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ABSTRACT To reduce the risks of a new energy crisis and increase energy availability, the use of renewable
energy sources (RES) is important and recommended. In Brazil, micro and small companies contribute about
25% of gross domestic product (GDP), and electric energy is employed intensively, so the importance of
microgeneration is observable. This research aims to analyze the economic viability of the micro-generation
wind energy project for micro and small businesses. Thus, three Brazilian states, Rio Grande do Norte,
Rio Grande do Sul and Minas Gerais were considered, and different scenarios were proposed. A feasibility
analysis is then performed, followed by a stochastic analysis using Monte Carlo simulation (MCS). Finally,
models of artificial neural networks (ANN) are used to evaluate the relative importance (RI) of the variables.
The results show that none of the states appears economically feasible under the conditions presented. In the
stochastic analysis, the probability of viability is between 17% and 24% in all states, which shows the low
probability of viability for microgeneration. Through ANN training, it was possible to calculate the RI,
in which it is possible to identify the variables that have most impact on the net present value (NPV) in
all states; it is considered the most important variable in the project’s viability. In addition, the discussion
explores the importance of public incentives for promoting investment in renewable energy, which can reduce
investment costs and make it attractive to small and medium-sized businesses.

INDEX TERMS Microgeneration, wind power, stochastic feasibility analysis, sensitivity analysis, artificial
neural networks.

I. INTRODUCTION
The economic development of nations has been a prereq-
uisite for the availability of energy in quantity and quality,
as energy is a strategic asset, while energy security is treated
as a matter of global agendas and conferences [1]. In this
scenario, Aquila et al. [2] comment that the renewable energy
market is expanding, and that regulatory changes in Brazil
have influenced the energy sector; they discuss the lack of
studies on the feasibility of microgeneration and comparisons
with different regions.

The associate editor coordinating the review of this manuscript and
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The micro and the minigeneration of electric energy
increase the availability of energy, as well as electricity
savings, which can be very significant for micro and small
businesses.

Micro and small businesses, despite having considerable
impacts on the economy and society of their regions and
countries in which they operate, their activities are responsi-
ble for at least 70% of world pollution [3]. However, accord-
ing to Barbosa et al. [3], efforts for sustainable development
are greater than expected e sustainability practices could be
found in micro and small businesses’ agendas. In Brazil,
according to Sebrae [4], micro businesses are classified
as companies with gross revenues of up to 360 thousand

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 73931

https://orcid.org/0000-0003-0173-4906
https://orcid.org/0000-0002-4692-7800
https://orcid.org/0000-0002-0436-9214
https://orcid.org/0000-0001-7885-8013
https://orcid.org/0000-0002-8865-9867
https://orcid.org/0000-0001-8765-0679
https://orcid.org/0000-0001-5528-7799
https://orcid.org/0000-0001-8137-8838


L. S. Lacerda et al.: Microgeneration of Wind Energy for Micro and Small Businesses

Brazilian reais (R$), while in small companies this range
can vary from 360 thousand to 4.8 million. Together they
represent about 98.5% of the total of private companies in
Brazil, corresponding to 27% of GDP (gross domestic prod-
uct), in addition to being responsible for 54%of formal jobs in
Brazil.

Through decision criteria the economic feasibility analysis
shows the economy generated by renewable sources, in addi-
tion to environmental gains and gains as a marketing strategy
for the company. Given the shortage of oil and the energy
crisis, investments in renewable energy are increasing every
day, and the search for clean production is increasing every
year.

Killinger et al. [5] show in their study that micro and
mini-generation as well as cogeneration can be profitable due
to network usage rates that show a strong trend for wind
turbines. Given this scenario, greater reliability is required
in this type of enterprise. Xue et al. [6] comment that an
economic analysis of a wind farm project is needed so that
the cost efficiency of a wind power system can be identified.

In the literature it is already possible to find research
involving feasibility analysis of projects from renewable
energy sources (RES), and some authors dedicate their stud-
ies to wind sources [7]–[12]. Moreover, in some cases, even
encompassing Monte Carlo simulation (MCS) for the man-
agement of economic risk [2], [13]–[16] are motivated by the
high degree of uncertainty inherent in this type of enterprise.

Another computational technique that has been widely
used as the basis for RES studies is artificial neural networks
(ANN). For example, Sahin [17] concludes that the appli-
cation of neural networks in wind power projects produces
better results in modeling, control, and optimization prob-
lems. Some authors analyze the viability of renewable sources
using neural networks, but under different optics [18], [19].
However, using the combination of the MCS and ANNmeth-
ods for simulations and identification of the variables that
most impact a financial indicator, such as net present value
(NPV), a gap in the literature remains that has scarcely been
explored.

