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ABSTRACT In the presence of gestational diabetes mellitus (GDM), the fetus is exposed to a hyperin-
sulinemia environment. This environment can cause a wide range of metabolic and fetal cardiac structural
alterations. Fetal myocardial hypertrophy predominantly affecting the interventricular septum possess a
morphology of disarray similar to hypertrophic cardiomyopathy, and may be present in some GDM neonates
after birth. Myocardial thickness may increase in GDM fetuses independent of glycemic control status and
fetal weight. Fetal echocardiography performed on fetuses with GDM helps in assessing cardiac structure
and function, and to diagnose myocardial hypertrophy. There are few studies in the literature which have
established evidence for morphologic variation associated with cardiac hypertrophy among fetuses of GDM
mothers. In this study, fetal ultrasound images of normal, pregestational diabetes mellitus (preGDM) and
GDM mothers were used to develop a computer aided diagnostic (CAD) tool. We proposed a new method
called local preserving class separation (LPCS) framework to preserve the geometrical configuration of
normal and preGDM/GDM subjects. The generated shearlet based texture features under LPCS framework
showed promising results compared with deep learning algorithms. The proposed method achieved a
maximum accuracy of 98.15% using support vector machine (SVM) classifier. Hence, this paradigm can
be helpful to physicians in detecting fetal myocardial hypertrophy in preGDM/GDM mothers.

INDEX TERMS Fetal myocardial hypertrophy, Gestational diabetes mellitus, Local preserving class
separation, Computer-aided diagnosis, Ultrasound images

I. INTRODUCTION

D IABETES in pregnancy is one of the common risk fac-
tors for adverse perinatal outcomes, with a prevalence

of 7% to 11% in India and up to 17% in South India [1],
[2]. Neonates born to diabetic mothers — either gestational
diabetes mellitus (GDM) or pregestational diabetes mellitus
(preGDM), that is, with diabetes only during or pre-existing

before pregnancy, respectively— are at risk of cardiovascular
disease due to structural cardiac defects or impaired my-
ocardial function. Fetal circulation is fundamentally different
from neonatal circulation. There are structural and functional
adaptations that take place in response to a hypoxemic in-
trauterine environment [3], [4]. Fetal cardiac changes that
are demonstrated on imaging, are known to have influence
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on neonatal outcome [5]. In GDM, this developmental ab-
normality ranges widely from structural heart disease to
subclinical myocardial dysfunction [6]–[8]. The hyperinsu-
linemic state interferes with fetal metabolism, resulting in
increased expression and affinity of insulin receptors, which
leads to proliferation and hypertrophy of cardiac myocytes.
Cardiac hypertrophy in these fetuses exhibits myocardial de-
rangement similar to hypertrophic cardiomyopathy [9]. This
disarray in myofiber alignment alters the diastolic function of
the heart. GDM fetuses sometimes exhibit cardiac diastolic
dysfunction even in the absence of cardiac hypertrophy [10].
GDM manifests comprehensive adverse effects ranging from
subclinical cardiac involvement to neonatal complications
requiring medical attention. Subtle cardiac dysfunction has
been confirmed by speckle tracking echocardiography. Most
recently, use of four-dimensional (4D) ultrasonography along
with two-dimensional (2D) fetal cardiac imaging showed
promising results in the detection of cardiac malfunction
early in pregnancy [11]–[13]. Therefore, screening fetal
cardiac structure and function among GDM and preGDM
mothers could be helpful to identify subtle pathology early
in gestation [14]. Maintaining adequate glycemic control in
these groups may help prevent fetal complications related to
GDM. Computer-Aided Detection/Diagnosis (CAD) uses a
rule-based support system for patient diagnosis. At present,
it is utilized in numerous applications in day-to-day clini-
cal practice. For instance, in detecting breast malignancies,
skeletal abnormalities, and pathology in brain and vascular
tissues. The need for CAD in our study is evident because of
the poor prognosis of the disease if left untreated. GDM or
preGDM may lead to fetal death, which can be averted if di-
agnosed early and strict glucose control measures are imple-
mented. The CAD in this study is based on ultrasound (US)
imaging. Many recent studies have proposed accurate CAD
models using US images [15]–[23]. Physicians can typically
distinguish or identify the disease by manual interpretation of
the images, but the process is intensive, induces fatigability,
and is prone to bias and human error. Fetal myocardial hyper-
trophy (FMH) ranges from subtle to overt myocardial hyper-
trophy, and the clinical course is heterogeneous. Few works
have been published in the literature on this topic. There have
been a few works recently that examined the thickness of the
interventricular septum (IVS), which separates the left and
right ventricles, in FMH. Carolina et al. [24] evaluated the
prevalence of FMH in the fetuses of pregnant women with
GDM, and they found that 54% of 63 fetuses tested positive
for FMH on fetal echocardiography. Mohammed et al. [25]
employed five-dimensional (5D) fetal echocardiography for
the diagnosis of prenatal fetal hypertrophic cardiomyopa-
thy on three separate groups: healthy members, controlled
diabetic mothers, and uncontrolled diabetic mothers. They
obtained a maximum mean IVS thickness of 0.57± 0.08 cm
for a group of 37 uncontrolled diabetic mothers. They also
suggested that the infants of diabetic mothers could reverse
FMH, provided these neonates are given special care and
constant monitoring. A similar study is reported in [26].

