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ABSTRACT

ARobust algorithm for the extraction of reduced-order behavioral models from sampled frequency
responses is proposed. The system under investigation can be any Linear and Time Invariant structure,

although the main emphasis is on devices that are relevant for Signal and Power Integrity and RF design,
such as electrical interconnects and integrated passive components. We assume that the device under
modeling is parameterized by one or more design variables, which can be related to geometry or materials.
Therefore, we seek for multivariate macromodels that reproduce the dynamic behavior over a predefined
frequency band, with an explicit embedded dependence of the model equations on these external parameters.
Such parameterized macromodels may be used to construct component libraries and prove very useful in
fast system-level numerical simulations in time or frequency domain, including optimization, what-if, and
sensitivity analysis. The main novel contribution is the formulation of a finite set of convex constraints
that are applied during model identification, which provide sufficient conditions for uniform model stability
and passivity throughout the parameter space. Such constraints are characterized by an explicit control
allowing for a trade-off between model accuracy and runtime, thanks to some special properties of Bernstein
polynomials. In summary, we solve the longstanding problem of multivariate stability and passivity
enforcement in data-driven model order reduction, which insofar has been tackled only via either over-
conservative or heuristic and possibly unreliable methods.

INDEX TERMS Passive macromodeling, Reduced-order modeling, Parameterized modeling, Data-driven
Model Order Reduction, Bernstein polynomials, Linear Matrix Inequalities.

I. INTRODUCTION

Mathematical modeling is a cornerstone for modern tech-
nological advancement and industrial manufacturing. The
possibility of accurately predicting the behavior of a given
design allows engineers to perform preliminary testing and
verification stages without relying on the construction of
physical prototypes, which is highly consuming in terms
of strategical assets. In this view, the industrial interest for
mathematical models is moved not only by their effectiveness
in predicting physical phenomena, but also by their potential
for saving resources in terms of manpower and time-to-
market.

For this reason, reduced order models or “macromodels”
gained an increasing importance in the field of Computer
Aided Design. The rationale behind such models is to predict

the behavior of a given system with minimal computational
efforts, by accurately reproducing those physical quantities
that are of interest within a specific simulation, i.e. the
required system outputs [1]–[3] . The intrinsic complexity of
the first-principle physical laws (e.g. Maxwell’s equations) is
reduced to a small set of explanatory instrumental variables
that are sufficient to predict the input-output relationship of
interest. In particular, in the field of electronics manufactur-
ing, the enormous complexity of state-of-the-art devices is
such that behavioral models find major room for practical
exploitation, in particular when dealing with passive electro-
magnetic devices [4]–[6] such as electrical interconnects and
integrated components.

The generation of a macromodel is usually performed by
following a well established workflow. A physical model for
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the device is first instantiated within a CAD environment
able to provide a highly detailed description of the structure
based on the Maxwell’s equations. Once the interface elec-
trical ports are defined, a finite-bandwidth characterization
of the system is obtained in terms of samples associated
with a specified network function, typically in the scattering
representation. A rational fitting process [7]–[10] is then
performed over this available data in order to obtain a closed
form expression which best explains the associated input-
output behavior. The resulting rational model of the network
function is then synthesized into an equivalent and low-
complexity SPICE netlist, that can be exploited to perform
fast numerical simulations at the system level.

The above procedure can be extended by requiring that the
macromodel mimics the behavior of the structure for differ-
ent configurations of a set of design or physical parameters,
whose value is not fixed a priori but is known to belong to a
prescribed set. In such a case, the network function data are
sampled in correspondence of a finite number of parameters
configurations, and a multivariate modeling strategy is pur-
sued to obtain a parameterized macromodel that can replace
the original structure for all of the parameters configurations
of interest [11]–[15].

When the macromodel is to be used within system-level
simulations, it is crucial that the associated equivalent circuit
preserves some fundamental structural properties of the true
device. In particular, passive components and interconnects,
which are unable to generate energy on their own, must
be represented by certified passive macromodels [6], [16].
Otherwise, the models can be the root cause of spurious in-
stabilities, thus impairing the entire modeling and simulation
workflow.

While the generation of passive univariate (non-
parameterized) macromodels can mostly be considered as
a solved problem [17]–[19], this is not true for the more
complex parameterized case, and the topic is still subject
of active research. Many different approaches have been
proposed in the literature to tackle the passive parameterized
macromodeling problem, but an ultimate fast, efficient and
robust methodology is still not available.

Among the available strategies, some [11], [12], [20], [21]
rely on passivity-preserving interpolation schemes. These ap-
proaches aim at building multivariate macromodels by inter-
polating a set of “root” univariate macromodels constructed
at several discrete parameter instances. In case the root
models are passive, the use of passivity preserving interpola-
tion schemes guarantees the uniform passivity of the result-
ing multivariate model. The simplicity of these approaches
comes with some serious drawbacks. For instance, the re-
sulting multivariate model may show nonphysical augmented
complexity and/or incorrect model behavior for parameter
combinations that are different from the training samples.

Other techniques waive these structural passivity pre-
serving properties in favor of more compact parameter-
ized macromodels, which are identified through a well-
established multivariate rational fitting procedure [14]. Uni-

form stability can be enforced by embedding some con-
straints in the fitting process. These constraints can be either
based on (adaptive) sampling in the parameter space [22],
[23], or by imposing some sign properties in the model coef-
ficients [24]. The former approach may miss small stability
violations due to the finite number of constraints that can be
constructed, while the latter is known to be over-conservative
and may lead to a model with reduced accuracy. In this
framework, passivity enforcement is usually performed by
post-processing, so that the model is iteratively perturbed
until all the passivity violations are removed [25]. Two main
problems affect this strategy: first, identification of passivity
violations in a multivariate setting requires sampling, so that
it is possible that some passivity violations are not identi-
fied and thus not removed; second, removal of a passivity
violation requires the solution of a nonlinear optimization
problem, whose linearization during iterations may lead to
further loss of accuracy and possibly lack of convergence.

This work proposes a novel constrained multivariate ratio-
nal fitting framework, that overcomes all above limitations
and drawbacks. The approach can be summarized as follows.

1) The model structure is defined as a ratio between a
matrix numerator and a scalar denominator, which are
both expanded into a partial fraction basis (with stable
basis poles) along frequency and multivariate Bernstein
polynomials in the parameter space.

2) Stability conditions along frequency are expressed as
a (continuously) parameterized Kalman-Yakubovick-
Popov (KYP) linear matrix inequality, which depends
only on the model denominator.

3) A finite number of convex constraints providing a suf-
ficient condition for uniform stability is derived by
expanding all terms of the above KYP condition in
terms of Bernstein polynomials, and by exploiting some
unique properties of such polynomials.

4) Passivity conditions along frequency are expressed as a
parameterized KYP (similarly to point 2 above), which
depends only on the model numerator.

5) A finite number of convex constraints providing a suf-
ficient condition for uniform passivity is derived as in
point 3, through a Bernstein polynomial expansion of
the above KYP formulation.

6) The conservativity introduced by the discretization in
points 3 and 5 is reduced by exploiting a special degree
elevation property of Bernstein polynomials.

