
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2022.3178801, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

1 
Liuzzi et al. Merging clinical and EEG biomarkers in an Elastic-Net regression for disorder of consciousness prognosis prediction 

 

Abstract—Patients with Disorder of Consciousness (DoC) 

entering Intensive Rehabilitation Units after a severe Acquired 

Brain Injury have a highly variable evolution of the state of 

consciousness which is a complex aspect to predict. Besides clinical 

factors, electroencephalography has clearly shown its potential 

into the identification of prognostic biomarkers of consciousness 

recovery. In this retrospective study, with a dataset of 271 patients 

with DoC, we proposed three different Elastic-Net regressors 

trained on different datasets to predict the Coma Recovery Scale-

Revised value at discharge based on data collected at admission. 

One dataset was completely EEG-based, one solely clinical data-

based and the last was composed by the union of the two. Each 

model was optimized, validated and tested with a robust nested 

cross-validation pipeline. The best models resulted in a median 

absolute test error of 4.54 [IQR = 4.56], 3.39 [IQR = 4.36], 3.16 

[IQR = 4.13] for respectively the EEG, clinical and hybrid model. 

Furthermore, the hybrid model for what concerns overcoming an 

unresponsive wakefulness state and exiting a DoC results in an 

AUC of 0.91 and 0.88 respectively. Small but useful improvements 

are added by the EEG dataset to the clinical model for what 

concerns overcoming an unresponsive wakefulness state. Data-

driven techniques and namely, machine learning models are 

hereby shown to be capable of supporting the complex decision-

making process the practitioners must face.  

Index Terms— Electroencephalography, Disorder of 

Consciousness, Machine Learning, Coma Recovery Scale – 

Revised, Prognostic Models 

I. INTRODUCTION 

Severe Acquired Brain Injuries (sABIs) are defined as  

traumatic, post-anoxic, vascular or other brain damages that 

cause coma for at least 24 hours. These patients, after the coma 

phase, can transit to a state of prolonged Disorder of 

Consciousness (DoC) which includes the Unresponsive 

Waking State (UWS, previously referred as vegetative state) 

and the minimal conscious state (MCS). This condition may 
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persist or cease achieving a full recovery emerging from the 

MCS (E-MCS) [1].  

The mechanisms underlying recovery from a DoC are currently 

unknown and are strongly dependent on etiology, age and 

injury severity [2]. Furthermore, the patients’ rehabilitative 

paths have a high inter-individual variability. For this reason, 

prognostication on neurological outcomes in patients with DoC 

remains a challenging task. A conspicuous number of predictive 

parameters in rehabilitation of patients with DoC have been 

reported both from the clinical world [3]–[5] and the 

instrumental world [6]–[8]. Multiple electroencephalography 

(EEG) descriptors as reactivity, alpha waves and an antero-

posterior gradient (APG) have been shown to be predictive of a 

possible consciousness recovery [9]–[12]. Many are also brain-

computer interfaces application with embedded EEG-based 

prognostic models [13]–[15]. However, researchers reported 

some limitations in using the EEG as a prognostic instrument 

for DoC given a substantial lack of standardized terminology. 

Recently, the American Clinical Neurophysiology Society 

(ACNS) attempted a standardization in nomenclature and 

assessment techniques of EEG biomarkers in patients in critical 

care. The latter has proven to be a valid starting point in the 

systematic evaluation of an EEG signal in critical patients [16]–

[19]. 

At the same time, the latest international guidelines for 

diagnosis of patients with DoC have recommended the use of 

both clinical and instrumental evaluations to minimize the risk 

of misdiagnosis [20], [21]. In the context, EEG assessments 

must show its potential in improving prognosis accuracy and 

precision.  

Data-driven approaches have been proved to be effectively 

helping practitioners in the clinical decision-making processes 

as reported in systematic reviews in this field [22]. Namely, 

when evaluating outcomes in patients with DoC, authors 
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targeted specific rehabilitation milestones as visual pursuit [23], 

command following [24] or decannulation [25]. For what 

concerns predicting consciousness recovery different multi-

modal based machine learning models have implemented, 

although often lacking of rigorous cross-validation or suffering 

from low sample size [6], [26].  

For this reason and to estimate the extent to which a qualitative, 

but standardized, inspection of the EEG signal can improve the 

prognosis of consciousness changes in DoC, we proposed three 

different Machine Learning (ML) models internally cross-

validated and tested using data from 271 sABI patients entering 

the Intensive Rehabilitation Unit (IRU) with a DoC.  