It is notable that there are few studies that discuss the
need to perform a stochastic and sensitivity analysis, consider
several scenarios, and assure the micro and small company
investor about the returns that this type of enterprise can
generate.

In view of the above, it is necessary to further study Brazil-
ian energy policies with special attention to the microgen-
eration of electric energy, to show the economic viability of
projects with renewable sources. This study aims to address
the extent to which the project for the micro and minigener-
ation of electric energy from a wind turbine is economically
feasible using different simulations and scenarios, and iden-
tify which are the most relevant variables for the feasibility
analysis. Thus, in general terms, this article’s main objective
is to analyze the economic feasibility of microgeneration of
electric energy from the wind power source for micro and
small businesses in environments of uncertainty and risk.

To do so, this work will use the MCS associated with the
application of the concepts of ANN.

II. THEORETICAL BACKGROUND
A. RES INCENTIVE POLICIES
Reducing CO2 emissions is one of the main objectives pro-
posed by current energy policies, owing to the increase in
gases contributing to global warming, and to the fact that
humanity is increasingly concerned with these effects. Dif-
ferent policy instruments, such as subsidies for low-carbon
technologies, emission standards, or carbon prices can be
used to achieve this goal [20]. Aquila et al. [2] discuss the
strategies that public power can use to leverage the renewable
energymarket, whichmay be short- or long-term. The authors
comment that themost popular short-term strategies are direct
subsidies, reduction of taxes, and collection of tax for a cer-
tain amount of CO2 emissions. For more information on the
most widely used long-term strategies, see Aquila et al. [2].

In their results, Aquila et al. [21] show the importance of
regulatory strategies and incentive mechanisms to support the
growth of RES, which is not yet economically competitive
compared to conventional energy sources. A strategy to sup-
port manufacturers and national investments in research and
development is crucial to achieving targets in terms of the
security of the electricity supply, while a favorable policy
environment is essential for the development of renewable
technologies [22], [23].

In recent years, few policies have been created in Brazil;
the State Program for Energy Development (PRODEEM),
encompasses solar and wind energy sources and rewards
companies that implement clean energy in their production
systems. The program is seen by the market as bureaucratic,
superficial, and hostile to the implementation of new tech-
nologies [23]. Table 1 shows the main public policies and
incentives in Brazil.

Rocha et al. [33] argue that incentives for micro-generation
of energy are timely in Brazil, as the demand for electricity in
recent decades has increased in the industrial and residential
sectors. The authors show that with the growth of global
energy consumption, there is also an increase in energy costs.
Further, in this scenario, microgeneration plays an important
role in promoting cleaner energy in homes and businesses.

Finally, Castro [34] comments that microgeneration faces
many difficulties in Brazil for expansion, including the lack
of appropriate financing options in the market, equipment tax
(increase the cost of investments), and the fact that few types
of equipment are certified. The author concludes that ANEEL
has an opportunity to increase the number of commercial
consumers with microgeneration, thereby bringing positive
impacts to Brazil.

B. ANALYSIS OF THE ECONOMIC FEASIBILITY OF ENERGY
GENERATION FROM RES
Considering the global energy crisis and concern about
energy availability, many countries adopt long-term strategies
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TABLE 1. Main policies and public incentives in brazil.
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to encourage energy production through RES. Several aca-
demic studies have emerged with this scientific bias to study
the impact of these policies and the technical and economic
feasibility of this type of investment.

Holdermann et al. [35], in their results concerning eco-
nomic feasibility, show that photovoltaic systems are cur-
rently not economically viable in any of the 63 distribution
networks in Brazil. The authors show that the introduction of
financing options can make investment feasible, both in the
commercial and residential sectors.

Ferreira et al. [28] demonstrate the main aspects of the
evolution of incentives for using solar energy in Brazil. They
comment that for distributed generation, the level of com-
petitiveness is defined from the energy distribution tariffs
offered to the final consumer; with this comparison of values,
the authors affirm that solar energy is close to economic
feasibility. The development of specific credit lines for the
generation of solar energy is discussed as being vital to
the express entry of this source of power into the Brazilian
electricity matrix.

Rocha et al. [33] developed a feasibility analysis of a
small-scale photovoltaic installation in four cities in Brazil,
for which they performed a stochastic analysis using MCS.
In the four cities analyzed, microgeneration was econom-
ically unfeasible when the ICMS (Tax on Circulation of
Goods and Services) was charged, with the probability of
viability, which varied between 0% and 8.79%. In the ICMS
exemption policy, the feasibility probabilities were 23.27%,
56.66%, 81.49%, and 94.70%, indicating that the project was
feasible in most regions. The authors conclude that the ICMS
subsidy will provide support for the production of cleaner
energy.