In the above list, points 1, 2 and 4 are reformulations of
known results. Preliminary ideas based on point 5 have been
recently published in [26] for parameterized macromodels
including a single external parameter. Expanding on such
preliminary ideas, we present a full treatment of the the-
oretical derivations that legitimate the validity of points 3
and 5 when generating macromodels that include an arbitrary
number of external parameters. The practical effectiveness
of the proposed approach is further enhanced by introducing
the conservativity reduction strategy of point 6. We remark
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that the effectiveness of the constraints discretization strategy
based on Bernstein polynomials involved in points 3 and 5
has been also recently discussed in [27] in a more general
setting.

From the computational standpoint, the proposed method
consists of

• an iterative low-complexity least squares identification
of the denominator of the model, where special Linear
Matrix Inequality (LMI) constraints are used to enforce
uniform stability;

• a single higher-complexity LMI-constrained least
squares problem for the identification of the numerator
(matrix) coefficients, which guarantees uniform model
passivity.

The resulting algorithm is thus fully deterministic and robust,
since it does not rely on sampling and is based on a convex
formulation which is solved in finite time using standard
optimization software.

The proposed approach has a single main limitation, in
terms of the overall complexity of the models that can be
processed. The scalability analysis and the numerical ex-
amples that follow show that only small and medium-scale
models are tractable, thus providing an applicability limit
of proposed framework. This limit is in fact common to all
applications that are based on LMI constraints, not only in
model order reduction but also in the more general field
of modern control system engineering and numerical linear
algebra.

This paper is organized as follows. Section II introduces
some notation and general facts, considered as preliminar-
ies and background. Section III states the main considered
problem, defines the adopted model structure, and recalls
the existing model identification methods; also this section
is to be regarded as background material. Sections IV and V
provide a complete derivation of proposed uniform stability
and passivity conditions, respectively. Together with Sec. VI
dedicated to the reduction of conservativity, they form the
key novel material of this work. Section VII presents a set of
numerical results together with discussion on performance
and assessment of applicability limits. Conclusions are fi-
nally drawn in section VIII.

II. PRELIMINARIES AND NOTATION
In the following, we denote with N, R, and C, the fields of
natural, real and complex numbers, respectively. The symbol
s is reserved for the Laplace variable, and j =

√
−1 is the

imaginary unit. Scalars are denoted with a plain lowercase
font x, while uppercase fonts denote matrices X , whose size
is specified if not clear from the context. Matrix transpose
and Hermitian transpose are denoted with X⊤ and X⋆,
respectively. The set of symmetric matrices of size n is
denoted as Sn; accordingly, S−n denotes the cone of negative
semi-definite matrices of size n. A given transfer function is
denoted as H(s), and IP is reserved for the identity matrix of
size P.

We define a multi-index as a d-dimensional collection
of indices i = (i1, . . . , id) ∈ Nd. Given two multi-indices
j and k, we write j ≤ k meaning j1 ≤ k1, . . . , jd ≤ kd.
The sum operation j + k between two multi-indices returns
a multi-index i = (j1 + k1, . . . , jd + kd). The max(j,k)
[resp. min(j,k)] function returns the component-wise maxi-
mum (resp. minimum) for each entry of its arguments. In this
context, we also define the multi-index binomial coefficient(

j

k

)
=

d∏
i=1

(
ji
ki

)
. (1)

Let p(ϑ) : Rd → R be a generic multivariate polynomial
in d variables ϑ = (ϑ1 . . . , ϑd). In particular, we make
extensive use of Bernstein polynomials. For d = 1,

bℓ̄ℓ(ϑ) =

(
ℓ̄

ℓ

)
ϑℓ(1− ϑ)ℓ̄−ℓ, ℓ = 0, . . . , ℓ̄ (2)

defines the ℓ-th Bernstein polynomial of degree ℓ̄ in the
scalar variable ϑ. For d > 1, the ℓ-th multivariate Bernstein
polynomial of multi-degree ℓ is defined as

bℓℓ(ϑ) = bℓ̄1ℓ1(ϑ1)× · · · × bℓ̄dℓd(ϑd) (3)

where
ℓ = (ℓ̄1, . . . , ℓ̄d) (4)

is the multi-index collecting the degrees of the polynomials
in each individual variable ϑk. For a given set of maximum
degrees ℓ, we define the associated set of admissible indices
as

Iℓ = {ℓ ∈ Nd : ℓ ≤ ℓ}. (5)

For any multivariate polynomial matrix function in the Bern-
stein basis

F (ϑ) : Rd → Rm×n =
∑
ℓ∈Iℓ

F ℓ bℓℓ(ϑ) (6)

we denote as control points the elements of the set {F ℓ : ℓ ∈
Iℓ}, in short {F ℓ}.

We will exploit some notable properties of multivariate
Bernstein polynomials, which we report here following [28].
First, we recall that such polynomials are non-negative and
provide a partition of unity for any generic dimension d and
maximum degree ℓ

bℓℓ(ϑ) ≥ 0 ∀ℓ ∈ Iℓ,
∑
ℓ∈Iℓ

bℓℓ(ϑ) = 1, ∀ϑ ∈ Θ. (7)

These two properties imply that all the values attained by
functions (6) are obtained via a convex combination of the
control points {F ℓ}.

A multivariate Bernstein polynomial of degree ℓ can be
equivalently rewritten in terms of another Bernstein poly-
nomial of higher degree, exploiting the so-called degree
elevation property. Consider a Bernstein polynomial p(ϑ) of
degree ℓ and a degree increment e = (e1, . . . , e2) ≥ 0. Then,
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p(ϑ) admits the two following equivalent representations

p(ϑ) =
∑
ℓ∈Iℓ

pℓ bℓℓ(ϑ) =
∑
γ∈Iγ

gγ bγγ(ϑ), γ = ℓ+ e

(8)
where the set of coefficients gγ are obtained as convex
combinations of the original coefficients pℓ

gγ =
∑
s∈S

(
ℓ
s

)(
e

γ−s

)(
ℓ+e
γ

) ps, γ ∈ Iγ , (9)

where the sum is performed over the set of multi-
indices S = {s : s = max(0,γ − e), . . . ,min(ℓ,γ)}. Fi-
nally, given two Bernstein polynomials p(ϑ), g(ϑ) having
total degree ℓ and γ respectively, their product h(ϑ) can be
expressed as a polynomial of total degree β = ℓ+ γ, whose
coefficients hβ are

hβ =
∑
s∈S

(
ℓ
s

)(
γ

β−s

)(
ℓ+γ
β

) psgβ−s, β ∈ Iβ (10)

where S = {s : s = max(0,β − γ), . . . ,min(ℓ,β)}.

III. PROBLEM SETTING

A. GENERAL SETTING

We consider a generic P-port Linear and Time-Invariant (LTI)
system, whose behavior depends on d real-valued physical or
design parameters. Without loss of generality, the parameter
vector ϑ = (ϑ1, ..., ϑd) is assumed to belong to a normalized
d-dimensional hypercube Θ = [0, 1]1 × . . . × [0, 1]d, called
the design space. Denoting with H̃(s,ϑ) the P × P transfer
function of the system, we assume that a highly detailed first-
principle model is available, which can be used to evaluate
the system response through its frequency-domain samples
over a finite bandwidth of interest and for any given combi-
nation of the design variables

H̃k,m = H̃(jωk,ϑm), k = 1, ...k̄, m = 1, ..., m̄. (11)

Most commonly, such data samples are available as the
scattering matrix of the reference device.