The fetal state is evaluated using fetal heart rate (FHR) with
the help of continuous wavelet transform and convolutional
neural network (CNN) [27]. They have achieved an accuracy
of 98.34%. In [28], the authors have used recurrence plot and
CNN to achieve an accuracy of 98.69% using FHR signals.
We believe that the CAD model presented herein is the first
to be developed for the detection of FMH in preGDM/GDM
mothers. The major contributions of the paper are:

•The shearlet based texture features are generated to char-
acterize the normal and preGDM/GDM US images.

•The discriminative capability of the locality sensitive
discriminant analysis (LSDA) is enhanced under local pre-
serving class separation framework.

•To the best of our knowledge, this is the first work to
identify the fetal cardiac structure of gestational diabetes
mellitus mother automatically using US images.

The remainder of the paper is structured as follows. The
description of dataset and details of the proposed method-
ology is delineated in Section II. The experimental results
and the comparative study are presented in Section III. The
results are analyzed and discussed in Section IV. The paper
ends with a conclusion and future scope, which is provided
in section V.

II. MATERIALS AND METHODS
A. DATA ACQUISITION
A case control study was performed in a tertiary referral hos-
pital from March 2017 to March 2019. In this study, pregnant
women with preGDM and GDM having a gestational age be-
tween 32 and 37 weeks were included. Non-diabetic healthy
pregnant women at similar gestational age served as controls.
Women with preeclampsia, pre-existing hypertension treated
with antihypertensive drugs, renal disease, liver disease,
hematologic diseases, maternal cardiac disease, evidence of
fetal congenital anomaly of any organ including heart, intra-
uterine growth retardation, chromosomal abnormalities, and
twin pregnancy were excluded from the study. Institutional
Ethics Committee approval was obtained. Informed written
consent was obtained from all participants. PreGDM moth-
ers had known diabetes before the pregnancy. GDM was
diagnosed using the International Association of Diabetes in
Pregnancy Study Group criteria for oral glucose tolerance
test (blood glucose cutoffs of 93/183/152 mg% at baseline/1
hour/2 hours following 75 gm oral glucose) between ges-
tational age 24-28 weeks. All participants underwent fetal
echocardiographic examination. Trained obstetrician imaged
the cardiac chambers and stored at end diastolic frame of
4-chamber view. Likewise, a trained sonographer measured
the parameters. In each subject, a standard lateral 4-chamber
view was obtained. In total, we enrolled 74 normal subjects
(at least two images from each subject, total: 221 images)
and 71 preGDM/GDM subjects (at least two images from
each subject, total: 212 images) in this study. Figure 1 shows
sample normal and abnormal US subjects.
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FIGURE 1. Ultrasound images of fetal hearts from normal and diabetic
mother.