Abdelhady et al. [42] conducted a technical and economic
evaluation for the generation of electricity with eight small
wind turbines in 17 distinct regions of Egypt. The authors
evaluated the NPV and the payback based on the annual
energy production by the wind turbines. The results show that
although wind speeds are high at selected sites, small wind
turbines are not economically viable. They recommended that
turbines with nominal power above 200 kW be adopted.

Hosseinalizadeh et al. [43] conducted a feasibility analysis
of small wind turbines in various regions of Iran, which
showed that in 30% of the regions small wind turbines are
viable. The results showed that wind turbines with capacity
less than or equal to 3 kW are the most suitable for residential
use. Finally, the authors concluded that small wind turbines
are profitable in many regions of Iran and suitable for the
development of wind power in the residential sector.

Grieser et al. [11] show that accurate and reliable tools
are essential for assessing economic potential and market
prospects. The authors comment that NPV is the most widely
used investment analysis method, and discuss its limitations.
It was found that current investments in small wind turbines
in Germany are economically viable in areas exposed to
4 and 4.5 m/s of minimum average speeds. In its sensi-
tivity analysis, a slight variation in wind speed is seen to

substantially affect the NPV and, as a consequence,
the investment decision.

Aquila et al. [44] present a framework for analysis of
investments in wind power generation under uncertainty
using Monte Carlo simulation. The authors use MCS for
stochastic analysis, analyze the behavior of NPV for the
targeted variables, and list those that had an impact on the
NPV. In the deterministic analysis, the project presents high
economic feasibility in the three scenarios presented. In the
stochastic analysis, the project shows a high probability of
economic viability, especially if BNDES loans (National
Bank for Economic and Social Development) are involved.

Aquila et al. [21] analyze the impact of incentive strategies
on the financial risk of wind energy project in Brazil. The
study presents a statistical analysis with the purpose of facil-
itating comparison of the risk considered in the different sce-
narios analyzed. The authors considered two environments:
free contracting and regulated contracting. Their results show
that in the free contracting environment the wind project
will be more likely to be viable in all scenarios at 96.36%,
97.70%, and 98.50%. Comparing the scenarios in the two
environments, the authors show that when the risk is higher,
it can generate higher returns. They conclude that the sale of
carbon credits is not an adequate policy to provide financial
security to producers of renewable energy.

Finally, Aquila et al. [21] argue that investment analysis
has been used to measure the impact of incentive strategies
for renewable energy sources, thus proving the importance of
economic analysis. They used theNPVdecision criterion, and
the various risk factors that affect the outcome were treated
as random variables.

C. ARTIFICIAL NEURAL NETWORKS APPLIED IN RES
Haykin [45] defines artificial neural networks (ANNs)
as a massively distributed processor composed of simple
processing units, which has the natural propensity to store
experimental knowledge and make it available. The author
comments that knowledge is acquired through learning pro-
cesses and the synaptic weights (similar to the connection
between neurons) are used to store the acquired knowledge.
The values of the synaptic weights have no value for analysis;
individually, they do not present any representativeness and
do not allow any readings [19]. Haykin [45] represents a non-
linear model of a neuron in Figure 1.

ANNs have been used in applications on sustainable devel-
opment in the energy sector in terms of energy production
and use. Kennedy et al. [46] show ANNs’ application of
pattern recognition and interpret its influence in predicting
customer behavior in relation to technological choice. ANNs
provide an ideal solution to many problems in many electri-
cal systems’ applications such as control, identification, and
classification [47].

Yan et al. [48] use ANNs to consider the uncertainty of
the forecast in photovoltaic systems. To evaluate this, they
use three layers to estimate load and energy prediction errors.
Karabacak and Cetin [49] discuss ANNs’ applications in
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FIGURE 1. Nonlinear model of a neuron. Source: Haykin [45].

renewable energy systems such as photovoltaics, wind power,
and hybrid systems. The authors show that for solar energy,
studies are based on the prediction of solar irradiation and
the design of energy systems. Mokhtar [47] carried out an
application for the control and analysis of a photovoltaic
generator and the reactive energy in the generation system,
proposing a reasonable generation system model.