The goal of parameterized macromodeling is to synthe-
size a reduced-order rational model with a transfer function
H(s,ϑ) that matches the set of input training data

H(jωk,ϑm) ≈ H̃k,m, k = 1, ...k̄, m = 1, ..., m̄. (12)

The rational structure of the model allows for a straightfor-
ward conversion of the transfer function into a parameterized
equivalent circuit of reduced order that can be exploited
within off-the-shelf SPICE environments (not discussed here,
see e.g. [6], [23]).

B. MODEL STRUCTURE

Consistently with most of the existing literature on this
subject [14], [29], we assume the following Parameterized-

Sanathanan-Koerner (PSK) model structure

H(s,ϑ) =
N(s,ϑ)

D(s,ϑ)
=

∑n̄
i=0

∑
ℓ∈Iℓ

Ri,ℓ b
ℓ
ℓ(ϑ)φi(s)∑n̄

i=0

∑
ℓ∈Iℓ

ri,ℓ bℓℓ(ϑ)φi(s)
,

(13)
where the basis functions φi(s) are constructed from a set of
predefined poles {q1, . . . , qn̄} with ℜ{qi} < 0∀i as

φi(s) = (s− qi)
−1, qi ∈ R

φi(s) = [(s− qi)
−1 + (s− q⋆i )

−1] qi ∈ C
φi+1(s) = j[(s− qi)

−1 − (s− q⋆i )
−1] qi+1 = q⋆i ∈ C

(14)
with φ0(s) = 1. Therefore, both N(s,ϑ) and D(s,ϑ) are
stable rational functions of the Laplace variable s, sharing
the same set of poles. The Bernstein bases are exploited to
parameterize N(s,ϑ) and D(s,ϑ) via the unknown model
coefficients ri,ℓ ∈ R and Ri,ℓ ∈ RP×P. As these two transfer
functions share the same set of common poles, the zeros
and the poles of H(s,ϑ) coincide with the zeros of N(s,ϑ)
and D(s,ϑ) respectively. The PSK model structure (13) thus
provides a parameterization of both zeros and poles of each
individual model response. Note that the basis poles qi cancel
out in (13) and are not poles of the model. They are only in-
strumental for the definition of the barycentric basis functions
φi(s) upon which the model structure is constructed.

C. MODEL IDENTIFICATION

The model coefficients are found by minimizing the model-
data error according to fitting condition (12), which is solved
through a sequence of linear least squares problems based on
the linearized approximation

Nµ(jωk,ϑm)− Dµ(jωk,ϑm)H̃k,m

Dµ−1(jωk,ϑm)
≈ 0,

k = 1, ...k̄, m = 1, ..., m̄ (15)

where µ = 1, 2, . . . is the iteration index and Dµ−1 is known
at each iteration µ since based on estimates of the denomina-
tor coefficients ri,ℓ at the previous iteration µ − 1. The first
iteration is initialized with D0(jω,ϑ) = 1. Condition (15)
is equivalent to (12) whenever Dµ(jω,ϑ) = Dµ−1(jω,ϑ),
which represents a convergence condition.

All the conditions (15) can be collected in a compact form[
Ψµ

x Ψµ
y

] [xµ

yµ

]
≈ 0 (16)

where vectors xµ, yµ collect the numerator and denominator
coefficients Ri,ℓ and ri,ℓ, respectively, and Ψµ

x and Ψµ
y are

constant (iteration-dependent) regressor matrix blocks. Sys-
tem (16) is solved in least squares sense, suitably comple-
mented by a non-triviality constraint to rule out the all-zero
solution [30]. Due to the particular structure of the regression
matrix entering problem (16), each iteration can be split in
two steps, which seek for xµ and yµ separately, in order to
improve the algorithm efficiency. The first step finds yµ by
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solving a reduced least-squares system of the form

Γµ
yy

µ ≈ 0, (17)

obtained by elimination of xµ in (16) through a QR decompo-
sition. Once yµ is available (e.g. as the singular vector of Γµ

y

associated to its least singular value), the following system

Ψµ
xx

µ ≈ −Ψµ
yy

µ (18)

is solved to find the numerator unknowns xµ. See [31] for fur-
ther details about the algorithmic aspects of this decoupling
strategy.

Iterations are stopped when the denominator estimate sta-
bilizes, i.e., when the following condition is met

δµ =

∥∥yµ − yµ−1
∥∥
2

∥yµ∥2
≤ ϵ (19)

being ϵ a given threshold. Alternatively, the iteration is
stopped if a maximum prescribed iteration number is
reached. Notice that convergence criterion (19) does not
involve the numerator unknowns xµ; therefore, the solution
of (18) can be deferred to the last iteration, once (19) is met.

D. PROBLEM STATEMENT
The objective of this work is to guarantee that the parameter-
ized model (13) is uniformly stable and possibly uniformly
passive throughout the design space Θ. We will achieve
this goal by modifying the model identification steps by
adding a set of semi-definite constraints providing provable
sufficient conditions for uniform stability and passivity. We
anticipate that uniform stability is achieved by constraining
only the denominator estimate (17) and provides a necessary
prerequisite to uniform passivity. The latter is controlled by
constraining all model coefficients.

Let us recall the general conditions for the uniform passiv-
ity of a generic parameter-dependent scattering or immittance
LTI system in terms of its transfer matrix

1) H(s,ϑ) regular for ℜ{s} > 0 ∀ϑ ∈ Θ
2) H∗(s,ϑ) = H(s∗,ϑ) ∀s ∈ C, ∀ϑ ∈ Θ
3) Φ(s,ϑ) ⪰ 0 for R{s} > 0, ∀ϑ ∈ Θ

where ∗ denotes the complex conjugate, and

Φ(s,ϑ) =

{
IP − H⋆(s,ϑ)H(s,ϑ) scattering,
H⋆(s,ϑ) + H(s,ϑ) immittance.

(20)

Condition 1 is related to uniform stability, whereas the re-
alness condition 2 is enforced by construction by adopted
model structure (13). Condition 3 defines uniform dissipa-
tivity in terms of Bounded Realness (in the scattering case)
and Positive Realness (in the immittance case). Wihtout loss
of generality, we will only consider the Bounded Realness
conditions in the following, since Positive Realness can be
achieved with a straightforward adaptation.

In summary, we will propose a solution to the following
two problems:
Problem 1: Derive a numerically viable approach to estimate
the model coefficients ri,ℓ, so that Condition 1 is fulfilled

(uniform stability)
Problem 2: Assuming uniform stability, derive a numerically
viable approach to estimate the model coefficients Ri,ℓ, so
that Condition 3 is fulfilled (uniform passivity).
The solution of these two problems requires a set of state-
space realizations for both model numerator and denomina-
tor, seen as individual transfer functions, which are intro-
duced next.