First, we targeted the estimation of the Coma Recovery Scale 

revised (CRS-R) total score [27] at discharge via an Elastic Net 

regressor with three different input datasets (one based only on 

EEG, one based only on clinical evaluation, and one based on 

the union of the two, namely “hybrid”). Secondly, we evaluated 

classification accuracies of overcoming boundary values in the 

CRS-R at discharge, most likely indicating a significant change 

of consciousness state.  

II. METHODS 

A. Study design and participants 

A retrospective observational study was performed including 

271 patients who were admitted to IRCCS Fondazione Don 

Carlo Gnocchi from August 1, 2012 to January 31, 2019. 

Inclusion criteria were diagnosis of DoC after a sABI, adults 

(age > 18). Approval from the local Ethical Committee was 

obtained (N. R17505) and enrollment was done following the 

Helsinki Declaration. Patients have been included after 

obtaining a written consent signed by a legal guardian (ethical 

committee waived the necessity of a consent for retrospective 

observational studies if unable to contact or reach the patient 

due to negligible risk). 

B. Data collection  

1) Clinical data: Data concerning demographical (age, gender), 

clinical and functional aspects were recorded. Functional 

evaluations were performed by skilled operators (neurologist, 

neuropsychologists and speech therapists) at the IRUs 

admission. Based on the repetitive assessment of at least 3 

consecutive CRS-R administrations (in three consecutive days) 

a clinical diagnosis of consciousness was formulated (UWS, 

MCS or E- MCS) both at admission and at discharge. The latter 

was based on the CRS-R subscales following international 

guidelines [28]. The repeated CRS-R administration in three 

consecutive days, is known to notably reduce the possibility of 

misdiagnosis [29]. Besides, the following clinical scales were 

added to the dataset: Level of Cognitive Function (LCF, [30]), 

Glasgow Coma Scale (GCS, [31]), Food Oral Intake Scale 

(FOIS, [32]) and Functional Independence Measure (FIM, 

[33]). The time between the event and the admission to the IRU 

was also recorded (time post-onset). Lastly, epileptic seizures 

during the acute phase have been recorded. All features retained 

for the subsequent ML model were collected within one week 

from admission. 

2) EEG Recordings: Standard 30-min EEG recordings were 

performed using a digital machine (Gal NT, EBNeuro) and an 

EEG prewired head cap, with 19 electrodes (Fp1-Fp2-F7-F8-

F3-F4-C3-C4-T3-T4-P3-P4-T5-T6-O1-O2-Fz-Cz-Pz) set 

according to the 10-20 International Standard System [34] 

adopting previously proposed  EEG recording parameters [11]. 

In particular, recordings were acquired with a sampling rate of 

128 Hz and filtered with a low-pass filter (cut-off frequency in 

the 30-70 Hz), a high pass filter (with time constant 0.1-0.3s) 

adjusted according to interpretation needs (standard gain set to 

7V/mm, sensitivity gain 2-10V/mm) as in Scarpino et al. [11]. 

EEG labeling was performed by the agreement of two expert 

neurologists according to the ACNS terminology [35]. The 

descriptors included were frequency bands, presence of an 

anterior/posterior gradient (APG) in the background activity, 

reactivity, variability (spontaneous), detectable sleep spindles 

(stage II) and lastly, epileptic discharges. 

Furthermore, we added two predictive scores derived from the 

ACNS labeling. The first, by Estraneo et al. classifies EEG 

background activity in five groups: normal, mildly and 

moderately abnormal, diffuse slowing (symmetric or not 

symmetric diffuse theta/delta rhythm, > 20 µV, with no APG) 

and low voltage (< 20 µV, theta/delta in most brain regions) 

[36]. The second is a score by Bagnato et al. [37], going from 3 

to 7, composed by assigning a score of 1, 2 or 3 to delta, theta 

  
Fig. 1.  Nested cross-validation approach used embedding hyperparameters 
optimization. A subsampling is performed in each outer training set, 

reducing the instances having discharge CRS-R = 23 to 1/23 and 

consequently balancing the regression problem. Each indentation 
corresponds to a for loop in the code. 
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and alpha frequency plus a score of 1 or 2 for both present/not 

present reactivity and reduced/normal voltage respectively. 

3) Outcome assessment: the CRS-R revised scale was assessed 

at discharge in absence of drug sedation by skilled operators. 