B. PROPOSED METHOD
Figure 2 highlights the active modules of the proposed
approach. It consists of three modules namely: i) feature
extraction, ii) subspace learning, and iii) classification. In
the first stage shearlet based texture features are extracted to
characterize US images. In the second stage the data were
reduced by using local preserving class separation method.
Herein, local manifold structure of each class and discrim-
ination among the classes are embedded efficiently, while
representing the data in lower dimensional space. Further in
the last stage, support vector machine (SVM) was used to
classify the ranked features with different kernels. The de-
tailed description of each stage is explained in the subsequent
section.

1) Shearlet based texture features
Initially, every image is preprocessed, where mask is gener-
ated using morphological close operation to extract region
of interest [29]. The application of mask helps to remove
the labels, color map indication etc. Further the resultant
image is rescaled to a predefined size i.e., 256 × 256 pix-
els for generality purpose. In the next step, shearlet trans-
form is used generate the shearlet coefficients. Shearlets are
very efficient tools for directional representation compared
to wavelets [30]. They are used in many applications for
better representation of the images [31], [32]. They consist
of functions with parabolic scaling, shearing operators and
translation operators that can be used to change resolution,
orientation and position, respectively. Sometimes, a more
precise shearlet system is referred to as cone-adapted, as
it is adapting a cone-like structure in frequency domain.
To have flexible shearlets, a parameter is introduced in the
scaling matrix for measuring anisotropy [33]. The generating
functions are associated with the conic and low frequency
regions [34]. On the other hand, for data restoration and
feature extraction techniques, shearlets with optimal sparse
representation perform better. In this work, scale of 2 is used
to get twenty coefficients.

FIGURE 2. Architecture of proposed model.

Generally, textures convey significant information of an
image that pertains to the structural arrangement and rela-
tionship between neighboring pixels [35]. For pattern recog-
nition, various texture features can be generated using gray-
level co-occurrence matrix (GLCM). It is the function of
nearest pixels’ distance with angular relationship. In this
study, GLCM is calculated for angles 0, 45, 90, and 135 de-
grees. For every GLCM, the features information correlation
measures 1 and 2, energy, correlation, contrast, homogeneity,
difference entropy and difference variance, sum variance,
sum entropy and sum average as defined in [35] and cluster
shade, maximum probability, autocorrelation, entropy, and
dissimilarity as defined in [36] are calculated. Finally, the
average value of all the features that are computed from
each GLCM is computed to describe the US image. Usually,
coarse texture and fine texture have long and short gray level
runs, respectively [37]. For a given image, textures were
extracted from the run-length matrix (RLM). The features
formulated in [38], [39] were extracted and the combination
of gray level and run length were used to obtain various
statistical measures [40]. As a result, 11 features pertaining
to RLM were extracted. Furthermore, variance, kurtosis,
and skewness were also computed for every shearlet coeffi-
cient. Hence, thirty features were calculated for each shearlet
coefficient. A total of 600 shearlet based texture features
are generated for each US image. The complete process of
feature extraction is shown in Figure 3.
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FIGURE 3. Generation of feature vector using shearlet coefficients.

