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ABSTRACT
The study of the influence of Parkinson’s Disease (PD) on vocal signals has received much attention over the
last decades. Increasing interest has been devoted to articulation and acoustic characterization of different
phonemes.
Method: In this study we propose the analysis of the Transition Regions (TR) of specific phonetic groups
to model the loss of motor control and the difficulty to start/stop movements, typical of PD patients. For
this purpose, we extracted 60 features from pre-processed vocal signals and used them as input to several
machine learning models. We employed two data sets, containing samples from Italian native speakers, for
training and testing. The first dataset - 28 PD patients and 22 Healthy Control (HC) - included recordings
in optimal conditions, while in the second one - 26 PD patients and 18 HC- signals were collected at home,
using non-professional microphones.
Results: We optimized two support vector machine models for the application in controlled noise con-
ditions and home environments, achieving 98% ± 1.1 and 88% ± 2.8 accuracy in 10-fold cross-validation,
respectively.
Conclusion: This study confirms the high capability of the TRs to discriminate between PD patients and
healthy controls, and the feasibility of automatic PD assessment using voice recordings. Moreover, the
promising performance of the implemented model discloses the option of voice processing using low-cost
devices and domestic recordings, possibly self-managed by the patients themselves.

INDEX TERMS Italian native speakers, Parkinson’s disease, Support Vector Machine, Tele-health,
unvoiced consonants, voice analysis, classification, Machine Learning.

I. INTRODUCTION
Parkinson’s Disease (PD) is a chronic and progressive dis-
order affecting 1% of the over 60 population worldwide,
and it is expected to interests more than 9 million people
in industrialized nations by 2030 [1]. This neurodegenerative
condition alters the functions of the basal ganglia, and leads
to a progressive loss of dopaminergic neurons, especially
in the substantia nigra of the midbrain [2]. Patients with
Parkinson’s Disease (PDP)s manifest a broad spectrum of
clinical symptoms, including bradykinesia, rigidity, tremor at
rest, postural instability, sleep disorders, and speech impedi-
ment [3], [4]. This latter is receiving an increasing attention
in the scientific community, due to the enormous amount
of clinical information embedded in the vocal signal, de-

spite the simple data collection modality. Indeed, the speech
production is accomplished through synergistic articulating
movements that shape the excitation source to convey the
final sound [5]. The excitation source is the fundamental
element of vocal production, and can be voiced, unvoiced, or
a mixture of both [5]. In the first case, the sound is produced
by forcing air through the vocal folds, which vibrate and
generate a quasi-periodic signal. In the second case, there
is no constriction of the vocal folds, and the airflow arrives
unaltered to the articulating elements, where the final sound
is created by forcing air through teeth, lips, and tongue [6].
During the speech production, the speaker merges these
sounds to form phonemes, words, and phrases through a
continuous alternation of voiced and unvoiced traits. This
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complex process, besides achieving the main objective of
transmitting information, incorporates a large amount of data
of clinical interest. These data can be extracted and input to
Machine Learning (ML) algorithms, implementing a useful
tool to support the clinical practice.

Although speech analysis finds applications in any pathol-
ogy that directly or indirectly affects the vocal apparatus, it
is particularly effective in PD, as almost 90% of the affected
population manifest alterations in speech production [7], [8].
Moreover, PD is known to have a prodromal phase during
which neuro-degeneration is already underway, but cardinal
symptoms have not manifested yet [9]. Speech impairment
is known to occur up to 10 years earlier than cardinal mani-
festations, thus it can contribute to the early diagnosis of the
disease [9], [10]. Speech impediments in PDPs are usually
gathered under the general term of hypokinetic dysarthria
and affect in different ways the three dimensions of speech
(i.e. phonation, articulation, and prosody) [11]. Most of the
research community tends to focus on phonation to assess the
patient’s ability to force air from the lungs to the vocal folds
and make them vibrate to produce sounds [2]. However, it is
well known that sustained vowels are an over-simplistic task,
which does not include fluctuations in vocal characteristics
such as voice onset, terminations, and breaks [12]. This over-
simplification is directly linked to a reduced discriminatory
capability: according to the comparison between phonatory
and articulation approaches described in [12], the use of
articulation features together with ML techniques maximizes
the performance of PD automatic detection models, with
accuracy ranging from 80% to 95%.

Besides phonation and articulation, impairments in the
prosody of PDPs have been observed as well. Prosody studies
mainly focus on speech rate, pause, intonation, and general
communication skills of people [2]. As a result, the vocal
signal analysis is performed at high level and the extracted
parameters can be influenced by the data collection modality.
Indeed, it is well known that anxiety and state of alert
influence PD symptoms [13]. Hence, recordings performed
in a controlled environment may not yield a realistic rep-
resentation of the actual vocal alterations of the patient,
as experienced in daily life. On the other hand, a detailed
articulation analysis can investigate more specific aspects,
less prone to variations due to the patient’s emotional state. In
more detail, features can be extracted from different types of
sound regions and can be related to the speed or acceleration
of articulation elements [12]. TRs between segments can be
employed to describe the patient’s ability to initiate and stop
movements; the impaired articulation of different phonemes
can be measured to investigate how the disease affects the
regions of the phonation apparatus.

However, the aspects that contribute to the strong discrimi-
natory potential of articulation analysis also lead to high com-
plexity. While the analysis of consonants contains more in-
formation than vowels, the pronunciation of such phonemes
varies depending on the language being considered [12],
[14]. In addition, a detailed analysis of phonemes requires

the use of more precise measurements than a prosody study.
Moreover, although recent works [12], [15] investigated the
importance of the distinct phonemic groups for the auto-
matic identification of PD, a specific set of phonemes that is
language-independent and has a proven high correlation with
the disease is not available yet.