The thresholds used to evaluate a meaningful outcome in the 

discharge consciousness state were set to the maximum value 

of the CRS-R at discharge in respectively the UWS discharge 

group (𝐶𝑅𝑆 − 𝑅𝑑𝑖𝑠 = 16) and the MCS discharge group 

(𝐶𝑅𝑆 − 𝑅𝑑𝑖𝑠 = 23). These thresholds were obtained after a 

sensitivity-specificity analysis on the actual CRS-R discharge 

values within the discharge clinical state. Results for this 

preliminary analysis are shown in Appendix A confirming that 

from 𝐶𝑅𝑆𝑑𝑖𝑠 = 16 upwards no UWS is found and that patients 

reaching 𝐶𝑅𝑆𝑑𝑖𝑠 = 23 are certainly E-MCS. 

C. Model implementation 

1) Statistical analysis: The features used for the CRS-R 

prediction were first analyzed with univariate statistical 

analyses on SPSS (Vs 26, Chicago, SPSS Inc.). After testing for 

normality with the Shapiro-Wilk test, Spearman correlations 

were computed to verify associations between continuous 

independent variables and the CRS-R at discharge, whereas 

Kruskall-Wallis (KW) test was applied for categorical 

independent variables. Conditioned to KW significance, Dunn-

Bonferroni post-hoc tests assessed differences between groups. 

To compare prediction accuracies across the three different ML 

models, a Friedman test was conducted between the test 

absolute errors followed by Dunn-Bonferroni post-hoc tests. In 

all analyses, a p-value <0.05 was considered statistically 

significant. Furthermore, to evaluate improvements of the 

models with respect to the chance level, we defined a Median 

Guess estimator (MG) which constantly predicts the median of 

the CRS-R values at discharge. Then, the MG absolute errors 

are compared via Wilcoxon-Signed Rank Test with the 

developed ML models’ absolute errors. 

2) Elastic-Net regression:  In order to avoid any sort of train-

test contamination and minimize the risk of bias in the 

performances, all features, independently from univariate 

statistics analyses results, were retained for the multivariate 

prediction model. The Elastic-Net (EN) regression model is a 

regularized method which linearly combines the penalties of the 

LASSO and Ridge regression [38] overcoming respective 

implementation problems. Ridge adds to linear regression 

models quadratic regularization via L2 penalties. On the other 

hand, Ridge always assigns a non-zero coefficient to all features 

in the model, consequently failing in eliminating coefficients 

even if the corresponding independent variable is irrelevant to 

the prediction.  

Conversely, LASSO regression is known to suffer when the 

dimensionality of the dataset is higher than the number of the 

available examples or when multicollinear independent 

variables are present [39], [40], but foster the neglection of 

specific features. 

Hence, Elastic-Net combines feature elimination of LASSO 

and coefficient reduction from Ridge improving on either 

LASSO or Ridge modifying the regression parameter estimates 

as follows: 

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{||𝑦 − 𝑋𝛽||
2

+ 𝜆2||𝛽||
2

+ 𝜆1||𝛽||
1
 

TABLE I 
DESCRIPTIVE STATISTICS AND PREDICTORS UNIVARIATE ANALYSIS 

 
 

 
Median [IQR], (% of occurrences) Test Statistics p-value 

Age 55 [65] -0.054 0.382 
Gender  Female: 33.1, Male: 66.9 1.088(1) 0.297 

Clinical parameters    

Etiology Traumatic: 30.9, Anoxic: 20.8, Ischemic: 17.8, Hemorrhagic 26.4, Other: 4.1 27.818(4) < 0.001 

TPO 45 [38] -0.152 0.015 

CRS-R adm. 11 [16] 0.651 < 0.001 

Consciousness state at adm. UWS: 30.4, MCS: 44.1, EMCS: 25.6 112.498(2) < 0.001 

GCS adm. 9 [4] 0.533 < 0.001 

FOIS adm. 1 [0] 0.237 < 0.001 

LCF adm. 3 [1] 0.577 < 0.001 

FIM adm. 18 [10] 0.427 < 0.001 

EEG parameters    

Seizures in the acute phase Present: 19, Absent: 81 2.409(1) 0.121 

AP gradient  Present: 73.2, Absent: 27.8 51.822(1) < 0.001 

Frequency Delta: 2.6, Theta: 74.0, Alpha: 23.4 21.735(2) < 0.001 

Reactivity Absent: 27.2, Unclear: 18.3, Present: 54.5   

Epileptic activity No: 74.9, Rare: 19.1, Abundant 1.7, Frequent 4.3 15.409(3) 0.001 

Sleep spindles Absent: 85.5, Present & abnormal: 9.8, Present & normal: 4.7 5.409(2) 0.067 

Symmetry Symmetric: 60, Moderately Asymm.: 18.7, Sever. Asymm.: 21.3 0.876(2) 0.645 