2) Local preserving class separability

Generally, the local structure of the data points becomes more
important than its global structure when training samples are
insufficient [41], [42]. Linear discriminant analysis (LDA) is
widely used in many applications to maximize the separation
between data points from various classes [43]. In practice,
subspace learning is performed by mapping whereby data
points with different labels are isolated from each other
whereas data points with the same label points are aggregated
close to each other. When data points exhibit non-linearity,
then preserving the local structure of the data points is the
primary requirement for efficient training. Hence in this pa-
per, local preserving class separability (LPCS) algorithm was
introduced to enhance the discrimination power of LSDA
method. The proposed LPCS consists of two steps, which are
described as follows,

Initially, weight matrix is computed to describe the local
structure of the data points. Consider a data points x1,x2,...
..,xr in Rq , where r is the data points. The directed edge
is placed between the nodes if data points are k-nearest
neighbors, i.e., if there is an edge between nodes i and j, then
it can be denoted as i ∼ j. The weight matrix wij has the
value of the edge weight if there is existence of edge between
i and j, otherwise it is zero [41]. Further, the projection
using neighborhood preserving is performed to preserve the
required local distribution of the data points. The obtained
new space Rn, where n«q, is used for further class separation.

In the second step, mapping is performed using the
between-class and within- class graphs (g,d and g,s, re-
spectively). Consider a map on new space as y, =
(y,1, y

,
2, · · · , y,r)T , and the following objective functions are

used for better mapping. [43]:

min
∑
i′j′

(
y

′

i − y
′

j

)2
w

′

s,ij (1)

max
∑
i′j′

(
y

′

i − y
′

j

)2
w

′

d,ij (2)

where w
′

s,ij is defined as 1 if neighbors share the same
label, w

′

d,ij is defined as 1 if neighbors have different labels
on new space Rn. The above equations are solved by using
y, = ZTx,, where Z is the projection matrix. Hence, the di-
mension reduction technique using LPCS method completely
preserves both the local geometrical structure as well as
discrimination of the data. Finally, LPCS is used to reduce the
dimension of the shearlet based texture features efficiently.

3) Classification
Further, generated features with greater differences between
the means and standard deviations(SD) were selected, and
subjected to classification in order to determine the accuracy.
Typically, extracted features contain some insignificant and
excess information, which may debase the arrangement pro-
cess. To make an effective arrangement model, a Student’s t-
test based highlight choice calculation was utilized [44] and
features were ranked based on p-values. The ranked features
were subjected to classifiers with different kernels. In the
present study, we used the SVM classifier [45]–[47]. In many
cases, linear functions cannot separate the data. Mapping
input data into a different space is a solution. Here, kernel
functions were employed as the dot product had been used
on the training data. Therefore, the decision function using
kernel functions could be included with SVM, and is denoted
by K( ,). For a given K( ,), test sample h is given by:

f (h) = sign

(
N∑
i=1

λiliK (vi, h) + b

)
(3)

where N is the number of support vectors (SVs), λi is
Lagrange multipliers, li is the labels, vi are the SVs, and b
indicates the bias term. In our study, we used two basic kernel
functions: polynomial (with 1, 2, and 3 order) and radial basis
function (RBF). For RBF kernel scaling factor is varied from
1 to 5 to achieve maximum result. To assess the system per-
formance, classification accuracy, sensitivity, specificity, and
positive predictive values (PPV) were calculated. A ten-fold
cross validation strategy was used to validate the technique.
In ten-fold cross validation, the dataset is first split into ten
equal parts with nine parts being used for training to test on
the remaining one part; and the process is repeated ten times,
which means that each part participates in testing once.

III. RESULT
The complete algorithm was implemented using MATLAB
environment on an Intel core i5 system with 4GB RAM.
The generated shearlet features for every US image were
reduced to thirty LPCS features. The LPCS features are
ranked in descending order using its t-value as shown in Table
1. Then these ranked LPCS features were classified using
SVM classifier with one-against-all strategy. Table 2 shows
the performance of SVM classifier with different kernels. It
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TABLE 1. Statistical details (Mean, SD, p-value and t-value) of LPCS features.