E. STATE-SPACE REALIZATIONS
A state-space realization for the denominator transfer func-
tion can be constructed as follows [14]

D(s,ϑ) ↔ ΣD =

(
A1 B1

C1(ϑ) D1(ϑ)

)
, (21)

where the constant matrices A1, B1 are

A1 = blkdiag{A1,i} ∈ Rn̄×n̄ (22)

B1 = [. . . , B1,i, . . . ]
⊤ ∈ Rn̄, (23)

with

A1,i =


qi, qi ∈ R[
σi ωi

−ωi σi

]
, qi = σi ± jωi ∈ C

(24)

B1,i =

{
1, qi ∈ R[
2 0

]
, qi = σi ± jωi ∈ C

(25)

Note that, by construction, the pair (A1, B1) is controllable
and A1 is Hurwitz, as ℜ{qi} < 0 ∀i. The parameterized
output matrices are available as Bernstein polynomials and
read

C1(ϑ) =
∑
ℓ∈Iℓ

Cℓ
1 b

ℓ
ℓ(ϑ), Cℓ

1 = [r1,ℓ, . . . , rn̄,ℓ] ∈ R1×n̄

(26)

D1(ϑ) =
∑
ℓ∈Iℓ

Dℓ
1 b

ℓ
ℓ(ϑ), Dℓ

1 = r0,ℓ ∈ R. (27)

Using a similar construction, we can realize the numerator
transfer function as follows

N(s,ϑ) ↔ ΣN =

(
A B

C2(ϑ) D2(ϑ)

)
(28)

where A = IP ⊗ A1 and B = IP ⊗ B1 with ⊗ denoting the
matrix Kronecker product, and where

C2(ϑ) =
∑
ℓ∈Iℓ

Cℓ
2 b

ℓ
ℓ(ϑ) Cℓ

2 ∈ RP×n̄P, (29)

D2(ϑ) =
∑
ℓ∈Iℓ

Dℓ
2 b

ℓ
ℓ(ϑ) Dℓ

2 = R0,ℓ ∈ RP×P. (30)

For fixed ℓ, matrix Cℓ
2 collects the elements of the model

coefficients Ri,ℓ, i > 0 with a compatible ordering. The pair
(A,B) inherits the controllability property from (A1, B1).
All of the eigenvalues of A are stable.
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IV. UNIFORM STABILITY CONDITIONS

This section presents a solution for Problem 1 and derives a
set of algebraic and convex constraints providing a guaran-
teed uniform stability of the model.

Given the adopted model structure (13), stability is at-
tained by constraining all the zeros of the denominator
D(s,ϑ) to have a negative real part, since these zeros co-
incide with the parameter-dependent model poles. The de-
nominator D(s,ϑ) satisfies by construction Conditions 1, 2
of Sec. III-D being a real rational and strictly stable func-
tion. If we are able to additionally enforce the dissipativity
Condition 3, then D(s,ϑ) becomes a certified uniformly
Positive Real function. Since any Positive Real function is
also minimum phase [32] with stable zeros, we conclude that
enforcing (31) guarantees indirectly the uniform stability of
the model H(s,ϑ). Note that, under the working assump-
tions, Condition 3 can be replaced by the simpler condition

D⋆(jω,ϑ) + D(jω,ϑ) ≥ 0 ∀ϑ ∈ Θ,∀ω, (31)

since D(s,ϑ) is strictly stable and bounded for s → ∞,
without poles on the imaginary axis s = jω.

This consideration has been extensively exploited in the
literature to generate stable parameterized macromodels.
From the numerical standpoint, (31) cannot be enforced di-
rectly, as it embeds an infinite number of constraints that must
be verified over the entire continuous frequency-parameter
space. Its enforcement has been addressed either by dis-
cretization into a finite set via sampling-based strategies [23],
or by deriving over-conservative sufficient conditions on the
sign of individual terms in the denominator expansion [24].
These two strategies are complementary from the point of
view of the modeling performances: while the former guaran-
tees high level of accuracy but does not provide a theoretical
guarantee for uniform stability, the latter leads to provable
stability and is very efficient but can result in accuracy
degradation due to the approximate nature of the applied
constraints. In what follows, we propose a scheme that retains
the advantages of both approaches.

Let us consider the state-space realization (21) and define
Z1(jω) = (jωIP−A1)

−1B1. Condition (31) can be rewritten
as

Z1(jω)
⋆C1(ϑ)

⊤ + C1(ϑ)Z1(jω) + 2D1(ϑ) ≥ 0, (32)

that must hold ∀ϑ ∈ Θ,∀ω, or in the more compact matrix
form[

Z1(jω)
IP

]⋆ [
0 −C1(ϑ)

⊤

−C1(ϑ) −2D1(ϑ)

] [
Z1(jω)

IP

]
≤ 0. (33)

Since the pair (A1, B1) is controllable, we can apply the
Yakubovich lemma [33], [34] to cast this frequency domain
inequality as the equivalent algebraic inequality

∀ϑ ∈ Θ, ∃L(ϑ) ∈ Sn̄ :

Ω(A1, B1, L(ϑ))−
[

0 C1(ϑ)
⊤

C1(ϑ) 2D1(ϑ)

]
⪯ 0, (34)

where we define the auxiliary block matrix

Ω(P,Q,R) =

[
P⊤R+RP RQ

Q⊤R 0

]
(35)

for any triplet of matrices P,Q,R = R⊤ with compat-
ible size, and where L(ϑ) plays the role of an energy
storage function (Lyapunov matrix). Notice that (34) is a
parameterized version of the well-established Positive Real
Lemma [35], in which the additional requirement L(ϑ) ⪰ 0
is automatically entailed by the fact that A1 is Hurwitz.

Condition (34) is a robust Linear Matrix Inequality (LMI)
condition on both the instrumental matrix L(ϑ) and the
denominator coefficients ri,ℓ, which enter the various matrix
blocks according to (26)-(27). Although such conditions are
convex, solving (17) for the denominator coefficients while
enforcing (34) for all ϑ ∈ Θ is still a computationally
intractable task. We have removed dependence on frequency,
but a continuous dependence of the constraints in the param-
eters ϑ remains.

This problem is addressed by restricting the class of the
storage functions L(ϑ) to a finite-dimensional space. In par-
ticular, we adopt the following structure using an expansion
into Bernstein polynomials

L(ϑ) =
∑
ℓ∈Iℓ

Lℓ bℓℓ(ϑ), Lℓ ∈ Sn̄ ∀ℓ ∈ Iℓ (36)

based on a set of unknown symmetric matrix coefficients
{Lℓ}. Using (36), (34) becomes

∀ϑ ∈ Θ ,∃Lℓ ∈ Sn̄, ℓ ∈ Iℓ :

S(ϑ) =
∑
ℓ∈Iℓ

Sℓ bℓℓ(ϑ) ⪯ 0, (37)

with

Sℓ = Ω(A1, B1, L
ℓ)−

[
0 Cℓ⊤

1

Cℓ
1 2Dℓ

1

]
∈ Sn̄+1. (38)

As all Bernstein polynomials are nonnegative, bℓℓ(ϑ) ≥
0 ∀ℓ ∈ ℓ̄

∗, we see that (34) is implied by the following
sufficient conditions

Sℓ ⪯ 0 ∀ℓ ∈ ℓ̄
∗ (39)

which can be exploited as a set of standard non-
parameterized LMI constraints to be enforced during the
estimation of the model denominator coefficients. More pre-
cisely, our proposed solution for uniform stability enforce-
ment can be cast as the following semi-definite program

min
yµ

∥Γµyµ∥2 s.t. Sℓ ⪯ 0 ∀ℓ ∈ ℓ̄
∗ (40)

replacing the unconstrained least squares problem (17). The
optimization problem (40) is a semi-definite program that can
be solved through off-the-shelf convex optimization solvers.

