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The kinetics of domain growth of fluid mixtures quenched from a disordered to a lamellar
phase has been studied in three dimensions. We use a numerical approach based on
the lattice Boltzmann method (LBM). A novel implementation for LBM which “fuses”
the collision and streaming steps is used in order to reduce memory and bandwidth
requirements. We find that extended defects between stacks of lamellae with different
orientation dominate the late time dynamics.
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1. Introduction

Hydrodynamics is an essential ingredient in the modelling of complex fluids. Many

relevant phenomena in soft matter physics depend on the interplay between the

mesoscopic structures in the fluid (interfaces, extended objects like polymers, col-

loidal particles, etc.) and the local velocity field.1
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For example, it is well known that the presence of the velocity field affects the

process of phase separation of fluid mixtures quenched below the critical point.

Different power-law regimes for the growth of the average size R(t) of the domains

of the separating phases are found for different ranges of viscosity. At high viscosity,

when diffusion is the physical mechanism operating in phase segregation, one has

R ∼ t1/3. At lower viscosities, the coupling between surface tension and the velocity

field becomes relevant and, depending on if inertial or viscous terms dominate in the

Navier–Stokes equation, one has R ∼ t2/3 or R ∼ t, respectively.2 Other examples

come from the study of rheological properties.1 For instance, in shear banding, two

phases, one of them metastable or not existing in equilibrium, coexist in a Couette

cell having different velocity profiles.3 This phenomenon can be described only if

the dynamics of the velocity field is taken into account.

The most appropriate approach for describing a given complex fluid system de-

pends on the time and the length scales under investigations. In the study of the

dynamics of mesoscopic structures and phase transitions, a microscopic approach

would become prohibitive from the computational point of view and coarse-grained

models are often more convenient. In this paper we study the ordering properties

of a fluid with lamellar configurations whose dynamics is described by a time de-

pendent convection-diffusion equation coupled to the Navier–Stokes equation. The

equilibrium properties of the lamellar phase are described by a free-energy model

particularly appropriate for di-block copolymers in the weak segregation limit.4

We use lattice Boltzmann method (LBM)5 to solve both the dynamical equa-

tions presenting a new implementation for LBM which “fuses” the collision and

streaming steps to reduce memory and bandwidth requirements. This is not the

only possibility when dealing with the numerical solution of a convection-diffusion

equation coupled with the Navier–Stokes equation. Indeed, several approaches have

been proposed. Finite difference (FD) schemes have been adopted, in the case of

thermal lattice Boltzmann models for a single fluid6 and for multiphase flows, to

solve the temperature equation.7 FD schemes have been used also to solve the dy-

namics of passive scalars by LBM for fluid flows.8 An updated discussion on this

specific issue can be found in Ref. 9. While, in general, FD schemes can reduce the

amount of required memory, in LBM boundary conditions are more easily imple-

mented and give better numerical stability. Moreover, LBM has a more detailed

microscopic description than a FD scheme because the LBM takes into considera-

tion the velocities of the particles.10 This aspect could be useful when dealing with

mixtures of two fluids with different viscosity and/or mass.

Unlike the case of simple binary mixtures, the problem of lamellar ordering is not

well understood and there are no quantitative results for the three-dimensional case.

Lamellar order is typical of systems with competing interactions.11,12 Examples

are di-block copolymer melts, where chains of type A and B, covalently bonded

end-to-end in pairs, segregate at low temperatures in regions separated by a stack

of lamellae,13 ternary mixtures where surfactant form interfaces between oil and

water,14 or smectic liquid crystals.15
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The ordering of lamellar systems is affected by the presence of defects on large

scales. Previous studies showed the relevance of hydrodynamics on this process for

two-dimensional systems.11,12,16,17 In particular it was found that characteristic

lengths evolve with a complex time dependence. A pre-asymptotic regime with a

growth consistent with a power-law behavior is followed later by slower logarithmic

growth.17 This behavior can be interpreted as due to the dynamics of grain bound-

ary defects between domains of differently oriented lamellae. We show in this paper

that extended defects also have a prominent role in the three-dimensional case.

The paper is organized as follows. Next section decribes the model and the

Lattice Boltzmann equation we used. In Sec. 3, the implementation of the algorithm

is briefly presented. Results for lamellar ordering are described in Sec. 4.

