19 þ11.43%

87.23 � 0.58 87.70 � 0.61 87.88 � 0.62

Precision [%] 98.36 � 0.69 þ38.29% 98.84 � 0.51 þ38.02% 99.10 � 0.41 þ37.94%

60.07 � 0.58 60.82 � 0.46 61.16 � 0.41

Sensitivity [%] 95.70 � 0.86 þ4.92% 96.40 � 0.64 þ5.39% 96.72 � 0.47 þ5.56%

90.78 � 0.64 91.01 � 0.52 91.16 � 0.43

Specificity [%] 99.82 � 0.08 þ6.53% 99.87 � 0.05 þ6.38% 99.90 � 0.04 þ6.33%

93.29 � 0.14 93.49 � 0.11 93.57 � 0.10

F1 Score [%] 97.01 � 0.56 þ24.71% 97.61 � 0.41 þ24.69% 97.89 � 0.32 þ24.68%

72.30 � 0.47 72.92 � 0.38 73.21 � 0.33
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(FPs are reduced to zero being in the denominator of the two
metrics) and strongly supports the power of the descriptors in
correctly rejecting hypothesis of being MPs when the true state
of nature is a diatom and vice versa.

4. Discussion and Conclusions

We introduced an automatic prescreening approach that enables
accurate and automatic detection of MPs in pretreated water
samples over a wide range of scales by combining 3D coherent
imaging with ML. Results show that ML based on an optimal set
of holographic features improves MP recognition in heteroge-
neous samples. We achieved over 99% of accuracy in classifying
ten populations, including nine DS and a MP mixture including
several different plastic materials. Residual classification errors
during the test step are due to the sole misclassifications among
diatom classes; i.e., no MP is classified as a DS and vice versa. In
other words, considering the proposed H-SVM as a binary clas-
sifier, we are able to identify exactly MPs in pretreated seawater,
thus discarding the other objects falling within the same range of
characteristic scales. Previous works have proposed the use of
holographic reconstructions to classify particles, cells, or micro-
organisms based on statistical methods or ML architectures.[43–51]

However, none of the existing ML-DH approaches have tack-
led the problem of identifying MPs, which have their own spec-
ificity as the MP class consists of a wide heterogeneity of
materials, morphologies, and characteristic scales. To the best
of our knowledge, this is the first characterization of MPs based
on their diffracted wavefront signature, and thus for the first time
a set of holography-based features is defined to identify this very
complex class of inert micro-objects. We believe this novelty
can pave the way to new possibilities, allowing us to solve differ-
ent classification tasks characteristic of other fields of research.

The reported results confirm that quantitative phase imaging
(QPI)-DH is a very appropriate microscopy tool for addressing
MPs’ recognition problem, as it can guarantee quantitative 3D
imaging capabilities and can analyze the content of microfluidic
flows with high volumetric throughput.[20,21,52] The proposed
classification approach can be of help to screen the content of
seawater that previously underwent a pretreatment procedure,
e.g., sieving or filtration, with the aim to identify MPs with high
throughput, avoiding the use of unaided visual analysis by
experts under the optical microscope. Once classification is per-
formed, further spectroscopy-based analysis could be used only
on the prescreened portion of items classified as a plastic to esti-
mate the composition of plastic pollutants in the specific water
segment under test. In this sense, the method we propose can be
thought as a block to be introduced in the existing water analysis
chain to accelerate the identification of MPs and to base statistical
analysis on a more appropriate number of samples. It is worth
pointing out that the DH diffraction limit is about 200 nm for a
532 nm wavelength, whereas a typical value of spatial resolution
is 0.5 μm for DH systems. Thus, in principle, the proposed anal-
ysis range can be extended to include particles smaller than
20 μm. A characterization of such small samples will be the
object of future work from our group.