The physiological motivation behind the TRs analysis is
the effect of the lack of coordination, typical of PDPs, in the
use of the source glottal [16], [17]. Indeed, the direct visual-
ization of the vocal fold vibration by video laryngoscopy [11]
revealed incomplete glottis closure due to impaired vocal
fold abduction and bowing. Additionally, asymmetry in vocal
fold closure and arytenoid cartilage position and movement
have also been described. The motor impairment deriving
from this alteration can manifest in various manners. An
example is the phenomenon of voicing leakage [17]: after
the production of a voiced sound, PDPs face difficulties in
interrupting the vocal fold movement; thereafter a partial
vibration is perceived in lieu of the regular phonation inter-
ruption. Another consequence is the spirantization, a speech
impediment that occurs when, due to incomplete closure of
the vocal folds, air escapes during what should be a silent
interval [18], implying a perceivable distortion of unvoiced
consonants. For example, a /t/ spirantized by PDPs may
sound more like /s/ [18]. Thereafter, in this work we aim to
assess the effectiveness of an acoustic analysis based on the
study of TRs between unvoiced consonants and the adjacent
voiced segments, to investigate which phonemes of the Ital-
ian language are mostly affected by hypokinetic dysarthria,
and which features are most suitable for characterizing them
employing both optimal and sub-optimal recordings.

From an engineering perspective, we believe that the de-
tailed analysis of these alterations can help differentiating
PDPs and HCs. Moreover, the investigation of the phonetic
mis-articulation can provide enormous support to speech
therapists during the development of a rehabilitation therapy
tailored for a single patient, as well as during the follow-up
stage.

The remainder of this paper is organized as follows.
In section II we review automatic methodologies for PDPs
speech analysis. In section III we address the employed data
sets as well as the feature extraction and selection methods,
and the classification model. In section IV we describe the
classification performance and the analysis of our findings.
Finally, in section V we draw conclusions and propose future
improvements for the present model.

II. RELATED WORK
The automatic identification of PD through the analysis of
vocal recordings has gained increasing attention over the last
decades. Interest has been recently devoted to the articula-
tion approach and the acoustic characterization of different
phonemes. In this context, [19] investigated the properties
of fricatives produced by PDPs, as these consonants are
commonly mispronounced in dysarthric patients [20]. The
authors analyzed a corpus including 10 PDPs and 9 HCs
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repeating two English words (sigh and shy) ten times. The
acoustic measures included duration, intensity, and four spec-
tral moments. In fact, PDPs’ speech is characterized by
reduced segments length, and this is particularly evident in
consonants. Intensity measures the difference between the
fricative and the following segment, hence the ability of
the patient to perform a complex sequencing of movements.
Finally, spectral moments evaluate the co-articulation, hence
the coordination between successive gestures. Despite the
absence of a classification step, statistical analysis denoted
the high potential of the features extracted. However, due
to the reduced size of the dataset, the results can only be
considered preliminary.

The relevance of nasal consonants in the automatic identi-
fication of PDPs was investigated in [21]. In this work, the
authors explored the reliability of features extracted from
the sustained voiced consonant /m/ of 40 Australian native
English speakers (18 PDPs and 22 HCs). The parameters
were fed into a Support Vector Machine (SVM) classifier
with Radial Basis Function (RBF) to differentiate PDPs and
HCs, achieving 93% classification accuracy in the Leave One
Out (LOO) Cross Validation (CV). Moreover, the Spearman
correlation analysis showed that the features extracted were
highly correlated to the Movement Disorder Society revised
version of the Unified Parkinson’s disease rating scale motor
score (MDS-UPDRS-III). However, the performance of the
algorithm is referred only to the LOO-CV, with no mention
of accuracy achievable on new, previously unseen samples.

The possibility of employing specific phonemes in the
early identification of PD has been investigated in [22],
whose authors developed a diadochokinesis-based system
considering articulation features of occlusive consonants.
They extracted temporal and spectral parameters from the
Voice Onset Time (VOT) segments of the /ka/, /ta/, /pa/
syllables, using a dataset composed of 27 Spanish PDPs and
27 age-matched Spanish HCs. The occlusive consonant /k/
exhibited the highest discrimination capability, reaching a
classification accuracy of 94.4% in the case of LOO-CV and
92.2% using 10-fold CV. Also in this work, no experiment
has been performed on an independent test set.

More recently, [17] analyzed the importance of distinct
phonemic groups to discriminate PDPs from HCs. Starting
from the assumption that different acoustic segments have
different relevance, the authors proposed a method based
on Perceptual Linear Prediction (PLP) features and Gaus-
sian Mixture Models (GMM)-Universal Background Models
(UBM) classifiers to investigate the importance of different
phonemes. To this end, 5 corpora including Spanish and
Czech native speakers were employed. The cross validation
results reached an accuracy ranging from 85% to 94%(11-
fold CV), while cross-corpora trials yielded an accuracy
between 75% and 82%. The post-hoc analysis of the results
suggested that occlusives, vowels, and fricatives are the
most relevant acoustic segments in the considered languages.
However, as also stated by the authors themselves, the Czech
dataset is made up only of male speakers and PDPs are in

an early stage of the disease, which prevents from consid-
ering the cross-language results exhaustive. In a subsequent
work [1], the authors introduced for the first time the analysis
of transition between specific phonemes and evaluated their
influence in the detection of PD. In this experiment, they de-
veloped a model employing GMM-UBM classifiers and PLP
as features extracted from relevant articulation moments,
such as bursts, transitions between vowel and consonants, or
the beginning and end of the glottal activity. The achieved
accuracy in the Czech dataset was 94±1%, while the best
cross-corpora accuracy was 82 ± 13%. In both cases, the
speech task was the Diadochokinetic (DDK) task. Also, the
analysis demonstrated the influence of the language on the
models performance.