2. The Model

The time evolution of our system is described by two phenomenological equations.18

The convection-diffusion equation for the order parameter ϕ, which represents the

concentration difference between the two components of the mixture, is

∂tϕ + ∇ · (ϕv) = ΓΘ∇2µ , (1)

where µ is the chemical potential difference between the two components, ΓΘ is

a mobility coefficient and v is the local fluid velocity. It obeys the Navier–Stokes

equation which, in the incompressibility limit ∇ · v = 0, reads as

∂tvα + v · ∇vα = − 1

n
∂βP th

αβ + ν∇2vα (2)

where n is the total density, ν is the kinematic viscosity, and P th
αβ is the thermo-

dynamic pressure tensor. The pressure tensor and the chemical potential difference

can be calculated from an appropriate free-energy functional by using the formulae

P th
αβ = {nδF/δn + ϕδF/δϕ − f(n, ϕ)}δαβ + Dαβ and µ = δF/δϕ, where f(n, ϕ)

is the free-energy density and a symmetric tensor Dαβ has to be added to ensure

that the condition of mechanical equilibrium ∂αP th
αβ = 0 is satisfied.19 Their full

expressions can be found in Ref. 12.

We use a lattice Boltzmann scheme based on the D3Q15 lattice,20 where D3

denotes the number of spatial dimensions and Q15 the number of lattice speeds, to

solve the Navier–Stokes equation. A set of two distribution functions fi(r, t) and

gi(r, t) is defined on each lattice site r at each time t. Each of them is associated

with a velocity vector ei. We will denote by the index I , the 6 velocity vectors ei

having modulus |eI
i | = ∆x/∆t = c and by the index II , the 8 velocity vectors ei

having modulus |eII
i | =

√
3c, with ∆x being the lattice step and ∆t the time step.

The function f0(r, t), corresponding to the distribution component that does not

propagate (e0 = 0), is also taken into account. They evolve according to a single

relaxation-time Boltzmann equation21:

fi(r + ei∆t, t + ∆t) − fi(r, t) = − 1

τf
[fi(r, t) − f eq

i (r, t)] , i = 0, 1, . . . , 14 (3)
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where τf is a relaxation parameter and f eq
i (r, t) are local equilibrium distribu-

tion functions. A similar equation holds for gi(r, t). The distribution functions

fi are related to the total density n and to the fluid momentum nv through

n =
∑14

i=0 fi and nv =
∑14

i=0 fiei. These quantities are locally conserved in any

collision process and, therefore, we require that the local equilibrium distribution

functions fulfil the equations
∑14

i=0 f eq
i = n and

∑14

i=0 f eq
i ei = nv, and the further

constraint
∑14

i=0 f eq
i eαeβ = c2Pαβ + nvαvβ . The distribution functions gi are re-

lated to the order parameter ϕ and the fluid velocity through ϕ =
∑14

i=0 gi and

ϕv =
∑14

i=0 giei. The order parameter ϕ is locally conserved in any collision pro-

cess and, therefore, we require that the local equilibrium distribution functions

fulfil the equation
∑14

i=0 geq
i = ϕ and the further constraints

∑14

i=0 geq
i ei = ϕv and

∑14

i=0 geq
i eαeβ = c2Γµδαβ + ϕvαvβ .22,23

The local equilibrium distribution functions can be expressed as an expansion

at the second order in the velocity v20:

f eq
0 = A0 + C0v

2 ,

f eq
i = AI + BIvαeiα + CIv

2 + DIvαvβeiαeiβ + GI,αβeiαeiβ , i = 1, . . . , 6 ,

f eq
i = AII + BIIvαeiα + CIIv

2 + DIIvαvβeiαeiβ + GII,αβeiαeiβ , i = 7, . . . , 14

(4)

and similarly for the geq
i , i = 0, . . . , 14. The constraints on the equilibrium distri-

bution functions can be used to fix the coefficients of these expansions. A suitable

choice of the coefficients in the expansions (4) is

A0 = n − 56AII , AI = 8AII , AII =
Pαβδαβ

72
, (5)

BI = 8BII , BII =
n

24c2
, (6)

C0 = − n

3c2
, CI = 8CII , CII = − n

48c2
, (7)

DI = 8DII , DII =
n

16c4
, (8)

GI,αβ = 8GII,αβ , GII,αβ =
Pαβ − 1

3
Pσσδαβ

16c2
. (9)

The expansion coefficients for the geq
i can be obtained from the previous ones with

the formal substitutions n → ϕ and Pαβ → Γµδαβ . By using a multi-scale expan-

sion, it can be shown that the above described lattice Boltzmann scheme simulates

at second order the continuity in ∆t, the quasi-incompressible Navier–Stokes with

the kinematic viscosity ν given by ν = (c2/3)∆t(τf − 1/2), and the convection-

diffusion equation with Θ = c2∆t(τg − 1/2).