Features Normal preGDM/GDM p-Value t-ValueMean SD Mean SD
LPCS 10 -2.6456 0.0818 -2.6876 0.0728 3.15E-08 5.635757
LPCS 6 -2.5853 0.1041 -2.6278 0.0870 5.68E-06 4.595326
LPCS 7 8.2466 0.0852 8.2082 0.0934 1.01E-05 4.467531
LPCS 3 13.0484 0.0976 13.0919 0.1208 4.42E-05 4.126719
LPCS 1 -1.4851 0.6124 -1.2454 0.6363 7.65E-05 3.993743
LPCS 5 6.0943 0.1153 6.0530 0.1035 0.000105 3.915837
LPCS 4 1.9324 0.1126 1.9702 0.0916 0.000151 3.822911
LPCS 2 10.7941 0.2165 10.7294 0.1987 0.001317 3.233401
LPCS 8 5.3723 0.0845 5.3480 0.0795 0.002211 3.078843
LPCS 9 4.3397 0.0853 4.3170 0.0702 0.00274 3.012875

TABLE 2. Performance of proposed system.

#Fea tp tn fp fn accuracy(%) PPV(%) sensitivity(%) specificity(%)
SVM+POLY1
15 173 181 40 39 81.75 81.22 81.60 81.90
SVM+POLY2
30 197 196 25 15 90.76 88.73 92.92 88.68
SVM+POLY3
28 210 215 6 2 98.15 97.22 99.05 97.28
SVM+RBF
15 204 213 8 8 96.30 96.22 96.22 96.38
#Fea, number of features; fp, false positive; fn, false negative; tp, true positive; tn, true negative

is observed that proposed system achieved 98.15% accuracy,
97.22% PPV, 99.05% sensitivity, and 97.28% specificity
using twenty-eight features. The performance obtained for
individual features is shown in Figure 4. It is noted that
SVM+POLY3 achieved 16.4%, 7.39%, and 1.85% higher
accuracy compared to POLY1, POLY2, and RBF kernels, re-
spectively. To assess the performance of the proposed system,
comparative study was carried out, which is described in the
subsequent section.

FIGURE 4. Performance of different classifiers using individual features one at
a time. #features, number of features

A. COMPARATIVE STUDY
The efficiency of the proposed LPCS was verified by com-
paring various data reduction techniques. In the present
study, principal component analysis (PCA) [48], independent
component analysis (ICA) [49], neighborhood preserving
embedding (NPE) [41], and LSDA [43] were used. Figure
5 shows the performance in terms of accuracy of the various
data reduction techniques with different numbers of features
used. It is observed that the peak performance of the proposed
LPCS method achieved improvements of 38.8%, 41.34%,
and 15.01% compared with the peak performances of PCA,

ICA, and NPE techniques, respectively. The proposed LPCS
increased the accuracy of LSDA by approximately 2%. It
is also noted that sensitivity of LSDA increased by 4.72%,
which is an important requirement for medical image analy-
sis.

FIGURE 5. Performance of various data reduction techniques.

TABLE 3. Table 3: Structure of various used ConvNet.

ConvNet-1 ConvNet-2 ConvNet-3
Convolution1 (8
3×3 convolutions)

Convolution1(8
3×3 convolutions)

Convolution1(8
3×3 convolutions)

ReLU1 ReLU1 ReLU1
Max Pooling1
(3×3 max pooling
with stride [2 2])

Max Pooling1
(3×3 max pooling
with stride [2 2])

Max Pooling1
(3×3 max pooling
with stride [2 2])

Convolution2(16
3×3 convolutions)

Convolution2 (16
3×3 convolutions )

Convolution2(16
3×3 convolutions )

ReLU2 ReLU2 ReLU2
Max Pooling2
(3×3 max pooling
with stride [2 2])

Max Pooling2
(3×3 max pooling
with stride [2 2])

Max Pooling2
(3×3 max pooling
with stride [2 2])

Convolution3 (32
3×3 convolutions)

Convolution3(32
3×3 convolutions)