In this context, the first objective of this work is to as-
sess the effectiveness of an acoustic analysis based on the
study of TRs between unvoiced consonants and the adjacent
voiced segments. The second objective is to investigate which
phonemes of the Italian language are mostly affected by
hypokinetic dysarthria and which features are the most suit-
able for characterizing them. This task will convey valuable
information about phonetic groups with the highest discrim-
inating capability. This could enhance the identification of a
reduced phonetically balanced speech task that can minimize
the effort required to the patients, and the extension of the set
of features used for the description of TR proposed in [1].

Finally, the study aims to assess whether it is possible
to rely on recordings made independently by PDPs in their
home environment without supervision, and whether it is
possible to extract information from such recordings. We
believe that the development of a system that requires a min-
imum effort to the patient, easy to use, and low cost can help
in the patient’s follow-up at home and can be employed by
neurologists to monitor the progression of the disease. Such a
system may support the clinical practice in patients’ follow-
up, while minimizing the bias in voice analysis due to the
non-comfortable setting (e.g. hospital environment).

III. MATERIALS AND METHODS
In this section, we describe the employed datasets as well as
the algorithms implemented for PDPs’ voice classification.

First of all, we want to identify the most suitable fea-
tures to analyze TRs between unvoiced consonants and the
adjacent voiced segments in the Italian language, and test
whether different phonemes requires different features to be
effectively characterized (section I). To this end, after per-
forming a robust pre-processing, described in section III-B,
we devoted much effort to feature extraction and selection, in
order to identify a compact set of features able to quantify the
phonetic mis-articulation. As an example of the abnormali-
ties investigated in this study, in Fig. 1 we present the vocal
signal, its spectrogram obtained employing the Praat default
parameters, and the phonetic transcription of the Italian word
sciare pronounced by a PDP and an age-matched HC. It
can be appreciated that the spectrogram region related to the
Italian unvoiced phoneme /S/ is clearly altered in the PDP
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(a) HC, gender:female, age:68

(b) PD, gender:female, age:67

FIGURE 1: Vocal signal, spectrogram and phonetic tran-
scription of the Italian word sciare pronounced by a PD
patient and an age-matched HC

case.
Figure 2 depicts a simple flowchart to provide a general

overview of the workflow.

A. DATASET DESCRIPTION
1) Main database
The main database employed for this study is a public
corpus [23] made up of 65 Italian native speakers, includ-
ing 15 young HCs (age 20.8 ± 2.65), 22 elderly HCs (age
67.09 ± 5.16) and 28 PDPs (age 67.21 ± 8.73). None of the
HC reported speech or language disorders, and all PDPs
received their usual anti-parkinsonian treatment. The Hoehn
and Yahr (H&Y) was < 4, except for three patients (one
classified as stage 5 and two as stage 4). All the recordings
were performed with professional microphones in a quiet
echo-free room. The participants were asked to execute a
set of tasks, including reading of a phonetically balanced
text, execution of the syllables /pa/ and /ta/, phonation of the
vowels /a/, /e/, /i/, /o/, /u/, reading of a list of phonetically
balanced words, and finally reading of a list of phonetically

balanced sentences.
For this specific application, we employed a subset of this

dataset composed of the entire PD population and the 22
age-matched elderly controls. The task considered for the
model development was the reading of the list of sentences,
whose transcription and translation into the English language
is reported in Table 1

2) Additional dataset
Data from the first dataset was recorded in optimal conditions
and this can be hardly reproduced in real-world scenarios.
Thus, we collected a second database registered under sub-
optimal conditions.

We recorded data from 44 volunteers (26 PDPs, age
71.7 ± 7.39 and 18 HCs, age 65.5 ± 8.42) enrolled at A.O.U.
Città della Salute e della Scienza di Torino, Associazione
Amici Parkinsoniani Piemonte Onlus and Imperia Hospital.
The inclusion criteria were: a clinical diagnosis of idiopathic
PD with vocal signs and symptoms; no major cognitive
impairment or other conditions preventing the patient from
correctly accomplishing the task.

The collection of this database was performed through a
web application that guided the users through the execution
of the same tasks encompassed in the main dataset.

The data collection has been conducted in accordance
with the Declaration of Helsinki and approved by the Ethics
Committee of the A.O.U Città della Salute e della Scienza di
Torino (approval number 00384/2020). Participants received
detailed information on the study purposes and execution,
and informed consent for observational study was obtained.
Demographic and clinical data were noted anonymously.

B. PRE-PROCESSING
This section describes the pre-processing steps carried out to
ease the extraction of specific information from vocal signals.
The entire analysis was performed through the software Praat
and applied to each sentence listed in Table 1.

The recordings in the employed dataset were characterized
by various sampling rates; hence, they were firstly down-
sampled to 16 kHz to maintain similar spectral conditions.
Thereafter, a de-noising filter with Praat default hyperparam-
eters was applied to each signal, and their amplitude was nor-
malized in the range [0, 1] to prevent the speaker-microphone
distance from affecting the model. It is worth noticing that the
visual and acoustic signal examination indicated the absence
either of initial or final silence regions, hence no further
preparatory steps were required.