The free energy considered in this work is

F =

∫

dr

[

1

3
n lnn +

a

2
ϕ2 +

b

4
ϕ4 +

κ

2
(∇ϕ)2 +

d

2
(∇2ϕ)2

]

. (10)
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The term in n gives rise to a positive background pressure and does not affect the

phase behavior. The terms in ϕ correspond to the Brazovskii free energy.24 We take

b, d > 0 to ensure stability. For a > 0 the fluid is disordered; for a < 0 it adopts an

ordered state whose nature depends on the value of κ. Indeed, for positive values

of κ the two homogeneous phases with ϕ = ±
√

−a/b coexist, while for κ < 0 there

is a transition, when b = −a, where a ≈ −1.11κ2/d, into a lamellar state with

characteristic wave-vector q =
√

−κ/2d.17

3. The “Fused” LBM Implementation

Large scale 3D simulations, usually needed in phase ordering studies, demand signif-

icant computational requirements. Customary LBM implementations are subjected

to a trade-off between the memory occupation and the amount of memory accesses

needed.

The use of two complete lattice representation allow for an evolution step to be

performed in a single pass, reading populations from one lattice, computing the post

collisional values, and writing them in the proper places in the other lattice copy.

Computational efficiency comes at the price of doubling the amount of memory

needed for the simulation.

A compact storage implementation, using a single lattice copy, is possible, but

data dependencies arise, which have to be removed by splitting the LBM evolu-

tion into two steps: local collisions are computed first, storing the post collisional

values in the same lattice site, then streaming is performed by explicit memory-

to-memory copies. This approach doubles the number of memory load and stores,

thus lowering the overall computational efficiency. Moreover, parallel scalability on

shared memory multiprocessor systems is significantly hampered, as the memory

subsystem has double the amount of work to perform.

For the simulation described in this paper, a D3Q15, up to 5123, lattice was used.

Both approaches impose serious limits, on the maximum system size and on the

feasible time scales respectively. We thus resorted to a newer approach,25,26 in which

an LBM evolution step is performed in a single pass and only one lattice copy is

present in memory. This is made possible by using a Lagrangian approach, in which

populations are held in fixed memory locations, and movements are represented by

cyclical changes, at each time step, between the corresponding physical coordinates

and memory location indexes (see Ref. 27 for a detailed description).

This “fused” approach increases serial performances by 20% with respect to the

compact storage approach, while preserving its main benefit (a 5123 simulation re-

quiring approximately 35 GB). The parallel speedup on a IBM Power 4 system at 24

on 32 CPUs (the compact storage implementation speedup being 17 on 32 CPUs).

4. Numerical Results

The numerical results presented here were obtained from N = 512 lattice sites

per spatial direction and periodic boundary conditions. The following parameters
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were used: a = −b = −0.026, κ = −0.005, d = 0.0025, Γ = 0.25, τf = 0.8, τg = 1,

∆x = 1, and ∆t = 1. The choice |a| = b is such that the minimum of the polynomial

terms in the free energy (10) is in ϕ = ±1. For the selected parameters, the lamellar

is the equilibrium state. The characteristic wave-length, corresponding to the width

of two adjacent lamellae of different composition, is λ = 2π/q = 2π in units of lattice

spacings. The kinematic viscosity is ν = 0.1 and corresponds to a value for which

hydrodynamic transport is relevant as pointed out in previous study of lamellar

ordering in two dimensions.17 The system was initialized in a disordered state with

ϕ = ε where ε is a random number uniformly distributed in the range [−0.1, 0.1].

After the sudden initial quench, the free energy drives the system into its local

equilibrium configuration. At high viscosities the system remains frozen in configu-

rations similar to that at time t = 100 000 of Fig. 1. At sufficiently low viscosities,

like the one considered here, the velocity field becomes effective and induces the

merging of lamellae. Local defects, like channels connecting lamellae of some phase,

or one-dimensional defects like disclinations or seams, are progressively eliminated.

Order is then reached on larger scales as it can be seen at time t = 600 000 in

Fig. 1. However, extended two-dimensional defects are difficult to eliminate and

are observed at the latest stages of the simulations. These defects correspond to

parallel stacks of lamellae perpendicularly oriented with respect to each other. One-

dimensional versions of these grain boundaries were also observed to dominate the

late time evolution in previous studies of 2D lamellar ordering.17 This is visible in

Fig. 2, where a typical pattern is presented for the two-dimensional case for a long

time.

A quantitative description of the ordering process comes from the analysis of the

structure factor C(k, t) = 〈ϕ(k, t)ϕ(−k, t)〉, where ϕ(k, t) is the Fourier transform

of the order parameter ϕ. After the spherical average, we plotted C(k, t) at different

times. In the early regime, with t ' 30 000, C(k, t) develops a maximum at a mo-

mentum kM which decreases with time until the equilibrium value q is reached at

t ' 200 000. Then the peak CM (t) = C(q, t), remaining at q, grows while the width

decreases indicating an increase of order in the system. A characteristic length L

t = 100 000 t = 600 000 t = 1 000 000

Fig. 1. Configurations of the order parameter ϕ at different times on a portion 1283 of the whole
5123 lattice.
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Fig. 2. Configuration of the order parameter ϕ in the two dimensional case at long times on a
10242 lattice. The black square highlights the presence of grain boundaries. The following param-
eters were used: a = −b = −0.0002, κ = −0.0006, d = 0.00076, ΓΘ = 25, τf = 0.505, ∆x = 1, and
∆t = 0.2.

for this process can be extracted from the structure factor in the usual way by

measuring the full width δk of C(k, t) at half maximum and defining L(t) = 2π/δk.