Some remarks about the computational cost are in order.
Let Card(Iℓ) = V . The solution of (40) involves (n̄ + 1)V
unknown model coefficients and V ((n̄ + 1)2 + n̄ + 1)/2
instrumental variables. The size of the regressor matrix is
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Γµ ∈ RP2V n̄×V n̄, as explained in [31]. The size of the
symmetric matrices involved in the constraints is n̄ + 1, and
the number of matrix constraints is V . As one could expect,
the proposed approach suffers from a curse of dimensionality
when the dimension of the design space d increases, as both
the number of denominator unknowns and the cardinality
V of the admissible indices grows exponentially with d.
However, as experimentally demonstrated in Section VII, the
numerical solution of (40) requires affordable (desktop-level)
computing resources when making use of state-of-the-art
convex optimization solvers, at least for moderate dimension
d (few units).

We conclude this section by noting that both (36) and (39)
do introduce some amount of conservativity in the for-
mulation with respect to the continuously parameterized
form (34). We will show in Sec. VI that this amount can
be effectively controlled and reduced thanks to the degree
elevation property of the Bernstein polynomials.

V. UNIFORM PASSIVITY CONDITIONS
This section proposes a solution to the Problem 2 of Sec. IV,
which aims at enforcing uniform dissipativity of the model.
In the assumed scattering representation, this is equivalent
to enforcing the model response H(s,ϑ) to be Bounded
Real throughout the design space Θ. As Bounded Realness
requires as a prerequisite the uniform stability, we assume
that the coefficients yµ of the model denominator have al-
ready been identified by solving the convex program (40).
Therefore, this section will focus on the identification of the
coefficients xµ of the model numerator, assuming as frozen
the denominator coefficients.

Let us consider the non-expansivity Condition 3 of
Sec. III-D, that we can equivalently restrict to the imaginary
axis similarly to (31) as

H⋆(jω,ϑ)H(jω,ϑ) ⪯ IP ∀ω ∈ R, ∀ϑ ∈ Θ. (41)

Exploiting the model structure (13) provides the equivalent
form

N⋆(jω,ϑ)N(jω,ϑ)− IP D
⋆(jω,ϑ)D(jω,ϑ) ⪯ 0, (42)

∀ω ∈ R, ∀ϑ ∈ Θ.

We now replace numerator and denominator with their state-
space realization, as in Sec. IV. Before proceeding, we need
to construct a Multi-Input Multi-Output (MIMO) realization
of the auxiliary system IPD(s,ϑ) appearing in (42), which
replicates the (scalar) denominator D(s,ϑ) along the diago-
nal of a P × P matrix. This realization can be written as

IPD(s,ϑ) ↔
(

IP ⊗A1 IP ⊗B1

IP ⊗ C1(ϑ) IP ⊗D1(ϑ)

)
(43)

=

(
A B

C⊗(ϑ) D⊗(ϑ)

)
, (44)

where all state-space matrices are known since the denom-
inator coefficients have already been determined. Note that
the state matrices A and B are the same as for the numerator

realization (28). Setting now Z(jω) = (jωIn̄P −A)−1B and
using (43), (28), allows to cast condition (42) as[

Z(jω)
IP

]⋆ (
X2(ϑ)−X⊗(ϑ)

)[
Z(jω)
IP

]
⪯ 0, (45)

which must hold ∀ϑ ∈ Θ and ∀ω, and where we have defined
the auxiliary matrices

Xν(ϑ) =

[
C⊤

ν (ϑ)
D⊤

ν (ϑ)

] [
Cν(ϑ) Dν(ϑ)

]
, (46)

being the symbol ν a place-holder for the subscripts {2,⊗}.
As the pair (A,B) is controllable, the application of
Yakubovich lemma [34] translates (45) into the following
equivalent parameterized algebraic condition

∀ϑ ∈ Θ, ∃P (ϑ) ∈ Sn̄P :

X2(ϑ)−X⊗(ϑ) + Ω(A,B, P (ϑ)) ⪯ 0, (47)

which can be interpreted as a reformulation of the classi-
cal Bounded Real lemma [35] for stable transfer functions
which are parameterized according to the proposed model
structure (13).

Condition (47) is similar to (34), with the additional com-
plication that the numerator unknowns xµ that are embedded
in the parameterization of C2(ϑ), D2(ϑ) appear as quadratic
terms in X2(ϑ). It is nonetheless possible to reformulate (47)
as a LMI. First, we write X⊗(ϑ) as a sum of Bernstein
polynomials of total degree m = 2ℓ

X⊗(ϑ) =
∑

m∈Im

Xm bmm(ϑ) (48)

with symmetric matrix coefficients Xm. Since the denomi-
nator coefficients ri,ℓ are available, each Xm can be com-
puted in closed form as the product of polynomials in Bern-
stein basis, using formula (10). Note that this expansion
is exact. Second, we apply the inverse Schur complement
to (47), obtaining the equivalent LMI condition Ω(A,B, P (ϑ))−X⊗(ϑ)

[
C2(ϑ) D2(ϑ)

]⊤
[
C2(ϑ) D2(ϑ)

]
−IP

 ⪯ 0

(49)
which must be verified ∀ϑ ∈ Θ. Third, we apply the degree
elevation property of Bernstein polynomials (8) to the off-
diagonal blocks of (49). More precisely, we rewrite C2(ϑ)
and D2(ϑ) as a sum of Bernstein polynomials of total degree
m starting from their original degree-ℓ expansions (29)-(30),
and we cast the result in compact form as

Y (ϑ) =
∑

m∈Im

Y m bmm(ϑ) =
∑
ℓ∈Iℓ

[
Cℓ⊤

2

Dℓ⊤
2

]
bℓℓ(ϑ). (50)

The matrix coefficients Y m depend linearly on the numerator
coefficients Ri,ℓ. Fourth, we enforce the following structure
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for the instrumental matrix P (ϑ)

P (ϑ) =
∑

m∈Im

Pm bmm(ϑ), Pm ∈ Sn̄P ∀m ∈ Im.

(51)
Thanks to this assumption, all terms in (49) are Bernstein
polynomials of total degree m, so that (49) can be rewritten
in compact form using (50) and (51) as

F (ϑ) =
∑

m∈Im

Fm bmm(ϑ) ⪯ 0 ∀ϑ ∈ Θ (52)

with symmetric matrix coefficients

Fm =

[
Ω(A,B, Pm)−Xm Y m

Y m⊤ −IP

]
∈ Sg (53)

of size g = Pn̄+P . Finally, since Bernstein polynomials are
non-negative, we see that (49) is implied by the following set
of semi-definite constraints

Fm ⪯ 0, ∀m ∈ Im. (54)

The above conditions can be easily incorporated within the
numerator estimation procedure expressed by (18). This un-
constrained least squares system in the unknown variables
xµ is thus replaced by the following LMI-constrained convex
program

min
xµ

∥∥Ψµ
xx

µ +Ψµ
yy

µ
∥∥
2

s.t. Fm ⪯ 0, ∀m ∈ Im.

(55)

The numerical solution (55) provides a set of numerator
coefficients xµ that guarantee uniform passivity of the model.
Due to the convex formulation with a finite number of
constraints, this solution is attained in polynomial time with
standard convex optimization solvers. The data matrices Ψµ

x,y

entering (55) have a row size depending on the amount of
training data samples. If the passive structure under modeling
is reciprocal, then the problem involves M(n̄ + 1)(P2/2 +
P/2) unknown model coefficients and M(P2n̄2/2 + Pn̄/2)
instrumental variables, where M = Card(Im). From these
expressions we see that the complexity of the problem de-
pends not only on the total number M of elements in the
multivariate Bernstein basis used to represent the dissipativ-
ity constraints, but also on the number of interface ports P of
the model. This implies that the proposed approach is only
applicable to small-medium scale systems. This limitation is
common to all convex formulations of passivity constraints
based on the Positive and Bounded Real Lemmas.