Then, we employed the Praat software to detect voiced
regions’ start and end-point, manually labelling each seg-
ment with the corresponding transcription. To perform the
analysis of the TRs between unvoiced consonants and the
adjacent voiced segments, we manually detected the regions
corresponding to the transition between unvoiced consonants
and a voiced segment. The use of an automatic segmentation
system would have introduced a bias in the results. In fact,
tools for automatic segmentation are characterized by an
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FIGURE 2: Work flow scheme

TABLE 1: List of phonemically balanced phrases employed in the present study. The original Italian sentence and the
corresponding translation into the English language is reported.
.

Phrase ID Phrase - Italian Phrase - English translation
0 Oggi è una bella giornata per sciare Today is a beautiful day for skiing.
1 Voglio una maglia di lana color ocra. I want an ocher wool sweater.
2 Il motociclista attraversò una strada stretta di montagna. The biker crossed a narrow mountain road.
3 Patrizia ha pranzato a casa di Fabio. Patrizia had lunch at Fabio’s house
4 Questo è il tuo cappello? Is this your hat?
5 Dopo vieni a casa? Will you come home later ?
6 La televisione funziona? Does the television work?
7 Non posso aiutarti? Can’t I help you?
8 Marco non è partito Marco did not leave.
9 Il medico non è impegnato. The doctor is not busy.

intrinsic error, which becomes even more evident in the case
of PDPs, whose speech is affected by several alterations.
Hence, we automatically identified 160 ms long windows
centred on the edge of each chunk. According to [24], such
window size allows to perform an in-depth analysis of the
transient regions.

C. FEATURE EXTRACTION

In accordance to the main objectives of this work (section I),
the feature extraction procedure aims to identify a set of
features able to embody the vocal alterations characterizing
PDPs through the analysis of the transition from unvoiced
consonants to the contiguous voiced region. More in detail,
we extracted a set of parameters encompassing features
previously involved in phonetic analysis as well as novel
parameters which have the potential to describe the alteration
in the TR. Table 2 presents an overview of the features used
for the analysis. In the following, we provide a detailed
description of the features employed.

Relative Spectral - Perceptual Linear Prediction (RASTA-
PLP) coefficients have been widely applied in the phonemic
analysis due to their ability to provide information about
acceleration and velocity of the articulators during speech

production [1]. In this work, after the pre-processing steps,
we divided each TR into 15ms with 50% overlap frame
length [17]. Then we evaluated 13 RASTA-PLP coefficients
for each frame together with their first and second deriva-
tive [25], grouped them into one feature vector, and calcu-
lated four statistics of these vectors (i.e. mean value, standard
deviation, kurtosis, and skewness).

As for the spectral moments, they have been employed
in several studies for the characterization of dysarthric
speech [19], [20]. We employed four spectral moments:
mean spectral peak, which measures whether most energy is
concentrated in a small band or dispersed over a wider range;
spectral standard deviation, which is a measure of devia-
tion of the spectrum frequencies from the centre of gravity;
spectral skewness, which measures the shape of the spectrum
below the mean peak compared to the frequencies above it;
spectral kurtosis, which describes the weakness of the energy
distribution, with positive and negative values suggesting
well defined spectral peaks and a flat distribution [20].

To further characterize the spectral differences in the TR,
we introduced a novel parameter: the Energy Transition
Slope (ETS). Based on the assumption that PDPs hardly
perform rapid movements, we expect the energy contour in

VOLUME 4, 2021 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3135626, IEEE Access

Amato et al.: Speech impairment in Parkinson’s disease: acoustic analysis of unvoiced consonants in Italian native speakers

the unvoiced/voiced switch to exhibit a more flattened curve
with respect to HCs. Hence, we evaluated the energy contour
in the TR through a first-order polynomial and employed the
slope of the obtained curve to embody this alteration.

Mel Frequency Cepstral Coefficients (MFCC)s mimic the
efficient filtering capability of the human ear and have been
widely applied to speaker identification and biomedical voice
assessments [8], [26]. Although they do not admit a clear
physical interpretation, they can detect subtle changes in the
motion of the articulators (tongue, lips) [26] and can provide
pivotal information on the impairment in the TR. As for
the RASTA-PLP coefficients, after the pre-processing steps,
we divided each TR into 15ms with 50% overlap length
frame length; hence we evaluated 13 MFCCs for each frame
together with their first and second derivative [22], [25],
grouped them into one feature vector, and calculated four
statistics for each array.

Moreover, to further describe abnormalities in the un-
voiced/voiced switch, we introduced the Detrended fluctu-
ation analysis (DFA), which is usually employed to quan-
tify the degree of stochastic self-similarity in the turbulent
noise [8]. Indeed, due to the lack of control and coordination
in the vocal fold, we expect the TRs to present turbulent
disturbances and, consequently, an increased value of the
DFA coefficient [27].

Finally, we employed the intensity difference and the dura-
tion ratio to measure the differences between the first region
of the analyzed segment (i.e. the unvoiced consonant) and
the subsequent voiced area. According to [19], the intensity
difference between average values of the unvoiced consonant
and the following vocal nucleus can reflect the reduced
phonetic contrast, often described as blurred speech. As for
duration ratio, it measures the ratio between the lengths
of the unvoiced consonant and the adjacent voiced tract to
quantify the reduced unvoiced consonant duration, which
usually characterizes PDPs.

Since the gender of the speaker has a non-negligible in-
fluence on some speech characteristics, before performing
feature selection, we combined vocal parameters with a
covariate indicating whether the sample belongs to a male
or a female subject, in order to pursue a feature selection
procedure that takes into account gender-specific differences.

Given that different features exhibit different ranges, we
applied the z-score normalization to the whole feature set,
consisting in removing the mean value and dividing by
the standard deviation. This, besides being a general good
practice, is particularly important if Euclidean distances have
to be computed in subsequent analysis (e.g. similarity mea-
sures).