The results for the time behavior of CM (t) and L(t) in the case of the 5123 lattice

are displayed in Fig. 3. What we found is that after the initial formation of lamel-

lae, the system increases its order as the growth of CM and L in the time range

[200000, 600000] supports. However, this interval is too short to obtain a quanti-

tative behavior for CM and L. After t ∼ 600 000, in relation to a sudden decrease

observed in L and CM , the further evolution of the system proceeds through dis-

tortion of the grain boundaries existing at that time. Different domains, trying to

increase their size, push themselves reciprocally, helped by the velocity field. This

can be seen in Fig. 4 where the velocity map at time t = 925 000 is presented for

a 60 × 60 section of the system on the y − x plane. It is evident that defects tend

to move towards each other, helped by the hydrodynamic flow. For example, it

appears that the horizontal lamella in the bottom right part of the figure is driven

towards the vertical lamellae in the left which are moving downwards. This gives an

unexpected delayed increase of curvature, also observed in D = 2, as it can be seen

in the configuration at t = 1 000 000 in Fig. 1 where lamellae are almost completely

entangled. On lattices of size N ≤ 64, complete order was almost reached.
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Fig. 3. Time behavior of characteristic size L (•) and peak height CM (◦).

Fig. 4. Velocity field on the y − z plane of a 60 × 60 section of the system at time t = 925 000.
Domains of different composition are in different tones of black and arrows are the projection of
the velocity vectors v on the image plane.
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The role of hydrodynamics is important in this process: the system can reach a

higher degree of order only by developing a strong velocity field which bends the

existing flat grain boundaries. This picture is confirmed by the increase of the kinetic

energy per site, Ekin(t) = 1/2N3
∑

r
n(r, t)v2(r, t), which is observed at t ∼ 600 000

in Fig. 5. After the formation of the lamellae, Ekin decreases from t ∼ 100 000 to

t ∼ 600 000 and this corresponds to the time interval where the order increases

in the system (see Fig. 3). From the picture, it is evident that Ekin continues to

increase up to the longest simulated time t = 1 000 000. The computational cost

to further continue such a run is too demanding, so we considered a run with

the same set of parameters on a smaller lattice (N = 128) that we could follow

up to t = 10 000 000. The plot of the kinetic energy density is in the inset of

Fig. 5. It is remarkable that the time behavior until t ∼ 1 000 000 is qualitatively

and quantitatively similar to the one in the case with N = 512. This seems to

indicate that ordering in three dimensions at long times is not so greatly affected

by the size of the system, at least up to N = 512 since the evolution of Ekin is

similar. This could be due to defects that are not removed. Indeed, as we have

already said, the system orders only on lattices with N ≤ 64. At larger time, Ekin

oscillates around a constant value suggesting that the system is not able to find a

more ordered configuration which dumps velocities, but stays oscillating between
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Fig. 5. Time behavior of the kinetic energy Ekin for the 5123 lattice. In the inset Ekin is plotted
in the case of the 1283 lattice.
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Fig. 6. Time behavior of the free energy per site F/N3 for the 5123 lattice. In the inset, F/N3

is plotted in the case of the 1283 lattice.

metastable states trying to eventually increase its order. We are not able to access

numerically such long time limit. For the sake of completeness, we report also the

time behavior of the free energy (10) per site which is plotted in Fig. 6. It appears

that F/N3 for both the lattice sizes (N = 128 and N = 512) has the same trend

as the kinetic energy. It diminishes in same time interval where Ekin decreases since

the system is approaching a more stable configuration, at t ∼ 600 000 it increases

and then continues oscillating. In the quenching of dissipative systems, as in our

case, the sum of the kinetic energy and of the free energy is expected to diminish as

the equilibrium is approached. Indeed, this is what we see until t ∼ 600 000, then

the interplay between defects and hydrodynamics produces the observed oscillating

behavior.

5. Conclusions

We have implemented a 3D version of the lattice Boltzmann method where the

collision and streaming steps are fused in a new implementation of the algorithm

with the benefits of saving memory and bandwidth requirements. We have applied

this LBM to study lamellar ordering. Our results show that at low viscosity, order

is reached on large scales but extended defects are found to dominate the late time

dynamics. Indeed, no complete order can be observed even at very long times on
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large systems as a consequence of the difficulty of removing defects in three spatial

dimensions.
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