As a final remark, we note that in our derivations we
assumed the output matrices associated with the transfer
functions N(s,ϑ) and IPD(s,ϑ) to be expressed as Bernstein
polynomials sharing the same total degree ℓ. If one drops
this assumption, the proposed derivations are still valid, as
the elements of the matrix function (49) can always be
represented as Bernstein polynomial series of equal degree,
by exploiting the degree elevation property.

VI. DEGREE ELEVATION AND CONSERVATIVITY
REDUCTION

The derivations of Sec. IV-V led to the pair of convex
optimization problems (40) and (55) which, when solved
in sequence, provide a guarantee of uniform stability and
passivity of the parameterized model. All the derivations
leading to the LMI constraints (39) and (54) are based on
a chain of necessary and sufficient conditions, exception
made for two main steps. First, the imposition of a particular
polynomial structure for the instrumental matrices L(ϑ) and
P (ϑ) may restrict the class of storage functions that may
provide a stability or passivity certificate for the model. This
in turn may restrict the class of models that can be obtained.
In other words, these assumptions introduce some degree of
conservativity in the identification process.

A second source of conservativity arises from the dis-
cretization of (37) into (39) and of (52) into (54). Considering
the latter, the employed discretization is over-conservative
because F (ϑ) may be uniformly negative semi-definite even
in case some of the Fm are not. We now analyze this
limitation in detail, and we propose an effective strategy to
reduce the amount of conservativity, thereby improving the
overall model accuracy.

We consider the replacement of (52) with the discretized
set (54). Let F be the set spanned by all matrices F (ϑ)
as ϑ spans the design space Θ. By construction, this set
is embedded in the convex hull generated by all matrix
coefficients Fm

F = {x : x = F (ϑ),ϑ ∈ Θ} ⊆ Conv({Fm}). (56)

Enforcing (54) guarantees uniform passivity by constraining
all individual matrix coefficients Fm to be negative semi-
definite, so that

Fm ∈ S−g ⇒ Conv({Fm}) ⊆ S−g ⇒ F ⊆ S−g . (57)

The degree of conservativity depends on the distance
between F and the boundary of Conv({Fm}). The larger
this distance, the larger the degree of conservativity in the
passivity (stability) enforcement. Therefore, reduction of this
distance will lead to a reduction of conservativity and to
an improved model accuracy. Fortunately, the properties of
Bernstein polynomials come at hand for this task, since it
is well known that, for any matrix function in form (6), the
set of control points (the matrix coefficients in the Bernstein
expansion) converge uniformly to the value of the expanded
function under repeated application of the degree elevation
property [36]–[38]. This is graphically illustrated in Fig 1.

Let us apply this property to the present passivity (stabil-
ity) enforcement case. We define e = m + (e, . . . , e). Then
for any e we can always write

F (ϑ) =
∑

m∈Im

Fm bmm(ϑ) =
∑
e∈Ie

F e bee(ϑ), (58)

where the new control points {F e} are obtained as convex
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combinations of {Fm} according to (9). We have

F ⊆ Conv({F e}) ⊆ Conv({Fm}), ∀e ∈ N. (59)

For increasing e, we have the uniform convergence prop-
erty [36]

lim
e→∞

{F e} = F (ϑ). (60)

with a convergence rate 1/e, see Fig. 1. For any given
e, we can therefore replace (55) with a less conservative
optimization problem

min
xµ

∥∥Ψµ
xx

µ +Ψµ
yy

µ
∥∥
2

s.t. F e ⪯ 0, ∀e ∈ Ie (61)

where the constraint F e ⪯ 0 becomes practically equivalent
to (52) for sufficiently large e.

Switching to (61) does not modify the number of decision
variables in the optimization. However, the number of LMI
constraints increases reaching E = Card(Ie), implying that
conservativity reduction comes with an increase in computa-
tional cost. As a beneficial side effect, the degree elevation
property may also lead to a relaxation of the structure im-
posed on the instrumental matrix P (ϑ), thereby addressing
the first source of conservativity discussed at the beginning of
this Section. If applying the degree elevation after imposing a
given structure of the storage function (51), this structure will
not change even if expressed as a higher degree polynomial,
and the dimension of the space spanned by the allowed
storage functions will remain the same. Conversely, if a new
degree-elevated structure

P (ϑ) =
∑
e∈Ie

P e bee(ϑ), P e ∈ Sn̄P ∀e ∈ Ie (62)

of total degree e is used, all the corresponding control points
P e will provide independent degrees of freedom in a degree-
e expansion, therefore increasing the space of allowed stor-
age functions enabling certification of model passivity (sta-
bility). Since polynomials converge to any arbitrary smooth
multivariate function on a compact domain, this second
strategy practically removes the limitations of the imposed
polynomial structure on P (ϑ), as far as e is sufficiently large.

In our experiments, we observed that the degree elevation
process is very effective in reducing the conservativity of the
passivity constraints (54). Conversely, we did not observe
relevant advantages in applying the same strategy to improve
the stability constraints (40).

VII. EXPERIMENTS
We now report the results of various numerical tests of in-
creasing complexity, in order to investigate the performance
and the applicability limits of proposed approach. All exper-
iments have been performed using a workstation equipped
with 32 GB of memory and a 3.3 GHz Intel i9-X7900 CPU
using a prototypal MATLAB implementation.

All tests are based on the following settings. The denom-
inator coefficients yµ are always computed by solving prob-
lem (40), while the numerator coefficients xµ are estimated
at the last iteration by solving problem (61) with a given

level of degree elevation e. When solving this problem, we
always define the structure of the matrix P (ϑ) as in (62); this
implies that the number of variables involved in the prob-
lem is proportional to the number of considered constraints,
i.e. Card(Ie). The above mentioned semi-definite programs
are handled via the YALMIP toolbox [39], exploiting the
MOSEK interior point method for conic problems [40].

Iterations are stopped when the convergence index δµ ≤
10−3; the evolution of δµ over iterations is displayed below
for each test case, in order to monitor convergence based on
the stabilization of denominator coefficients. With reference
to a given transfer function element Hi,j and the associated
reference data H̃i,j , we also define the error index

ϵi,j = max
m=1,...,m̄

√√√√1

k̄

k̄∑
k=1

∣∣∣∣∣Hi,j(jωk,ϑm)− H̃i,j
k,m

H̃i,j
k,m

∣∣∣∣∣
2

, (63)

which is representative of the worst case relative error of
the model against the data over the design space. Finally,
we remark that the automated selection of the model hyper-
parameters ℓ̄ and n̄ is still an open problem. In the following
examples, this selection was performed in a preprocessing
stage with a basic trial and error strategy.

A. AN INTEGRATED INDUCTOR
We consider a 2-port, 1.5 turns integrated inductor, parame-
terized by its side-length ϑ ∈ [1.02, 1.52] mm. The structure
is characterized in terms of its scattering parameters in the
bandwidth [0.1, 12] GHz. A total of m̄ = 11 parameter con-
figurations are available as training data from a field solver
sweep, with each dataset including k̄ = 477 logarithmically
distributed frequency samples.