D. FEATURE SELECTION
Feature selection was employed to decrease the dimension-
ality of the input variables, reduce the computational cost
of the model, and boost the performance of the prediction.
We addressed the Boruta feature selection approach due to
its successful applications in various domains [8]. The algo-

rithm is a wrapper method based on a Random Forest (RF)
classification algorithm, which aims to find all important
variables by comparing the relevance of the real features
to that of the random probes [28]. The chief assumption
under Boruta’s algorithm is that adding randomness to the
system and analysing its impact on the model can highlight
the most significant features [28]. For each input variable the
algorithm creates a shadow attribute, which is obtained by
shuffling the values of the original attribute across objects.
Then, the RF classifier is trained with this extended set of fea-
tures, the classification phase is performed, and the relevance
of each attribute is computed. The importance of a shadow
attribute can be non-zero only due to random fluctuations.
Thus the relevance of shadow attributes is used as a reference
to identify the smallest subset of relevant features [28].

E. CLASSIFICATION
We implemented a model for the automatic binary classi-
fication between PDPs and HCs, devoting much attention
to the importance of distinct phonetic groups and the in-
fluence of different recording conditions. In Experiment 1,
we employed only samples belonging to the first database
and we tested the model performance in optimal conditions,
emulating the outpatient environment, when it is more likely
to have professional equipment available. In Experiment 2,
we introduced the additional database to test the suitability of
voice data recorded in sub-optimal conditions, with low-cost
equipment and in the absence of external supervision such as
in the home environment.

In Experiment 1, in order to avoid weak generalization ca-
pability of the model, we randomly split the database into two
subsets: 80% to be used during the training/validation phase
and 20% to be used as the test set. The two sub-groups were
chosen in such a way as to guarantee speaker independence
(i.e., all sentences of the same speaker are either in training
or in test set, but not split between the two). It is worth noting
that we implemented feature selection, model selection and
model optimization on the training/validation set, while the
remaining 20% of subjects was employed only during the
testing phase, without any further optimization.

A similar procedure was applied in Experiment 2. We
randomly split both the main and the additional database into
two subsets: 80% to be used during the training/validation
phase and 20% to be used as the test set. We merged
the two training groups into a single set, used to train the
model with signals recorded both in controlled and domestic
environment. Then, we also merged the two testing groups
to carry out the testing phase on a collection of samples
reflecting the characteristics of the training set. Given the
limited numerosity of the second corpus, this procedure was
preferred to using the non-supervised database only, so as
to guarantee technically sound results. Indeed, although it
provides only preliminary results on the possibility of using
samples collected in unsupervised conditions, a comparison
with Experiment 1 can provide pivotal information on the
influence of the recording modality.

6 VOLUME 4, 2021



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3135626, IEEE Access

Amato et al.: Speech impairment in Parkinson’s disease: acoustic analysis of unvoiced consonants in Italian native speakers

TABLE 2: Overview of the set of features employed in the present work.

Feature name Information retrieved Study
RASTA-PLP Abnormalities in the articulation of specific sounds [1], [17]
Spectral moments: mean Inability to promptly interrupt/start vocal fold vibration [19], [22]
Spectral moments: standard deviation Inability to promptly interrupt/start vocal fold vibration [19] , [22]
Spectral moments: skewness Inability to promptly interrupt/start vocal fold vibration [19] , [22]
Spectral moments: kurtosis Inability to promptly interrupt/start vocal fold vibration [19] , [22]
ETS Inability to promptly interrupt/start vocal fold vibration present study
MFCC Subtle changes in the motion of articulators [1]
DFA Lack of coordination in vocal fold vibration present study
Intensity difference Reduced phonetic contrast [19]
Duration ratio Increased speech rate, reduced unvoiced consonant duration [19]

In Figure 3 we present a schematic of the training/testing
set creation in Experiment 1 and Experiment 2.

Also in this case, feature selection, model selection,
and model optimization were performed on the train-
ing/validation set.

FIGURE 3: Schematic of the training/testing set creation
procedure in Experiment 1 and Experiment 2

Taking advantage of having many different phonemes pro-
nounced by the same subjects, we created the classifier input
by merging into a single vector the features extracted from all
the examined segments. Then, we compared the performance
of 7 classifiers and optimized the one characterized by the
highest accuracy. We tested classical approaches such as
Naive Bayes (NB), k-Nearest Neighbor (KNN), SVM and
RF, as well as ensemble methods such as Adaptive Boosting
(ADA), Gradient Boosting (GB), and Bagging ensemble
(BAG) classifiers.

Given the random splitting procedure intrinsic in the val-
idation process, we performed each experiment 20 times on

20 randomly extracted subsets, and considered the average
accuracy as a suitable metric for comparison among clas-
sifiers. After selecting the best classifier and optimizing its
hyper-parameters, we evaluated accuracy, f1 score, precision,
and recall as an average of 20 iterations, to further assess the
stability of the final model.

IV. RESULTS AND DISCUSSION
In this section, we present and discuss the results of the
current study. We focus on the examination of the individual
phonemes and the features extracted to verify if there are
sounds of the Italian language more suitable for differen-
tiating between PDPs and HCs, and if distinct sounds re-
quire different features to be described. Then, we report the
classification results between PDPs and HCs and assess the
influence of the recording conditions on the model.