ANNs have the ability to learn, are data-driven, and
have high predictive accuracy compared to other methods.
For these reasons they have become alternative methods
to conventional techniques in various solar energy appli-
cations [50]. Chiteka and Enweremadu [50] developed an
ANN model that can be used as an efficient tool to pre-
dict solar radiation without direct measurement equipment.
In a similar approach, Bou-Rabee et al. [51] developed an
ANN-based forecast model to predict daily average solar
radiation at five different sites and integrated feed-forward
architectures. The results show that the model is accurate,
applicable, and efficient at 94.75%. The developed model is
intended to be an evaluation tool to predict the installation
of solar energy to estimate the amount of energy that can be
used.

Dervilis et al. [52] uses ANN in standard recognitionmeth-
ods in the field of wind power. Manobel et al. [53] use an
ANN-based method to calculate the power curve of any wind
turbine that depends on a minimum set of input variables,
such as wind speed and wind direction. The authors con-
clude that the combination of Gaussian process filtering with
ANNmodeling provides an automatic and accuratemethod to
calculate the power curve, with subsequent resource savings
compared to manual filtering and other parametric and non-
parametric methods.

In their study, Singh [54] present a predictive model
of wind power in the neural network architecture in feed-
forward. They show that ANN is an efficient and valuable
tool for estimating energy power for wind generators.

Ozgur [55] use an ANN model based on NPV analysis for
the study of economic viability, which shows that wind power
systems for different types of turbines are profitable.

Dombayci [56] developed an ANN model to predict the
hourly energy consumption of a projected model house; the
results show that energy consumption values can be stated
with great precision, indicating that ANN is very effective for
this type of prediction. In another study, Cabrera et al. [57]

use ANN as a control system tool for a small-scale prototype
of a desalination plant.

In their research, Macedo et al. [58] use ANN to choose
the most appropriate policies for each type of consumer. The
authors show satisfactory performance that allows for the
optimization of the system and a dynamic price based on the
habits of the consumer. Similarly, Bolanca et al. [59] created
a model for defining a more efficient and environmentally
sustainable policy that should be transferable elsewhere by
applying the described ANN training procedure.

Azadeh et al. [60] present an approach for optimized esti-
mation and prediction of renewable energy consumption, tak-
ing into account environmental and economic factors. In their
study, ANN trains and tests the data using the Multi-Layer
Perceptron (MLP) approachwhich, according to Haykin [45],
is themost widely used approach in the literature. The authors
have shown that the proposed ANN model can be very ben-
eficial in improving and optimizing renewable energy con-
sumption in some remote or rural locations, with no available
devices to measure renewable energy consumption.

Aien et al. [61] developed a methodology for estimating
the real-time state of energy prices by probabilistic optimum
power flow studies using the hybrid artificial neural networks
concept. Similarly, Barelli et al. [62] propose an ANN model
to predict the scheduling of programmable loads given the
climatic conditions related to the current and the previous
day, in addition to the weather forecast for the following
day. Furthermore, Aien et al. [61] show the use of ANN in
different power system applications, such as load forecasting,
electricity price forecasting, wind speed prediction, and state
estimations in the distribution system.

In a perspective that goes further, Chakrabarty et al. [19]
propose, in the approach to artificial neural networks, the use
of synaptic weights calculated in realizing the sensitivity
analysis of the input variables from the calculation of their
relative importance.

Considering a well-trained MLP model (m×n× 1), where
m is the number of nodes in the input layer, n the hidden layer
nodes, and 1 the output layer node, the relative amounts of
input variables can be calculated by (1) [19], [63].

RIi =
ri∑m
i=1 |ri|

× 100% (1)

For this, the steps stipulated by Chakrabarty et al. [19],
must be followed as indicated:

a) The vector,M (1× n), must be organized with the inter-
connection weights between the nodes of the hidden
layers (n) and the nodes of the output layers;

b) The matrix, W (m × n), must be organized with the
interconnection weights between the nodes of the input
layers (m) and the nodes of the hidden layers (n);

c) Calculate the vector R = MWT, in which
R = [r1, r2,. . . , rm];

d) Finally, calculate the relative importance (RIi), in per-
centages, of each node i of the input layer, using (1).
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TABLE 2. Technical characteristics of the aerogenerator.

FIGURE 2. Flowchart of the proposed research.

At the end of this analysis, the relative importance RI will
provide an index referring to the contribution of each of the
input variables to the output variable. Such an approach can
be used to carry out the sensitivity analysis in economic
feasibility analysis projects.

III. MATERIALS AND METHOD
The research was carried out in a sequence of steps, described
in Figure 2, the initial step of which was data collection; data
were collected on investment, costs related to investment,
technical information, wind speed data, financing conditions,
and possible interests linked to the operation. We carried out
searches in the literature and recommended databases and
considered the best practices of similar research.