Of course, in real field-sampling campaigns aiming at detect-
ing pollutants of marine water, we expect to find a larger het-
erogeneity of plankton sizing less than 1mm, so we foresee the
performance to slightly worsen with respect to the results
reported earlier. However, it has been recently shown that
marine algae and microplankton species of sizes ranging
between 25 and about 500 μm, when imaged through a field
portable red green blue (RGB) DH microscope, mostly show
regularly shaped phase maps with no jumps or with small
jumps density distribution.[21] Thus, adding a larger variety
of microplankton species is not expected to affect dramatically
our MP recognition performance, but only diatom taxonomy
results. In other words, the discriminative power of the features
introduced in this study suggests robustness against the pres-
ence of a more numerous set of populations. In addition, pre-
treated water samples are supposed to be free from larger-sized
(multicellular) algae, sand grains, etheroaggregates, and sedi-
ments larger than 1mm. In case some of these elements are
not properly filtered out by the water treatment process, the
accuracy is expected to be slightly lower than the value we
reported here (>99%). For example, possible sources of classi-
fication errors could be plastic beads specifically manufactured
to be very regularly shaped, which could be attributed to natural
objects and generate FNs. Untrained microalgae containing lip-
ids could be incorrectly associated with the MP class, generating
FPs. Moreover, future investigations will be conducted to take
into account the eventual presence of quartz or other minerals
after the prefiltering treatment. We believe the potential accu-
racy loss in such specific cases would be still acceptable in view
of the possibilities the method offers, being the first able to
automatically screen MPs with a high-throughput imaging
method, thus replacing the burdensome, slow, and inaccurate
naked-eye observation of each single micro-object.

The measured average mutual correlation among the new
holographic descriptors and the classical ones supports the
use of the complete set, the lowest value being obtained for

Figure 4. FP and FN test cases. a,c) Two examples of how the SVM clas-
sifier based on the sole classical features (C-SVM) confuses DS with MPs
(FPs) and vice versa (FNs). Examples of MPs (first row) and DS (second
row) are reported, as seen through the maps ψ , S, and S2. The sole use of S
is clearly not sufficient to discern between these populations, which is the
reason for the large FP percentages obtained by the C-SVM. (Scale bar:
5 μm.) b,d) Tables that summarize the FP and FN percentage count in
the cases of C-SVM and H-SVM. The H-SVM is error free in terms of FPs.
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the MP class. As a further test case, we used a plain linear classi-
fier using the complete set of descriptors. This outperformed the
C-SVM in terms of classification accuracy, thus demonstrating
how holographic parameters are highly discriminative in identi-
fying the wide MP class. The complete H-SVM has shown
performance comparable to well-established a deep neural net-
work[42] in handling the classification task, requiring a negligible
time for training with respect to the amount of time required to
train the network (see Supporting Information). Although the
convolutional neural network is expected to be more robust when
adding more and more classes, this result suggests that H-SVM
could replace deep learning whenever there is no possibility of
collecting a large ground truth dataset for training. We expect
further improvement and the capability to handle more andmore
inclusive and complex classification problems by replacing the
SVM with better performing classifiers.[53]

A consideration about the state of the art in sensor develop-
ment is due. Combining microfluidic and DH technologies to
bring high-throughput holographic sensors out of the lab and
outdoor and also to extreme environments has been already
demonstrated.[21,22,52] Technology is mature enough and pro-
vides day by day various imaging sensors and high-throughput
portable holographic flow cytometers to be deployed on the
field.[21,52] Such systems can be produced at reduced costs.
Therefore, it is easy to bode for the upcoming future the use
of these sensors for the monitoring of marine water looking
for plastic pollutants. In this sense, HPI can be thought as a
block to be introduced in the existing water analysis chain.
Unlocking the possibility to perform fast, high-throughput
screening within a very wide (20 μm–1mm) analysis range
could have a remarkable impact on the environmental monitor-
ing field. Indeed, we believe the coherent optical approach we
propose here is the first important step to relax the problem
burden through the identification of a marker for the wide
MP class, with the hope this will help in providing a deeper
knowledge of the spatial concentration of MPs and the temporal
distribution of their flows.[54]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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