This training data is used to generate a passive parame-
terized macromodel of dynamic order n̄ = 7, using degree
ℓ̄ = 2 polynomials to represent the dependence of the model
responses on the inductor side-length. With these settings, the
solution of the semi-definite program (40) required 0.22 s
on average for the 10 performed iterations. Figure 2 shows
the evolution of the convergence index (19) as the iteration
number increases.

At the last iteration µ = 7, we solve problem (61) for
different values of the degree elevation level e = 1, ..., 50,
in order to show the effect of the proposed conservativity
reduction. Fig. 3 reports the trend of the optimal cost func-
tion resulting from the solution of (61), as a function of e.
This figure confirms the effectiveness of degree elevation in
the reduction of the conservativity of passivity constraints,
since the residual norm of the cost function is reduced by
almost one order of magnitude. The corresponding CPU time
requirements are depicted in Fig. 4, as a function of the total
number of variables involved in the optimization, which in
turn depends on the degree elevation order e. For this small-
scale example, the computational time is modest even in the
case e = 50, which is associated to a total of 5847 unknowns.

Considering as an example the model obtained for e =
50, we verified a-posteriori the non-expansivity condition 3
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FIGURE 1: Graphical demonstration of the degree elevation effects. The red line represents the set F of the values attained by a
function defined according to (6) for d = 1, ℓ̄ = 4 and F ℓ ∈ R3; the purple volume is the convex hull of F ; the light blue polyhedra
are the convex hulls of the control points {F ℓ} for different levels of degree elevation. As the degree of the representation
increases, the polyhedron approaches the underlying set F , thus providing better and better outer approximations.

FIGURE 2: Integrated inductor. Normalized deviation of the
denominator coefficients estimates, as a function of the itera-
tion index µ.

of the model. Therefore, we computed the model singu-
lar values over a finely sampled frequency-parameter grid,
using 3000 log-spaced frequency values in the bandwidth
[0, 1011] Hz, and 3000 linearly spaced samples in the design
space. The maximum observed singular value resulted less
than one, with a passivity margin 1 − σmax = 3 × 10−10.
The quality of the resulting model (for the case e = 50) is
confirmed by comparing the model responses to the training
data in Fig. 5. Finally, Fig. 6 reports the relative error index
ϵ2,1 as a function of the degree elevation e. The figure
reports also the error that would be obtained by generating
a model without enforcing any passivity constraint. We see
that starting from e ≈ 6 the proposed approach is able to

FIGURE 3: Integrated inductor. Residual norm of the con-
strained numerator coefficients estimation problem, as a func-
tion of the degree elevation level e. The experimental results
are compared to a reference asymptotic 1/e trend, which is
expected based on the theory [36].

achieve a model accuracy that is not distinguishable from the
unconstrained case. We conclude that proposed framework is
able to guarantee uniform model passivity by construction,
with no accuracy degradation, and with limited overhead in
computing time, at least for this small-scale example.

B. MULTICONDUCTOR TRANSMISSION LINE WITH
VARIABLE COUPLING LENGTH
This second test case provides an academic example with a
distributed coupling parameter. We consider a multiconduc-
tor transmission line with two differential pairs, each made of
two equal parallel wires (radius of copper core rw = 0.5 mm

10 VOLUME 4, 2016
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FIGURE 4: Integrated inductor. Time required to solve prob-
lem (61) as a function of the number of decision variables; the
latter is directly proportional to the degree elevation e.

FIGURE 5: Integrated inductor. Comparison between param-
eterized model responses and training data for a degree ele-
vation level e = 50; all the m̄ = 11 parameter configurations
are shown.

FIGURE 6: Integrated inductor. Relative error ϵ2,1 for different
degree elevation levels e. The blue line reports the corre-
sponding error for a model generated without enforcing any
passivity constraint.

FIGURE 7: Coupled transmission line. Evolution of the con-
vergence index δµ through iterations.

and dielectric coating re = 0.8 mm). The two differential
pairs are placed next to each other, so that the wire centers
form a square with adjacent center-to-center distance equal to
1.61 mm . The total length of the interconnect is L = 10 cm,
but the coupling between the two pairs in the corresponding
per-unit-length matrices is considered only over a portion
of the length Lc = ϑ ∈ Θ = [20, 40] mm, which is
the independent parameter considered for this study. The
lines are considered as uncoupled for the remaining length
L − Lc. This example is selected to illustrate the shifting of
the resonances as ϑ changes, and the capability of the model
to track such resonances (the parameterized model poles)
thanks to the adopted model structure.

The design space is sampled with m̄ = 11 linearly spaced
values. For each parameter configuration a total of k̄ = 499
logarithmically spaced frequency samples of the 4 × 4 scat-
tering matrix are extracted in the bandwidth [0.01, 5] GHz.
These samples are used to generate a model of dynamic
order n̄ = 28, whereas numerator N(s,ϑ) and denominator
D(s,ϑ) are parameterized by Bernstein polynomials of order
4 and 2, respectively.

The convergence of the identification algorithm is demon-
strated in Fig. 7, where the value of δµ for µ ≥ 1 is
reported. For this example, we built 10 different models,
solving each time problem (61) with different levels of degree
elevation e = 1, 2, . . . , 10. Figure 8 reports the optimal cost
function value from the solution of problem (61) for different
degree elevation levels e. The average time required to solve
problem (40) is 0.72 s, while the time required to solve (61)
depends on the degree elevation level. The actual runtimes
for this test case are reported in Fig. 9.

Figure 10 reports the modeling results for e = 10 referred
to the element S(3, 4) of the scattering matrix, while Fig. 11
depicts the model relative error ϵ2,1 as a function of the
degree elevation e. These results confirm that also for this
case the error approaches the limit corresponding to the un-
constrained (hence not guaranteed passive) model, computed
using the same training dataset. A graphical representation of
the model parameterized poles trajectories is given in Fig 12,
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FIGURE 8: Coupled transmission line. Optimal values of the
cost function in (61) for various degree elevation levels.

FIGURE 9: Coupled transmission line. Time required to solve
problem (61) as a function of the number of decision variables
corresponding to the various degree elevation levels reported
in Fig. 8. The increase in the number of variables is mostly due
to the increased order of the instrumental polynomial matrix
P (ϑ).

FIGURE 10: Coupled transmission line. Fitting of the re-
sponses magnitude of the S(3, 4) transfer function element.

FIGURE 11: Coupled transmission line. The relative error
index ϵ2,1 for the passive models based on different degree
elevations, compared to the error of the model obtained
without enforcing any passivity constraint.

FIGURE 12: Parameterized poles trajectories of the coupled
transmission line model. Left panel: in-band poles. Right
panel: enlarged view on the low-frequency region.

computed over a very fine sweep of the free parameter ϑ ∈ Θ.
As expected, all the poles are stable with a negative real
part, uniformly in the parameter space. The presence of bi-
furcations further confirms the effectiveness of the proposed
approach in modeling non-smooth poles behaviors, thanks to
the implicit parameterization provided by the adopted model
structure.

C. A TWO-PARAMETER HIGH-SPEED PCB LINK
This test case considers a 2-parameter structure, namely a
high-speed stripline link running through two PCBs attached
by a connector and the corresponding via fields, first pre-
sented in [41]. The PCB substrate has permittivity ϵr = 3
and tanδ = 0.002. The vertical vias are parameterized by the
pad radius ϑ1 ∈ [100, 300] µm and the associated antipad
radius ϑ2 ∈ [400, 600] µm. See [41] for full details.