Variability Absent: 21.4, Unclear: 9.8, Present: 68.8 77.484(3) < 0.001 

Voltage Suppressed: 11.5, Normal: 86.8, Low voltage: 1.7 32.177(2) < 0.001 

Estraneo's score Norm.: 4.3, Mildly abn.: 47.9, Moderately. abn. 18.4, Diffuse Slowing: 17.9, Suppr. 11.5 65.947(4) < 0.001 

Bagnato's score 3: 1.7, 4: 10.3, 5: 33.8, 6: 33.8, 7: 20.5 71.951(4) < 0.001 

For continuous variables median and IQR were presented in brackets whilst for categorical independent variables the percentage of occurrence of each label is 
indicated. The column test statistics indicates the R2 value of spearman correlations for continuous independent variables and the χ value (degrees of freedom) of the 

KW test between the variables and the CRS-R continuous value.  

TPO: time-post onset; CRS-R: Coma Recovery Scale-Revised, GCS: Glasgow Coma Scale; FOIS: Functional Oral Intake Scale; LCF: Level of Cognitive 

Functioning; FIM: Functional Independence Measure; UWS: Unresponsive Wakefulness State; MCS: Minimally Conscious State; EMCS: Emergence from MCS. 
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with the special cases 𝜆2 = 0, 𝜆1 ≠ 0 and 𝜆1 = 0, 𝜆2 ≠ 0 

corresponding to the LASSO and Ridge regression 

respectively, therefore including in the EN model hypothesis 

space both LASSO and Ridge. This reflects in the Sklearn 

implementation of the parameters estimate equation being 

defined as: 

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{
1

(2 ∙ 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
||𝑦 − 𝑋𝛽||

2
+ 

𝛼 ∙ 𝑙1𝑟𝑎𝑡𝑖𝑜||𝛽||
1

+
1

2
𝛼 ∙ (1 − 𝑙1𝑟𝑎𝑡𝑖𝑜)||𝛽||

2

2
} 

where l1ratio describes the tendency toward a LASSO 

regularization (l1ratio ~ 1) or the Ridge regularization (l1ratio ~ 0). 

3) Training, cross-validation, optimization and testing: 

The algorithms implementation was carried out separately and 

individually for each of the three models (EEG, CLIN and 

HYB) using Python custom code, the Scikit-Learn  and the 

Optuna [41], [42] libraries. All multiclass categorical features 

were first converted into dummy variables (one-hot encoded). 

A nested-cross validation approach was implemented [23]. In 

brief, such approach consists in two k-fold cross-validation 

loops: an outer loop identifies the test set for each of its folds 

while the inner loop implements the further split of the dataset 

for training and validation. 

The outer loop was designed as a k-fold cross-validation (k = 

7), obtaining 7 combinations of train and test set (Fig. 1). Four 

of them were composed by 231 patients and three by 232 

patients. Missing values in each of train and test set were 

substituted with the mean/mode of the respective train set. 

Then, the train and test sets were normalized by subtracting the 

train set mean and dividing by its standard deviation.  

Due to the discharge CRS-R ceiling effect, we limited instances 

in the training sets with CRS-Rdis = 23, to an overall frequency 

of 1/23 with respect to the full dataset.  

In each fold of the outer loop, a hyperparameter optimization 

was performed. The optimized parameters were α and the l1ratio 

in the ranges [10-4 – 10] and [10-4 – 1] respectively. The 

optimization was obtained by an iterative pruning algorithm 

based on successive halving of the hyperparameter value within 

the prefixed range for a predefined number of trials. In each 

trial, hence for each evaluated hyperparameter combination, 

data were further split in the actual train and validation sets 

 

Fig. 2.  Violin plots of the CRS-R distribution among groups of categorical variables. Thick continuous black lines indicate CRS-R group median, whilst 

thinner dotted black lines are the first and third quartile levels. Capital letters above the box indicate significant differences in the post-hoc tests of the Kruskal-

Wallis test (Dunn-Bonferroni with Bonferroni correction, adjusted p-value considered significant for padj < 0.05). Specifically, groups sharing the same letter 
have significantly different discharge CRS-R. 
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implementing the inner n-fold cross-validation (n = 5) of the 

proposed nested approach. (Fig. 1).  