A. PHONETIC GROUPS EXAMINATION
The segmentation of the ten sentences spoken by each sub-
ject identified 32 unique phonetic groups that included an
unvoiced/voiced switch. Some of these sounds were pro-
nounced multiple times in different sentences, thus the over-
all dataset consisted of a totality of 43 phonetic groups.
Among these, 28 were correctly pronounced by all the indi-
viduals (i.e. no syllables missing or no word mispronounced);
subsequent investigations focused on this subgroup. Based
on the examination of the unvoiced consonant pronounced
in the phonetic groups, it is possible to identify 13 dental
occlusives, 5 velar occlusives, 4 labial occlusives, 2 alveolar
sibilants, 1 palatal sibilant, 2 alveolar affricates, and 1 labio-
dental fricative. Therefore, although there is unevenness be-
tween classes, it is possible to consider the employed dataset
representative of the unvoiced consonants of the Italian lan-
guage (i.e. dental occlusives, velar occlusives, labial occlu-
sives, alveolar sibilants, palatal sibilant, alveolar affricates,
palatal affricates, and labio-dental fricative).

In this section, we applied the feature selection described
in section III-D to each phonetic group. Then, we calculated
the Pearson correlation coefficient between the selected fea-
tures and the class of membership, to identify the sounds and
attributes with the highest discriminating capability. In Fig. 4
we report a schematic of the coefficients having a p value <
0.001.
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(a) Experiment 1

(b) Experiment 2

FIGURE 4: Pearson correlation coefficient of the most rel-
evant features and phonemes. Only those values associated
with a p-value < 0.001 are reported.

Fig. 4a puts into evidence the high potential of the TR
between unvoiced consonants and the adjacent sound tract.
Indeed, in Experiment 1, 28 phonetic segments exhibit at
least two features with correlation to the membership class
between 0.52 and 0.85 (absolute values). Among these, the
DFA coefficient derived from the transition between the
occlusive /p/ and the vowel /e/ and the fifth MFCC derived

from the TR between the sibilant /S/ and the vowel /i/ show
the highest correlation with the class (r = 0.85, p < 0.001).

On the other hand, in Experiment 2 (Fig. 4b), although we
can appreciate a general reduction of the performance (0.37
< | r | < 0.62), the results still reveal numerous features highly
correlated to the membership class. Among these, the DFA
derived from the transition between the occlusive consonant
/t/ and the vowel /a/ shows the highest correlation with the
class (r = 0.62, p < 0.001).

As for the specific types of features selected, the analysis
puts into evidence that DFA, MFCC2, MFCC3, MFCC5,
intensity ratio, and spectral mean exhibit a high correlation
with the class for many of the selected phonetic groups
when considering only signals recorded in optimal noise
conditions.

The introduction of samples belonging to the second
dataset leads to a general reduction in the number of sig-
nificant features. Indeed, Fig. 4a exhibits some differences
with respect to Fig. 4b. In particular, it is worth noticing that
the RASTA-PLP coefficients are the most selected features,
suggesting an improved capability to capture differences
between PDPs and HCs, even in the presence of sub-optimal
quality records.

In a second section of our analysis, we investigated which
sounds are the most representative of the language impair-
ment, studying the features selected based on the phonetic
group to which they refer.

Fig. 5 reports the results of the analysis conducted for
Experiment 1. In particular, Fig. 5a shows the number of
features selected in absolute value, whereas Fig. 5b takes into
account the unevenness number of phonetic groups in the
employed datasets, and represents the number of features
selected in relation to the number of total segments belonging
to each phonetic group.

FIGURE 5: Distribution of the features selected among pho-
netic groups - Experiment 1.

In line with previous studies [2], the most serious pronun-
ciation impairments occur in the occlusive consonants due
to the movement necessary to produce such sounds. Indeed,
unlike other consonants where there is no complete closure
of the vocal trait, the sound of the occlusive consonants
is produced when the air coming from the lungs meets an
obstacle created by a sudden change of position of the artic-
ulators. The inability to produce fine and rapid movements
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makes it difficult for PDPs to produce these sounds. As
far as concerns the place of articulation, the velar occlusive
consonants, produced by withdrawing the tongue towards the
soft palate, seem to have the highest discriminating power in
Italian native speakers.

FIGURE 6: Distribution of the features selected among pho-
netic groups - Experiment 2.

Fig. 6 shows the results of the same analysis conducted for
Experiment 2. Although also in this case the features related
to occlusive consonants are often selected, an important role
is played by the parameters related to fricative labiodental
that, in the current database, are represented by the syllable
/fa/. However, additional analysis employing a larger dataset
with a balanced distribution among phonetic groups is re-
quired to validate these findings.

B. CLASSIFICATION RESULTS
In this section, we present the results of the binary classi-
fication between PDPs and HCs by mean of the procedure
described in section III.

In Table 3 we report the comparison of the classification
accuracy on the 7 models tested.

The values refer to a 10-fold CV and are averaged over
20 iterations. As can be appreciated, the best results were
achieved using the SVM classifier, which yields an accuracy
of 98% ± 1.2. It is worth noting that this latter classifier,
besides achieving the highest accuracy, is also characterized
by the lowest standard deviation, which is indicative of good
stability of the model. Once identified the best classifier, we
run a grid-search hyper-parameter optimization procedure
within the training set, based on the mis-classification error
minimization in 10-fold CV.

We tuned the C parameter in [10, 100, 1000] and gamma
in [0.1, 0.001, 0.0001]. Moreover we investigated the per-
formance achieved employing a linear, polynomial, and RBF
kernels. The best configuration turned out to be an SVM with
C = 10, gamma = 0.001, kernel = RBF.

As can be noticed from the analysis of the reported re-
sults, the performance does not impair when moving from
validation data to completely new samples contained in the
test set. This denotes the absence of over-fitting and a good
generalization capability of the selected model.