With the data collected, the calculation is initiated for gen-
erating electricity from the wind power source. Considering
the information on the amount of energy generated, it is
possible to calculate the amount referring to the economy
generated by the wind turbine. Then, the construction of the
discounted cash flow (DCF) can be constructed, and from
there the investment decision criteria applied. Furthermore,
a stochastic analysis of economic viability is carried out
through MCS. Finally, a deterministic analysis of the eco-
nomic viability is performed and followed by a stochastic
analysis of the viability through MCS.

Similar to Kharseh et al. [64], who constructed an ANN
model to generate an empirical formula that predicts NPV
based on the factors established in photovoltaic projects,
an ANN model is constructed to establish the relationship
between the NPV and the specific variables.

Then, after the ANN training stage, the approach proposed
by Chakrabarty et al. [19] and represented by Equation 1 is
applied to perform the sensitivity analysis based on the synap-
tic weights resulting from the network training.

A. INVESTMENT
According to ANEEL regulations [36], microgeneration has
installed power up to 75 kW, while minigeneration is defined
as one with power above 75 kW and less than or equal to

TABLE 3. O&M costs indentified in literature.

5MW (3MW for water source), connected in the distribution
network through facilities of consumer units.

Rocha et al. [65] in their study of economic feasibility
of wind power, use a wind turbine of 2.4 kW, with the
justification being easily found in the market, as well as
Grieser et al. [11], who also used a 2.4 kW turbine, while
Li et al. [66] used a 2.3 kW turbine. The investment was
calculated to install a wind turbine with a power of 2.4 kW,
with the following characteristics presented in Table 2; it was
elaborated from data obtained from suppliers.

In this project, the value of the investment is related to the
sum of the values of a 2.4 kW wind turbine, the metallic
tower, the freight, and the installation of the system. The
equipment has an average useful life of 20 years.

B. OPERATION AND MAINTENANCE COSTS
According to Ertürk [67], the operational costs of producing
wind power are very low compared to other energy sources,
because once installed, there is no cost of fuel and carbon,
just operation and maintenance (O&M) costs.

Regarding the maintenance of the turbines, costs may arise
with spare parts, preventive maintenance, labor costs, lease of
the land, and margins for eventual surprises. These costs may
vary according to local conditions and corrosive components
in the atmosphere [68]. In the literature, authors who worked
economically viable small-scale wind energy, used an annual
rate that focused on the value of the investment. The values
are described in Table 3.
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Therefore, a more conservative approach was adopted
for this work and a rate of 2% per year was used on the
value of the investment related to the operation and mainte-
nance [42], [43], [68].

C. DEPRECIATION
Depreciation for electrical equipment follows a specific
schedule, and wind equipment has a 20-year useful life.
As a result, they can be depreciated at an annual rate of 5%
according to the COPEL manual [69], and also as adopted by
Aquila et al. [44].

D. FINANCING
The Brazilian Northeast Bank (Banco do Nordeste) [70]
seeks to contribute to the environmental sustainability of the
Brazilian energy matrix and offers a line called FNE SOL
(financing of micro and distributed electricity minigenera-
tion), used especially for the financing of micro and energy
minigeneration systems from renewable sources.

The fees considered are the fees that the bank imposes for
the FNE SOL program, with a grace period of six months and
up to 96 months for payment. The current rate of inflation
was equal to 2.95% [71], so the real interest rate per year
considered here was 6.68%.

E. WIND DATA SPEED
The most widely used model to describe wind speed distribu-
tion is the Weibull distribution [72]. The Weibull distribution
is characterized by two parameters, one of form k and another
of scale c [69], [72].

In this research we chose to work with three states:
Rio Grande do Norte, Rio Grande do Sul, and Minas Gerais.
Two of them were chosen because of their geographic loca-
tion (they are in the geographic extremes of the country), and
will be compared to the state of Minas Gerais, which already
has policies to encourage renewable energy. The state has an
ICMS exemption on the purchase of equipment.

The average annual wind speed data, as well as theWeibull
distribution shape, scale, and gamma factor, from the states of
Rio Grande do Norte (RN), Minas Gerais (MG) and Rio do
Grande do Sul (RS)were calculated from the sources reported
in Table 4. The average wind speed was taken from historical
data that NASA provided from 1981 to 2017. The form
factor was taken from the Atlas of Brazilian Wind Potential
elaborated byAmarante et al. [73], and scale and gamma from
Custódio [74], which are described in Table 4.