Validation set predictions from the inner 5 folds were computed 

and aggregated. From here, the validation Median Absolute 

Error (MAE) of the n models included in the kth outer split was 

computed according to the following: 

𝑀𝐴𝐸 =
∑ |𝐶𝑅𝑆_𝑅𝑝𝑟𝑒𝑑   −   𝐶𝑅𝑆_𝑅𝑎𝑐𝑡𝑢𝑎𝑙|

𝑀𝑘
𝑖=1

𝑀𝑘

 

with Mk being the number of patients in the kth outer split train 

set before the inner split. The hyperparameter combination 

minimizing the validation MAE was then chosen for training 

the final kth model with all Mk samples. This process was 

repeated for the K outer folds and all models were tested with 

the respective outer test set. Again, test results were aggregated, 

and the overall dataset MAE was calculated. Furthermore, R2 

was also included among test evaluation metrics. 

4) Regression post-processing  

As a final processing step, classification accuracies were 

computed by discretizing the CRS-R value at discharge. Two 

thresholds CRS-Rdis = 16 and CRS-Rdis = 23 were considered, 

resulting in two different classification problems. 

The performance of the three proposed regressions models in 

both  problems was verified by means of ROC curves. The Area 

under the Curve (AUC) was finally computed using the 

Simpson integration rule. 

III. RESULTS 

A. Univariate analysis  

Age and gender did not appear to be significant predictors of 

discharge CRS-R, while etiology (p < 0.001, Table 1) resulted 

to influence the outcome in a negative manner if anoxic 

(significantly different from all other etiologies in the post-hoc 

analysis) and in a positive manner if traumatic (Fig. 2). Higher 

values on all the examined scales at admission were found to be 

predictive of a more prompt recovery on the CRS-R scale (p < 

0.001), with the most correlated being the CRS-R (R2 = 0.651) 

and the GCS (R2 = 0.533). Furthermore, a strong correlation 

between consciousness state at admission and CRS-R at 

discharge (p < 0.001) was found from the KW test. The post-

hoc test with a p < 0.001 indicated that patients in EMCS state 

at admission have a significantly higher discharge total CRS-R 

score than the MCS and UWS. Same holds for the MCS patients 

compared to the UWS ones (p < 0.001). 

For what concerns the EEG variables of the ACNS 

classification, we confirmed that a theta and delta background 

frequency lead to a smaller CRS-R total score at discharge with 

respect to an alpha background. Same holds for the absence of 

reactivity, with respect to both its clear (p < 0.001) and unclear 

(p < 0.001) presence. Furthermore, significant improvements 

were found in patients with a clear reactivity compared to the 

ones with an unclear reactivity response (p < 0.001). 

Patients with unclear (p < 0.05) or clear (p < 0.001) variability 

reached a higher CRS-R than patients with no spontaneous 

variability. The presence of a clear variability w.r.t. an unclear 

one is associated with a higher outcome value. 

A clear inverse relationship between the discharge CRS-R and 

the amount of epileptic activity recorded was observed (Fig. 2), 

where a worse outcome is expected as the amount of epileptic 

activity increases. On the other hand, post-hoc test showed a 

significance only between the pair no epileptic activity – 

frequent epileptic activity (p < 0.001). Sleep spindles and 

symmetrical brain organization was found to be uncorrelated 

with CRS-R at discharge. 

A strong correlation was found between voltage and discharge 

CRS-R (p < 0.001). Namely, a suppressed (p < 0.001) and a low 

voltage (p < 0.01) resulted to be predictors of a lower CRS-R 

(Fig. 2). Additionally, the presence of an APG was found to be 

indicative of better consciousness recovery (p < 0.001). 

For what concerns derived scores, both Estraneo’s and 

Bagnato’s score resulted in strongly significant associations 

with the CRS-R in the KW test (p<0.001). Specifically, for the 

Estraneo’s score, a background activity with low voltage or 

with a diffuse slowing pattern is a predictor of significantly 

lower discharge CRS-R if compared to normal and mildly 

abnormal EEG activity. Furthermore, patients with low voltage 

EEG were also found to be associated with a worse outcome 

than patients with moderately abnormal background activity. 

Conversely, patients with Bagnato's score of 6 or 7 were 

significantly worse in all the possible pairings and no difference 

was found between the groups with a score 3, 4 and 5.  

 

B. CRS-R regression models 

All features from Table 1 were included in the model after 

conversion of categorical variables in dummy variables 

resulting in 43 features (Fig. 4). In each of the kth Elastic-Net 

models optimization paths, 250 trials resulted to be sufficient to 

converge to a constant optimum. Specifically, the α parameter 

resulted in a median of 0.018, 0.082 and 0.049 respectively for 

the EEG, CLIN and HYB models.  