ReLU3 ReLU3
Max Pooling3
(3×3 max pooling
with stride [2 2])

Max Pooling3
(3×3 max pooling
with stride [2 2])
Convolution4(64
3×3 convolutions)
ReLU4
Max Pooling4
(3×3 max pooling
with stride [2 2])

Nowadays, deep learning algorithms are increasingly
bring applied to many applications, such as face recog-
nition, traffic sign recognition system, medical im-
age analysis, etc. using large datasets. Herein, we as-
sessed how the proposed technique compare against var-
ious deep learning techniques. Six different deep net-
work structures were considered for feature extraction:
AlexNet [50] (please refer to https://in.mathworks.com/
help/deeplearning/ref/alexnet.html), ResNet50 [51] (please
refer to https://in.mathworks.com/help/deeplearning/ref/
resnet50.html), GoogleNet [52](please refer to https:
//in.mathworks.com/help/deeplearning/ref/googlenet.html),

VOLUME 4, 2016 5

https://in.mathworks.com/help/deeplearning/ref/alexnet.html
https://in.mathworks.com/help/deeplearning/ref/alexnet.html
https://in.mathworks.com/help/deeplearning/ref/resnet50.html
https://in.mathworks.com/help/deeplearning/ref/resnet50.html
https://in.mathworks.com/help/deeplearning/ref/googlenet.html
https://in.mathworks.com/help/deeplearning/ref/googlenet.html


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3042594, IEEE Access

TABLE 4. Comparison with state-of-the-art deep learning techniques

Method accuracy(%) sensitivity(%) specificity(%)
AlexNet 95.99 96.12 95.97
ResNet50 78.83 79.37 79.08
GoogleNet 75.79 77.39 75.01
ConvNet -1 60.46 62.11 61.12
ConvNet -2 70.46 74.71 68.88
ConvNet -3 81.39 82.34 81.53
Proposed 98.15 99.05 97.28

and three convolutional neural network (ConvNet) mod-
els (i.e., ConvNet-1, ConvNet-2, and ConvNet-3)(please
refert to https://in.mathworks.com/help/deeplearning/ug/
create-simple-deep-learning-network-for-classification.html).
In the present study AlexNet, ResNet50, and GoogleNet is
used with a depth of 8, 50, and 22 respectively (please refer to
https://www.mathworks.com/help/deeplearning/ug/pretrained-
convolutional-neural-networks.html). Herein we have used
pretrained networks for classification. Since the data set is
comparatively small it is difficult to fine tune the parameters.
Hence a feature extraction is done by using the layer activa-
tions of pretrained network as features. The structure of used
ConvNet-1, ConvNet-2, and ConvNet-3 is shown in Table 3.
For classification, SVM classifier was used, with scale and
box constraint is equal to 1. Initially, US images were used
and all images were preprocessed to remove artefacts and
extract the regions of interest. Further, they were rescaled to
predefined sizes: 64 × 64 for ConvNet and 224 × 224 for
other networks. During classification, data was divided into
ten equal parts, and 90% and 10% were used for training
and testing, respectively, for 10 times until all parts had been
tested. The networks were trained with a stochastic gradient
decent with the momentum trainer using learning rate of 0.1,
0.01, and 0.001 with epochs of 10, 20, 30, 40, and 50, and is
used by keeping two iterations per epoch with data shuffled
per epoch. It is observed that the network achieved maximum
result for learning rate of 0.01 and epoch of 30. It is also noted
that all ConvNet models have achieved maximum results
for image size of 64 × 64 when compared to 32 × 32 and
128 × 128. Ten passes of each network were obtained, and
accuracy, sensitivity and specificity were calculated. From
Table 4, it can be seen that among the 6 Networks AlexNet
was relatively more consistent and accurate. On the other
end, ConvNet-1 was unreliable and inconsistent. It is noted
that ResNet50 and GoogleNet were quite consistent with
similar output ranges. It is observed from Table 4 that our
proposed model showed promising results compared with
deep learning techniques.