F. ENERGY PRODUCTION
The calculation of the energy production of the wind turbine
was considered using the same method as Rocha et al. [65],
Aquila et al. [44], Aquila et al. [21], and Li et al. [66], which
exclusively involve wind energy. We use the probability den-
sity function of a Weibull distribution with two parameters
according to (2).

f (v) =
k
c

(v
c

)k−1
e−(

v
c )

k
(2)

TABLE 4. Wind information by state.

TABLE 5. Collected and calculated data used in the research.

where
v represents wind speed;
k is the form parameter; and
c represents the scale parameter.
The variables were obtained from the Atlas of Brazilian

Wind Potential elaborated by Amarante et al. [73] and they
vary from region to region and as a function of the season.
The parameter c represents the scale factor; this variable
can be calculated by a gamma-like distribution, except for
k values ranging from 2 to 3; the scale factor was obtained
from Custódio [74] data, which presents relations between
the gamma function and the shape parameter.

Moreover, according to Rocha et al. [65], Aquila et al. [21],
and Lima and Bezerra Filho [76], the amount of energy
generated in watts can be estimated by (3).

P =
1
2
ρArv3Cpη (3)

where
ρ is the density of air;
Ar is the rotor area;
v is the wind speed;
Cp is the aerodynamic coefficient of the rotor; and
η represents the efficiency of the system.
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TABLE 6. Wind speed and economy generated by the state.

TABLE 7. NPV results for the states analyzed.

The aerodynamic coefficient of the rotor in question,
in turn, is calculated by the polynomial equation shown
in (4) [21].
Cp = −0.08114+ 0.1771v− 0.01539v2 + 0.00034v3 (4)

The values of the equation’s constants were calculated
based on the work of Aquila et al. [21] and Rocha et al. [65],
where the authors obtained such constants by means of
regression for wind speed values varying from 0 to 25 m/s.
Finally, Aquila et al. [21], Abdelhady et al. [42], and
the COPEL manual [69] estimate the annual generation of
electricity by (5).

AEP = 8, 75

Vmáx∫
V min

P(v)f (v)dv (5)

where
AEP represents the annual generated energy, and v is the

wind speed.

G. DISCOUNT RATE CALCULATION
The largest companies in the electric energy sector that make
up the portfolio of the Stock Exchange, Commodities, and
Futures Exchange [77] hold, on average, 65% of their financ-
ing composed of third-party capital, and 35% composed of
equity. The Bank of the Northeast, which has a specific
financing line for microgeneration, provides financing of up
to 70% of the renewable energy project. Therefore, in this
work, the values provided by Banco do Nordeste were used
to calculate the discount rate used in the projection of the cash
flow in this wind energy project.

The weighted average cost of capital (WACC) is used as
a discount rate within the models used in renewable energy
projects; it can be calculated by (6) [21], [67], [78].

WACC = kdD(1− τ )+ keE (6)

where
kd represents the cost of debt;
D is defined as the weight of the debt applied to the

investment;
τ is the income tax rate;
ke is the cost of equity; and
E is defined as the weight of equity in investment.

The capital asset pricing model (CAPM), proposed
by Sharpe [79] and suggested in some RES stud-
ies [21], [65], [78], is used to calculate the cost of equity (ke)
(as presented by (7)). The ANEEL [80] recommends in a note
that a Brazilian risk factor (Rb) of 3.87% be added, so that the
investor is given a premium for investment in the Brazilian
market. In relation to Rf and Rm, ANEEL [80] recommends
the use of the values of 4.04% and 10.10%, respectively,
for the calculation of the WACC used in the evaluation of
electricity generation projects.

ke = CAPM = Rf + βa(Rm − Rf )+ Rb (7)

where
Rf represents the risk-free rate;
Rm indicates the expected return of market;
Rb represents the Brazilian risk premium; and
βa represents the risk of the investment.
In addition, to evaluate the beta risk data from

Damodaran [81] was used, which indicated the value of the
unleveraged beta as 0.69 in the renewable energy sector. Thus,
considering the same proportion of equity and third parties,
we have 2.3 as the value of the leveraged beta for 2018.

Then, using (7) and the respective suggested values for Rf ,
Rm, and Rb, it was possible to calculate the cost of equity
for this study at 21.85%. Moreover, the deflated value was
19.42%, which corresponds to the adjusted value in relation
to U.S. inflation.

To estimate the cost of debt using (8), the real interest rate
was calculated at 6.68%.to obtain financing from Banco do
Nordeste [70].

kd = Rf + pRisk + Rb (8)

where
Rf indicates the risk-free rate;
pRisk represents the debt risk premium; and
Rb indicates the country risk premium.
As described previously by (6), and with the values of cost

debt and equity equal to 30% and 70%, respectively, it was
possible to calculate the WACC. Here the value of 9.02%
was calculated by (7), which was used as the discount rate
(minimum attractiveness rate) for the calculations necessary
to carry out the feasibility analysis.