On the other hand, the l1ratio, showed that the use of the clinical 

features strongly shifts the amount of regularization toward the 

LASSO approach. In particular, the CLIN and the HYB have 

respectively a median l1ratio of 0.952 and of 0.539, whilst EEG 

median l1ratio resulted in 0.069 points. 

 
Fig. 3.  Box-plot of absolute errors of agglomerated outer testing results for the 

three models. Superimposed on the boxes, the individual samples error is 

plotted showing the underlying error distribution of the predictions. 
Significative improvements (p < 0.05) were found between the EEG and both 

the CLIN and the HYB models. R2 between actual and predicted values resulted 

equal to 0.49, 0.71 and 0.73 for respectively the EEG, CLIN and HYB models. 
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For the validation set, the median between the inner folds MAE 

values resulted equal to 4.33 points [IQR = 0.66], 3.49 [IQR = 

0.67] and 3.18 [IQR = 0.64]. 

The optimal solutions test MAE resulted equal to 4.6 points 

[IQR = 11.6] for the EEG, to 3.5 points [IQR = 10.2] for the 

CLIN and to 3.3 points [IQR = 11.9] for the HYB model. 

Models absolute errors resulted significantly different in the 

Friedman Test (p <0.01) with pair-wise Dunn-Bonferroni post-

hoc comparisons showed a significant improvement in 

prediction of both the CLIN (p < 0.05) and the HYB (p < 0.05) 

models with respect to the EEG. The MG estimator resulted in 

a MAE of 6.05 points [IQR = 1.21]. All the developed models 

showed a significant improvement with respect to the MG 

estimator (p<0.001). Test statistics resulted equal to W = 

13.211, W = 7.624 and W = 8.321 for respectively the EEG, 

CLIN and HYB estimator. 

In all three multivariate models, a negative influence on the 

CRS-R score at discharge was found for an anoxic etiology and 

an older age whilst an admission state of MCS or E-MCS 

contributed to an improved outcome with respect to UWS (Fig 

4.) The coefficients β of the EEG model showed how the 

presence of spontaneous variability, reactivity and APG are 

predictive of a better CRS-R at discharge, coherently with 

findings from univariate analysis. Also, for frequent epileptic 

activity and a low background voltage, a strong negative 

regression coefficient was found. Conversely, in the 

multivariate EEG, a moderate or severe asymmetry seems 

associated with a worst CRS-R. 

Classes (4-7) of Bagnato’s score may be related to a worst 

outcome (negative regression coefficient), with a lowering of 

the negative effect with an increasing value on the scale..  

Except for the FOIS and FIM, all clinical scales in the CLIN 

and in the HYB models resulted in a positive regression 

coefficient, with the CRS-R having the highest importance in 

both models. 

 
Fig. 5.  Receiver-Operating Curve (ROC) of the three models with outcome: overcoming the CRS-R threshold (equal or bigger than 16 or 23). Respectively, the 
EEG, CLIN and HYB model are represented in panel A,B,C. 

 
Fig. 4.  Elastic-Net regression coefficients for the EEG (red), the CLIN (blue) and the HYB (green) models. The height of each colored bar is the average 
value of the regression coefficients of the models trained in the outer folds. The black bar indicates the standard deviation of the regression coefficients of the 

outer folds. 
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Generally, even if with a wider distribution of cumulative 

weights for the models with higher dimensionality, the 

independent variables relative contributions to the predictions 

resulted consistent across the three models (Fig. 4). 

C. Regression post-processing 

The binary classification with respect to the CRS-Rthr = 16 

threshold showed high sensitivity for all three models, with an 

AUC of 0.78, 0.86, and 0.91 for respectively the EEG, the CLIN 

and the HYB model. For what concerns the best model in 

predicting the emergence from a DoC (CRS-Rthr = 23), the HYB 

algorithm showed an AUC of 0.88, with no improvements on 

the clinical based classification. For the latter, maximizing 

sensitivity keeping specificity within an acceptable limit yields 

a point in the ROC curve with sensitivity 0.85 and specificity 

0.78.  

IV. DISCUSSIONS 

In literature, many findings assert that prognosticating 

neurological outcomes in sABI patients is a complex task. Its 

improvement would facilitate the communication process with 

relatives and allow for a precise individualized rehabilitation 

management. The accuracy of the consciousness assessment  

may be compromised by a number of confounding factors 

(presence of consciousness fluctuations, paralysis, aphasia...) 

[44]. 