The scattering parameters of the structure are available
from a field solver (courtesy of Prof. Schuster, TUHH, Ger-
many) at k̄ = 250 frequency points linearly spaced in the
interval [0.02, 5] GHz, and over a 9 × 9 uniform grid in the
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FIGURE 13: High-speed link. Convergence of denominator
coefficients estimates through iterations.

FIGURE 14: High-speed link. Time required to enforce the
model passivity, as a function of the number of variables
required by different degree elevation levels.

parameter space. These data are used to generate a parame-
terized macromodel with n̄ = 25 poles and polynomial order
of numerator and denominator ℓ = (3, 2).

The convergence of the denominator coefficient estimation
is illustrated by plotting δµ in Fig. 13. With the considered
model structure, the time required to solve (40), averaged
over the 8 PSK iterations amounts to 1.5 s. For this example,
we considered a number of possible degree elevations levels
e ranging from 1 to 25. The time required to build each of the
25 models is depicted in Fig. 14. We observe that, although
the time requirements for this example are larger, the solver
scales favourably with the increase in the number of in-
strumental variables induced by the higher degree elevations
(almost linearly, at least up to 105 variables). The value of the
optimal cost function value of the semi-definite program (55)
for different values of e is reported in Fig. 15, and confirms
the same decreasing trend that has been observed in single-
parameter test cases.

For the case e = 25, a visual comparison between the
parameterized model frequency response and the reference
data is provided in Fig. 16, considering a subset of 14 random
parameter configurations out of the available 81. Also in this
case, the accuracy of the model is remarkable throughout

FIGURE 15: High-speed link. Cost function reduction for
increasing degree elevation during passivity enforcement.

FIGURE 16: High-speed link. Comparison of model re-
sponses (e = 25) with the corresponding raw data over a
random subset of 14 out of the total 81 available frequency
responses.

the considered frequency band, with no visual difference
between model and data on this scale. Finally, Fig. 17 reports
the relative error ϵ1,1 for different degree elevations. Also for
this case the error stabilizes to the same error of the uncon-
strained (non-passive) model; this occurs at about e = 15.

D. AN ACTIVE DEVICE
In this last example we generate a reduced-order small-signal
model of the Low Noise Amplifier (LNA) depicted in Fig. 18,
which includes both lumped elements and lossy transmission
lines. The circuit depends on d = 7 design parameters,
which are listed in Table 1. The device was first presented
in [42]; additionally, it was considered as a test-bench for the
generation of uniformly stable parameterized macromodels
in [24].

The purpose of this test case is two-fold. First, we show
that even in case of high-dimensional design spaces, the
generation of uniformly stable parameterized macromodels
can be efficiently tackled by solving problem (40). Second,
we show how the proposed approach is less conservative than
the current state-of-the-art method [24] providing a formal
guarantee of uniform stability given model structure (13). Of
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FIGURE 17: High-speed link. Evolution of the relative error
index ϵ1,1 for the passive models with different degree eleva-
tions, compared to the unconstrained model error.
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FIGURE 18: Schematic of a parameterized LNA.

course, uniform passivity is not applicable since this is an
active device.

We consider a fixed operating point VSUP = 4.5 V and
we construct a small-signal linearized model. A total of m̄ =
1400 parameter configurations are considered according to
a latin-hypercube distribution in the design space. For each
fixed configuration, the reflection coefficient at the amplifier
input port is sampled at k̄ = 701 logarithmically spaced
frequency points in the interval [1, 10] GHz. Only 595 param-
eter configurations are exploited to generate a parameterized
macromodel with n̄ = 10 and ℓ = (1, 1, 1, 1, 1, 1, 2), while
the remaining samples are left for model validation.

With this configuration, the modeling algorithm reaches
the stopping threshold δµ = 10−3 in only 3 iterations. The
average time to solve (40) is 6 s, and the relative error index
results ϵ = 1.42× 10−3, confirming that the model is highly
accurate also in correspondence of the validation samples. In
Fig. 19, we provide a visual comparison between the model
and the data, for 19 different randomly-selected validation
responses.

In order to show the low degree of conservativity of
the proposed stability constraints, we repeated the same
experiment performed in [24], where the uniform stability

FIGURE 19: LNA example. Comparison between model re-
sponses and validation data over 19 different frequency re-
sponses, randomly selected in the design space.

is enforced by imposing a sign inequality directly on the
denominator coefficients rn,ℓ during the model generation.
For this purpose, we considered the same LNA device and re-
stricted the dimension of the design space to d = 5, by taking
into account only the first five parameters listed in Table 1.
We built a model by setting n̄ = 16 and ℓ = (1, 1, 1, 1, 1), as
in the referenced article.

The stop criterion δµ = 10−3 was met after 4 iterations,
with an average computing time required to solve (40) equal
to 1.2 s. We computed the relative error index of the resulting
model, obtaining ϵ = 6.36 × 10−5; the same index for a
model based on [24] was ϵ = 1.94×10−2. Thus, the proposed
technique provides a decrease of the worst case relative
error of about 3 orders of magnitude, while guaranteeing the
uniform model stability by construction. This improvement
is attained in approximately the same runtime.

VIII. CONCLUSIONS
This work presented a passive macromodeling strategy that
can be successfully used to generate surrogates of small-
to-medium size passive multiport structures characterized
by a limited number of degrees of freedom. The approach
combines the desirable model compactness feature, typical
of approaches based on multivariate rational fitting, with the

TABLE 1: Free parameters considered for the modeling of the
LNA test case. First six parameters: parasitic inductances and
capacitances of the transistor. Parameter h is the substrate
thickness for lines TL1, TL2, TL3.

# Parameter ϑi ϑi,min ϑi,max

1 Lb (nH) 0.88 1.32
2 Lc (nH) 0.88 1.32
3 Le (nH) 0.20 0.30
4 Ccb (pF) 0.0016 0.0024
5 Cbe (pF) 0.064 0.096
6 Cce (pF) 0.064 0.096
7 h (mm) 0.45 0.55

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3147034, IEEE Access

Tommaso Bradde et al.: Data-driven extraction of uniformly stable and passive parameterized macromodels

theoretical warranty of uniform model passivity throughout
the design space. As a particular case, removing passivity
conditions enables parameterized (linearized small-signal)
macromodeling of active devices with uniform stability con-
straints.

The proposed stability and passivity constraints are conser-
vative since based on a discretization of continuous positive
and/or bounded realness conditions in a multidimensional
parameter space. However, the amount of the conservativity
in the stability and passivity constraints can be effectively
controlled in terms of the Bernstein polynomial degree el-
evation, which provides an algorithm control knob. There-
fore, the proposed method naturally allows users to select
the most appropriate trade-off between computational time
requirements for the model extraction and model accuracy.

Various numerical examples show that stability enforce-
ment is attained in seconds for typical small-medium scale
problems, whereas passivity enforcement requires a larger
runtime, which depends on the cumulative number of deci-
sion variables. The latter depends on the number of model
poles, the degree of polynomials providing model parameter-
ization, as well as the number of instrumental variables that
are required to cast the proposed constraints in a convex form.
Future research directions will be devoted to the reduction of
the computational burden required by the proposed strategy,
with the objective of handling larger and more complex
electrical, electronic or electromagnetic structures, and/or the
concurrent dependence on more free parameters.
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