IV. RESULTS AND ANALYSIS
A. ECONOMIC FEASIBILITY ANALYSIS
Once the research method was established and the data col-
lection was carried out, the deterministic feasibility analysis
was carried out with the elaboration of cash flows. The data
collected are summarized in Table 5.
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TABLE 8. Parameters and distributions adopted.

FIGURE 3. Probability of economic feasibility for the RN state.

TABLE 9. Probability of economic feasibility by state.

TABLE 10. Values of the matrix M(1×11).

The average electricity price practiced by the concession-
aires, the final consumer of each state, and the average wind
speed for each state were considered for calculating the gen-
erated economy. Using (2), (3), and (4) it was possible to
calculate the generated economy, as Table 6 shows.

By calculating the economy generated for each state,
it was possible to prepare the cash flow by scenario and the

evaluation by the decision criterion of Net Present Value
(NPV), as presented in (9). The deterministic results of NPV
for each state are shown in Table 7.

NPV =
n∑
t=1

FCt

(1+ i)t
(9)

where
n is the time of the project in years;
i is the minimum rate of attractiveness or discount rate;
t is the period of time to be analyzed; and
FCt represents the net cash flow in period t .
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FIGURE 4. Probability of economic feasibility for the RS state.

FIGURE 5. Probability of economic feasibility for the MG state.

Initially, it is possible to perceive that there is no viability
in any presented scenario, as NPV is negative for all states,
given the same investment value in all cases.

After the construction of the cash flows for each scenario
and state, stochastic analyses were performed to study the
NPV behavior. Table 8 shows the variables studied and their
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TABLE 11. Values of the matrix W(11×8).

TABLE 12. Values of the matrix R(1×8).

respective probability distributions for operationalization in
the stochastic analysis using MCS.

The economically feasible probability results for each
state were simulated by considering the wind speed val-
ues according to the Weibull distribution parameters for
each state described in Table 4. These results are compiled
in Table 8.

As reported, the simulationswere performedwith the Crys-
tal Ball R© software, which generated the results of probability
of investment feasibility; the graph generated in the simula-
tions of the RN, RS, and MG states can be seen in Figures
3, 4, and 5. Based on the simulations, in Figures 3 to 5,
the histogram and cumulative distribution function (CDF)
show each state. For example, in the case of the state of RN,
the cumulative probability for NPV equal to 0 is 82.97%;
then, P (NPV > 0) = 17.03%.

Table 9 shows the stochastic results of NPV for each
scenario. In summary, this table shows the probability values
of obtaining an NPV > 0.

Table 9 shows that there is a small difference between the
probability of viability values in the three states. These results
indicate a low probability of economic viability, even in the
state of Rio Grande do Norte, which is the only scenario in
which a NPV closer to zero was obtained, with a viability
probability of 17.03%. Even in the state of Minas Gerais with
a reduction in ICMS in the purchase of equipment, a lower
investment value is generated, yet it presents a low probability
of economic viability at 23.06%.

Rocha et al. [65] and Holdermann et al. [35] also found
low feasibility probabilities in their research, when they

analyzed wind and solar energy microenergy generation
projects in Brazil. Walters and Walsh [82] found that in 95%
of the regions studied, micro-generation of wind energy is not
viable, showing that this type of project needsmore incentives
for tariffs, investments, and financing.

B. SENSITIVITY ANALYSIS USING ANN
As discussed previously, it is possible to perform a sensi-
tivity analysis using ANN concepts through the proposal of
Chakrabarty et al. [19], represented by the method presented
in (1). This was done with the help of Statistica R© software.
Thus, it was possible to perform the network training, and
from this to obtain the equivalent synaptic weights. The
synaptic weights provide a basis for measuring the influence
of the studied variables on NPV. To calculate RI, the fol-
lowing matrices and vectors of synaptic weights shown in
Tables 10 to 12 were used.

The resulting matrix R shows the synaptic weights related
to the variables studied; the percentage values were then
calculated for better observation of the results.

The calculation for the synaptic weights of all states were
calculated, and the results converge for the same variables,
so we present the results of only one state as a demonstra-
tion. The calculation of the synaptic weight was obtained
by multiplying matrices (described in the methodology) and
the results for the state of Rio Grande do Norte (RN) are
described in Table 12.