For this reason, we should believe that the underlying level of 

consciousness must be assessed via a multifactorial approach, 

both evaluating the clinical data and interpreting the internal 

physiological patterns as recommended by the latest 

international guidelines. Such multifactorial techniques allow 

to convey two different sources of information and analyze the 

interaction between them. Authors analyzed and combined 

EEG descriptors in predictive scores for consciousness 

improvement prediction [10], [36], [37], [45]. We extend their 

previous work in three main directions. Firstly, we use 

prognostic factors and in general patient characteristics to 

predict punctually the value of the discharge CRS-R. Secondly, 

we cross-validate and test our model with a robust technique 

(nested cross-validation) allowing for inference on a larger 

population. Lastly, we explicitly provide to the trained models 

different data sources (clinical only, neurophysiological only 

and hybrid) and evaluate how an appropriate feature 

combination can result in an accurate prediction.  

Reasonably, a prospective validation of the models is required 

to confirm the validity of obtained results, even if the nested 

cross-validation approach simulates a prospective assessment 

by separating patients used to optimize hyperparameters and 

patients used to test the algorithms. This point, jointly with the 

low variability on inner folds validation errors, suggests that the 

model is robust and generalizes well on new data. 

Previous studies, already evaluated whether a model with 

different sources can better identify prognostic factors for the 

recovery of consciousness [6]. Specifically, Yu et al. classifies 

with a k-fold cross-validated binary Support Vector Machine 

trained on 51 patients the presence of consciousness. The latter 

was diagnosed with the Glasgow Outcome Scale-Expanded 

(GOS-E) score, only suitable for a dichotomous subdivision of 

consciousness levels in persistent vegetative state (GOS-E <=2) 

and conscious (GOS-E>2). Such classification does not allow 

for the fundamental distinction which must be made between 

minimally consciousness state and unresponsive waking state 

[1] and it is not a recommended evaluation tool for DoC 

diagnosis [46]. Furthermore, the model proposed by Yu et al. 

suggests that fMRI data and laboratory parameters can be 

combined successfully reaching an accuracy of 73% (with a 

non-stratified cohort composed by 34 conscious patients and 17 

unconscious), [43]. Song et al. predicts both the CRS-R score 

and a dichotomized version of the GOS-E at one year from the 

fMRI and the clinical data extraction with an innerly cross-

validated and tested SVM (160 patients) [47]. Their CRS-R test 

prediction root mean squared error is declared equal to 5.07 

points with an R2 = 0.35. Despite the significant difference in 

the source of instrumental data, our HYB model achieved a 

more promising validation median absolute error of 3.185 [IQR 

= 0.642] and an R2 = 0.79. Overall, we confirmed previous 

findings and our hypotheses concerning the positive influence 

of admission clinical scales as the CRS-R, GCS, LCF, FOIS and 

FIM onto discharge CRS-R. On the other hand, FOIS and FIM 

were the only two scales which showed a considerably lower 

relevance in predicting discharge CRS-R total score in ML 

models (Fig. 4). Reasonably, this may be justified from the fact 

that most patients of our dataset were admitted to the IRU with 

similar FOIS and FIM scale values. Specifically, due to the 

impossibility from patients with a DoC of intaking food via oral 

means, the majority of FOIS values stands around 1. Similarly, 

for motor independence, the same flooring effect was found 

(~18). Still, due to the non-zero standard deviation of these 

features we included them in the model. 

In our work, previous results were extended by accurately 

predicting a three-level consciousness stratification on a large 

enough dataset to allow the nested cross-validation of methods. 

Achieved results enable us to envision a decision support tool 

for its clinical use. In this regard, the use of the EEG signal 

instead of imaging techniques (fMRI) fosters a quicker and less 

expensive use of the algorithm and reduces the required steps 

into a Point-of-Care Test. Given the easy montage and the less 

expensive characteristics, EEG examinations are already 

performed daily in hospitals, making their cost routinely 

implemented within budgets.  

In this optic, despite EEG data did not significantly improve the 

prediction obtained by the clinical data, our results show how 

EEG data only (with the EEG model) can already offer a 

support to the neurological prognosis of DoC patients with an 

AUC of 0.78 for both the considered classification problems 

(Fig. 5). Lastly, we showed how the interactions between 

neurophysiological patterns and clinical evidence can merge in 

the hybrid model providing an increase in prediction accuracy 

based on the CRS-R = 16 threshold. Such increase in accuracy 

can be attributed to the type of information that EEG provides, 

thus its expression of a reorganization of a cortical network 

modulated by thalamo-cortical afferents, necessary condition 

for the presence of intentional (non-reflexive) behavioral 

responses. In this optic, such cortical behavior (alpha 

background frequency and cortical reactivity) result 

fundamentally more important in transiting from a UWS to 

MCS state. Furthermore, the evolution of the CRS-R scores is 

also conditioned by the etiology of sABI and by the lesion 

topography that may involve selective cognitive deficits 
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(aphasia, frontal syndromes) that may “mask” the clinical 