IV. DISCUSSION
Myocardial hypertrophy in the fetus and its associated com-
plications require further study. There are different causes
of FMH, including inheritable genetic diseases. Here, we
have focused on acquired FMH associated with diabetes in
pregnancy. Myocardial hypertrophy is identified commonly

FIGURE 6. Plot of feature distribution a) original feature space and b) LPCS
feature space.

in fetuses of mothers with diabetes, and is characterized by
thickening of the IVS or more subtle abnormalities. In a
diabetic mother, high levels of insulin cause hyperplasia and
hypertrophy of the fetal heart, resulting in FMH. We have
developed a CAD model that can differentiate normal fetuses
from affected fetuses. Few other methods exist of this par-
ticular capability in the literature. A prenatal IVS thickness
greater than 4.5 mm has been reported to be an indication that
the fetus has FMH [53]. In the current study, the mean values
of myocardial thickness measured at IVS, left ventricular
wall, and right ventricle among preGDM/GDM cases were
higher than that of non-diabetic controls. The mean values
in preGDM/GDM with adequate glycemic control were also
higher than those in non-diabetic controls (data not shown).
We did not report the prevalence of FMH in our study
subjects as there is no standard threshold for defining FMH
in South Indian, where the study had been carried out.

We applied shearlet transform, enhanced edges and curve-
like structures in the images, to improve the quality of the 2D
US images. It minimized redundant features and enhanced
only significant information in the images. Further, texture
variations in these coefficients were captured using various
texture features. To differentiate the structure of normal ver-
sus preGDM/GDM images, we developed the LPCS method.
The resultant feature distribution in a lower dimensional
space is shown in Figure 6. It characterizes local structure
and amplifies discrimination among classes, which boost its
superiority compare with other data reduction techniques as
shown in Figure 5.

Figure 6 shows the strength of the proposed method in
discriminating the two classes, which enabled the classifier
to generate the hyperplane easily. Although the normal and
preGDM/GDM classes exhibited similar structures, the pro-
posed LPCS separated the features in an efficient way. To
our knowledge, this is the first work carried out to develop
a CAD tool to categorize fetal cardiac structure using US in
GDM mothers. The advantages of the proposed method are:

•The proposed features can efficiently characterize the
heart structure.

•The LPCS method is generalizable and can be applied to
the images of various modalities.

•The performance evaluated using ten-fold cross validation
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is robust.
•It is computationally efficient and can be deployed in rural

hospitals for screening.

A. FUTURE SCOPE
This is the first CAD model that has been developed
for the detection of fetal abnormalities associated with
preGDM/GDM. In the future, the method can be combined
with ConvNet, which may yield a higher probability for
identifying disease. One limitation of our work is that we
have only analyzed 433 digital images belonging to two
classes. We are planning to include more images to further
test the algorithm. In addition, a future direction for the CAD
system will be to develop an Internet of Things (IoT) based
model that can analyze the input images from a remote place,
and send the results of analysis to both doctors and patients.
This type of advanced screening tool can assist both doctors
in their routine screening and follow-up of diabetic mothers.
Figure 7 shows the future IoT based CAD model, where
cloud based image analysis is proposed. The antenatal results
need to be scrutinized to ensure that fetuses with FMH are
identified immediately. The test can also be performed after
birth for neonatal monitoring.

FIGURE 7. IoT based CAD tool for the detection of FMH.

V. CONCLUSION
We studied fetal US images obtained from 74 normal subjects
and 71 diabetic mothers. The shearlet based texture features
showed remarkable performance under the LPCS framework
using only twenty-eight features. The results were promising
and should lead to more studies on the automatic detection
of FMH with greater number of subjects, including studies
involving ante- as well as post-natal US examinations. This
will help clinicians better understand the longitudinal disease
progression in FMH.
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