Table 13 shows the results of the RI calculation in per-
centage terms of the five best architectures’ results obtained
through automatic network training. Automatic training seeks
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TABLE 13. RI results obtained through network training for the RN state.

TABLE 14. Summary table of results by state and architectures.

to randomly optimize the best parameter settings for network
training, and returns the best architectures identified. The
values of RI allowed us to analyze which variables have the
most impact on the NPV response and what the impact is
in percentage terms. In the case of Statistica R© software,
the returns of the five best MLP architectures and I-H-O
numbering are shown, which means the number of neurons
in input (I), the hidden (H), and the output (O) layers.

In all of the architectures obtained, it was possible to
analyze some variables that stand out in the sensitivity anal-
ysis, including the wind speed, investment, debt percentage,
energy price, and depreciation of the most sensitive variables
in relation to the investment. The results are similar for the
RS and MG states, as can be seen in Table 14, which shows
the three most impactful variables in the NPV for each state
and the five best architectures obtained in the automatic

optimization of network training. To obtain the best five
architectures, the automated network search (ANS) option
was used, available in the Statistica software. This option
provides for the creation of neural networks with various
settings and configurations with minimal effort. The use of
ANS allows for the creation and testing of neural networks for
data analysis and prediction problems. It designs a number of
networks to solve the problem and then selects those networks
that best represent the relationship between the input and
target variables (for more, see [83]–[84]).

In the sensitivity analysis, it can be seen that the wind speed
is the variable that will most impact the NPV, and can make
it unfeasible, as seen in Table 14. From the analysis using
the concept of RI, it was perceived that other variables may
become relevant and need to be considered and evaluated to
enable project viability.
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The method of sensitivity analysis using the concept of
relative importance brings more accuracy and reliability to
the variables’ studies, and how they can impact the NPV
and its importance within the investment analysis. Micro and
small companies that want to invest in energy savings through
small wind turbines need to know which variables will most
impact viability and help in decision-making, and the con-
cept of RI can be extremely applicable to the realization of
sensitivity analysis, acting as a complementary approach to
analyzing the variables. In addition, as a complement, this
study highlights some variables to which investors of micro
and small business should pay attention.

V. CONCLUSIONS
This research had the objective of analyzing the economic
viability of micro-generation of wind power for micro and
small businesses in environments of uncertainty and risk.

In the sensitivity analysis it was seen that variable wind
velocity and energy price are the variables that most impact
the NPV, andmay evenmake the project impracticable. Given
that wind speed was the most relevant variable for the project,
the RN is the state where it is possible to obtain a return with
positive NPV, because it has the highest wind speed variation
and can reach higher speeds.

In the sensitivity analysis using ANN, the calculation of
the synaptic weights made it possible to calculate RI and
to better evaluate the variables that most impact this type
of investment project, namely, wind speed, investment, third
party capital, tariff energy, and depreciation. The result shows
that with increased incentives for microgeneration the impor-
tance of public policies in the energy field has already seen
a significant increase in facilities in the country, but it is still
inefficient with regard to the implementation of small wind
turbines.

The research supports the perception of feasible wind
power micro-generation, with incentives in investment and
facilities for financing; for example, microgeneration can
become a viable project for micro and small business. This
is because the availability of energy, concern for the envi-
ronment, and the long-term economy can be advantages
for small businesses. The results are in line with those of
Pereira et al. [29], who observes that the installation of
microgeneration units can bring tax benefits, and reduction
of energy expenditure—-an interesting investment in the long
run. Moreover, they are aligned with the research of Ren
and Sovacool [85], where they evaluate the persistent devel-
opment of wind energy, and conclude that investment is a
prerequisite for increasing energy security and making it
a priority in development planning of renewable energies.

The results are in line with those of Aquila et al. [2], who
emphasize how important the government’s participation is in
the growth of renewable energies, through enhancing existing
initiatives with short-term policies such as tax exemption and
reduction. Small businesses need greater support in relation to
investments of this nature, as electric energy is a fundamental
input in several production processes.

Micro and small business need greater support in relation to
investments of this nature, as electric energy is a fundamental
input in several production processes.

Future research can be undertaken using neural networks
and renewable energy, such as the creation of a forecast
model using ANN to estimate which renewable energy is
most appropriate for the small and micro investor, given their
historical consumption and diversification of investment; this
would make generation of renewable energy in micro and
small businesses viable options in the near future. In addition,
a forecast model can be created that considers the variables
studied for the small wind turbine, and provides the best
location and conditions for the investment to become viable.
Finally, alternative solution methods based on advanced tech-
niques such as metaheuristic swarm intelligence techniques
could be tested, comparing the results.
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