evolution and that cannot be identified by the EEG with 

consequent falsely optimistic predictions. Henceforth, we 

speculate that to fruitfully exploit interactions between EEG 

patterns and clinical variables, models targeting etiology-

specific cohorts would maximize the information gain. Lastly, 

including EEG biomarkers as event-related potentials, 

somatosensory evoked- and visual evoked- potentials as well as 

quantitative EEG measures (e.g., functional, source 

connectivity, etc…) may provide additional prognostic markers 

to increase significantly the prediction accuracy.  

Regarding the outcome selection, we acknowledge that the 

cumulative CRS-R score, may suffer from missing points in 

motor sub-domains for some patients [44], hence it can 

underestimate the actual consciousness level. Furthermore, it is 

reported how finding precise cut-offs separating consciousness 

levels is difficult [48]. Still, the CRS-R scale, allows for a good 

consciousness stratification, remaining the actual gold standard 

[49]. Hence, to evaluate in the most precise way the 

consciousness level, consciousness states as UWS, MCS and E-

MCS have to be considered. For these reasons, we propose here 

a classification of patients by a variable threshold on CRS-R, 

reporting specific results for two specific thresholds. Such 

binarized classification is performed using boundaries (16 and 

23) that in our case resulted from the observation of available 

data to achieve 100% specificity in detecting UWS patients and 

100% sensitivity concerning E-MCS detection. However, given 

that the model estimates the continuous value of CRS-R, 

different values in terms of sensitivity-specificity couple for the 

identification of the consciousness state can be selected in order 

to fit different clinical requests or hypotheses (Appendix B). 

Still, the retrospective nature of the data has to be reported 

within the study limitations. Consciousness assessment at the 

time of the neurological diagnosis was formulated based on the 

individual CRS-R subscales. Nevertheless, due to the 

retrospective nature of the study, it was not possible to retrieve 

from patients’ health records the subscales values since it was 

not often annotated within the available information. This will 

be tackled by a prospective study currently ongoing (Clin. Trial. 

Gov. N. NCT04495192) via the collection of the individual sub-

domains of the CRS-R scale, allowing for the development of 

prediction models targeting individual subscales scores and for 

a finer definition of the mutual influence between the EEG 

signal and the clinical status in predicting DoC neurological 

outcomes. Predicting individual sub-items would investigate 

how and to what extent clinical functions and brain patterns 

influence individual consciousness domains. In particular, 

whether EEG signals can be useful for the prediction of lowest 

values on each subscale (representative of reflexive activity) or 

higher values on each subscale (representative of cognitively-

driven activity). Additionally, the prospective and new 

experimental data will allow for a deeper analysis of the role of 

joint clinical and EEG features for prognostic purposes, as well 

as a confirmation of the hypotheses raised for the explanation 

of the results obtained in this study. 

V. CONCLUSION 

The study investigates predictors of consciousness 

improvements via the use of CRS-R at discharge and ML 

methods comparing three approaches: with a clinical dataset 

only, an EEG-based dataset only and with a combination of the 

two. Setting threshold on predicted CRS-R, overcoming an 

unresponsive state is successfully predicted with an AUC of 

0.91 and exiting from a DoC is assessed with an AUC of 0.88. 

EEG resulted to be slightly improving the prediction of 

overcoming an UWS, whilst no improvements are seen in 

differentiating patients emerging from a MCS. Results will be 

confirmed with a prospective validation and compared to the 

‘skilled guess’ of a pool of experienced doctors in future works 

to come. 

Our findings confirms that ML algorithms, which already 

proven to improve decision accuracy in many fields, may 

support the neurological prognosis in DoC patients and the 

communication with the patients’ relatives.  

APPENDIX A 

Scatter-plot of actual (x-axis) versus predicted (y-axis) CRS-R 

values for the three models 
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APPENDIX B 

Sensitivity-Specificity couples indicating the overcoming a 

specific clinical group (UWS, MCS) on our dataset. These are 

obtained by evaluating sensitivity and specificity between the 

actual clinical state at discharge and the dichotomized CRS-R 

at different threshold. Maximal sensitivity for overcoming an 

unresponsive state is obtained for a CRS-R > 16 whilst maximal 

sensitivity for exiting a DoC is found for CRS-R > 23 (indicated 

in bold). 
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