Also, the phonetic groups employed and the types of
features selected are reported. As for the phonetic groups,

the results trace the analysis conducted in section IV-A on
the single phonemes and remark the importance of occlusive
consonants as well as palatal sibilants.

Although there is no work in the state of art that lends
itself to a fair comparison due to the different employed
corpora, languages, and methods, the performance analysis
of the most similar study employing TRs [1] revealed the
high potential of the presented algorithm. In fact, as discussed
in section II, in this latter work the authors achieved 94% ± 1
accuracy (AUC = 0.99, Sens = 0.9, Spec = 1) in a 11-
fold CV and 82% ± 13 (AUC = 0.95, Sens = 1, Spec =
0.57) in the cross corpora experiments employing a GMM-
UBM classifier, PLP as features and the DDK speech task.
Moreover, the accuracy reported when considering the same
task considered in this work (i.e. text dependent utterance) is
89% ± 7 (AUC = 0.93, Sens = 0.91, Spec = 0.91) in a 11-fold
CV.

As far as concerns the classification performance obtained
in Experiment 2, Table 5 reports the comparison of the clas-
sification accuracy on the 7 tested models. The values refer
to a 10-fold CV and are averaged over 20 iterations. As can
be noticed, the best results were achieved using an SVM
classifier, which yields an accuracy of 87% ± 2.5.

Again, once identified the best classifier, we run a grid-
search hyper-parameters optimization procedure within the
training set, based on the mis-classification error minimiza-
tion in 10-fold CV. In more detail, we tuned the C parameter
in [10, 100, 1000] and gamma in [0.1, 0.001, 0.0001]. More-
over we investigated the performance achieved employing a
linear, polynomial, and RBF kernels. The best configuration
turned out to be an SVM with C = 100, gamma = 0.001, ker-
nel = RBF. The results of the optimized model are reported
in Table 6.

As for the phonetic groups, the results remark the im-
portance of occlusive and sibilants consonants. Furthermore,
although features selected in Experiment 1 were mostly se-
lected also in Experiment 2, in this latter case the set of
attributes is larger, and includes RASTA-PLP coefficients
and the derivatives of both RASTA-PLP and MFCC. Also
in this second case, the performance remains stable when
moving from validation to the test set, although the standard
deviation slightly increases in the latter case. In figure 7 we
report the ROC curve of the final model averaged over 20
iterations.

A comparison between the two Experiments reveals that
the set of features selected in Experiment 2 is a super-set of
those selected in Experiment 1. Therefore, we can assume
that this enlarged feature ensemble is able to effectively
capture vocal alterations in sub-optimal recordings. It is also
worth noticing that the inclusion of non-supervised record-
ings leads to substantial changes to the model encompassing
both the features and the hyperparameters selected. This
suggests that the algorithm is able to efficiently adapt to
the input data. Hence, one can expect that, if the model is
trained on a larger dataset, it can lead to optimal performance
regardless of the sub-optimal recording conditions.
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TABLE 3: Classification accuracy comparison among 7 classifiers employing a 10-fold CV. Experiment 1

Model Accuracy(%) Precision(%) Recall(%) Specificity(%) F1 score(%) AUC
NB 92 ± 2.6 95 ± 1.6 94 ± 3.1 91 ± 3.5 93 ± 2.6 0.98 ± 0.020
KNN 96 ± 2.3 95 ± 2.9 100 ± 0.0 92 ± 5.6 97 ± 1.7 0.99 ± 0.004
SVM 98 ± 1.2 98 ± 1.6 100 ± 0.0 97 ± 2.4 98 ± 1.1 1 ± 0.00
ADA 88 ± 4.8 90 ± 4.6 92 ± 4.0 83 ± 8.3 89 ± 4.3 0.92 ± 0.037
GB 87 ± 3.5 89 ± 3.5 93 ± 4.3 82 ± 6.9 88 ± 3.4 0.90 ± 0.051
BAG 97 ± 2.2 96 ± 2.6 100 ± 0.0 93 ± 5.4 98 ± 1.5 0.99 ± 0.008
RF 96 ± 1.8 96 ± 1.6 98 ± 2.3 93 ± 2.9 96 ± 1.8 0.99 ± 0.05

TABLE 4: Performance of the optimized SVM model. Re-
sults are expressed as an average over 20 iterations. Experi-
ment 1

Metric Val. set Test set Phonetic group Type of feat.
Acc.(%) 98 ± 1.1 97 ± 5.6 dental occlusive,

labial occlusive,
palatal sibilant,
velar occlusive

DFA,
spect. mean,

MFCC2,
MFCC5

Pre.(%) 98 ± 1.6 96 ± 7.4
Rec.(%) 99 ± 1.5 100 ± 0.0
Spec.(%) 97 ± 2.4 93 ± 13.9
F1(%) 98 ± 1.0 98 ± 4.1
AUC 1 ± 0.0 0.96 ± 0.07

V. CONCLUSION AND FUTURE WORK
In this study, we investigated the impact of PD on un-
voiced/voiced transitions and the discriminatory capacity of
different phonemes in the Italian language. To this aim, we
employed features already involved in similar analysis in
conjunction with novel parameters.

This work has confirmed the possibility of a speech-based
PD classification model and the effectiveness of the TR
analysis. Furthermore, the investigation of the discriminatory
capability of various Italian phonemes confirmed that the
most critical pronunciation problems occur in occlusive con-
sonants. As far as concerns the place of articulation, the velar
occlusive consonants, produced by withdrawing the tongue
towards the soft palate, seem to have the highest discriminant
power in Italian native speakers.

Although these results can provide a powerful tool for
the analysis of Italian PD speakers, the heterogeneity of the
used dataset requires further investigations to validate these

FIGURE 7: ROC curve expressed as an average over 20
iterations. Experiment 2

preliminary findings. Moreover, despite we are aware that the
need for a manual segmentation represents a limit for the
work, in this stage of our research we wanted to avoid to bias
the results using an automatic segmentation tool. Actually,
such tools are affected by an intrinsic source of error, even
more evident in the case of PDPs, whose speech is severely
impaired. Once the effectiveness of using transition zones is
fully validated, we plan to address an automatic segmentation
tool to ease the segmentation procedure and extend the results
to broader corpora and languages. Furthermore, we plan to
extend the model developed in this paper to other languages,
in order to perform comparisons and identify similarities and
differences.

As for the types of features employed, our results suggest
the high potential of the DFA coefficient, which, to the best
of our knowledge, has never been applied to the TR analysis.

Finally, this work discloses the possibility of voice pro-
cessing employing recordings collected both in optimal and
sub-optimal conditions. Indeed, we performed the collection
of an additional database through a web application that
guided the users through the execution of the same tasks
encompassed in the main dataset. If properly validated, this
data collection technique would enable a frequent monitoring
of the disease. The recordings could be performed in a
comfortable environment, so obtaining voice samples that
reflect more closely the actual condition of the patient. This
study is part of an ongoing project to develop a lightweight
system that can be employed for the home monitoring of
patients.

However, the small numerosity of the two corpora and
the slight difference in the average age of the two groups in
the second dataset prevents from considering these results as
exhaustive; hence we plan to perform further validation with
a much larger cohort of subjects

Besides collecting more speech data from PDPs, we also
plan to employ clinical information as the H&Y stage and
UPDRS-Part II/Part III scores, and to perform data acquisi-
tion several times on the same patients, both under and not
under dopaminergic therapy, to verify whether the analysis
of the TR applies to these fields also.

Specifically, the evidence from this study suggests the
feasibility of a tool that may be employed for home mon-
itoring of motor fluctuations in PDPs, as well as for early
PD diagnosis decision support. On the other hand, given
the reduced size of the dataset employed, our methods and
results require further validation with a much larger cohort of
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TABLE 5: Classification accuracy comparison among 7 classifiers employing a 10-fold CV. Experiment 2

Model Accuracy(%) Precison(%) Recall(%) Specificity(%) F1 Score(%) AUC
NB 83 ± 2.2 89 ± 2.5 82 ± 3.5 85 ± 3.5 84 ± 2.4 89 ± 2.7
KNN 84 ± 2.7 87 ± 3.7 85 ± 2.6 82 ± 4.5 85 ± 2.5 92 ± 2.4
SVM 86 ± 2.5 90 ± 2.9 87 ± 2.7 86 ± 3.9 87 ± 2.3 94 ± 1.9
ADA 84 ± 3.6 88 ± 3.6 85 ± 3.4 83 ± 5.2 85 ± 3.2 91 ± 3.8
GB 76 ± 3.5 82 ± 4.0 77 ± 4.4 75 ± 6.0 77 ± 3.6 83 ± 3.7
BAG 84 ± 2.8 88 ± 3.4 85 ± 3.2 83 ± 4.2 85 ± 2.8 93 ± 2.2
RF 83 ± 2.9 87 ± 3.0 84 ± 3.4 82 ± 3.5 84 ± 3.0 93 ± 2.8

TABLE 6: Performance of the optimized SVM model. Re-
sults are expressed as an average over 20 iterations. Experi-
ment 2

Metric Val. set Test set Phonetic group Type of feat.
Acc.(%) 88 ± 2.8 90 ± 6.8

labiodental
fricative;

dental, labial,
and velar

occlusives;
affricate and

sibilants
alveolars;

palatal
sibilants

DFA,
spect. mean,

MFCC4,
∆MFCC1,
∆∆MFCC3,

PLP3,
PLP5,
PLP11
∆PLP3,
∆∆PLP1

Pre.(%) 93 ± 3.0 95 ± 5.0

Rec.(%) 87 ± 2.9 88 ± 10.0

F1(%) 89 ± 2.7 91 ± 6.3

Spec.(%) 89 ± 4.1 93 ± 7.4

AUC 94 ± 2.4 91 ± 6.3

subjects.
At last, this is part of a more large PD monitoring study

[29], which we plan to implement in a sort of electronic diary
of PDPs, including motor symptoms and postural control
monitoring, as well as sleep quality assessment.
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VII. ACRONYMS

ADA Adaptive Boosting.
AUC Area Under the Curve.
BAG Bagging ensemble.
CV Cross Validation.
DDK Diadochokinetic.
DFA Detrended fluctuation analysis.
ETS Energy Transition Slope.
GB Gradient Boosting.
GMM Gaussian Mixture Models.
H&Y Hoehn and Yahr.
HC Healthy Control.
KNN k-Nearest Neighbor.
LOO Leave One Out.
MDS Movement Disorder Society.
MFCC Mel Frequency Cepstral Coefficients.
ML Machine Learning.
NB Naive Bayes.
PD Parkinson’s Disease.
PDP Patients with Parkinson’s Disease.
PLP Perceptual Linear Prediction.
RASTA-PLP Relative Spectral - Perceptual Linear

Prediction.
RBF Radial Basis Function.
RF Random Forest.
ROC Receiving Operator Curve.
SVM Support Vector Machine.
TR Transition Regions.
UBM Universal Background Models.
UPDRS Unified Parkinson’s Disease Rating

Scale.
VOT Voice Onset Time.
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