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We introduce a novel dynamical description for a wide class of nonlinear physical sensors operating
in a noisy environment. The presence of unknown physical signals is assessed via the monitoring of
the residence times in the metastable attractors of the system. We show that the presence of ambient
noise, far from degrading the sensor operation, can actually improve its sensitivity and provide a greatly
simplified readout scheme, as well as significantly reduce processing procedures for this new class of
devices that we propose to call noise activated nonlinear dynamic sensors. Such devices can also show
interesting dynamical features such as the resonant trapping effect.
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A large class of dynamic sensors have nonlinear input-
output characteristics, often corresponding to a bistable po-
tential energy function that underpins the sensor dynamics.
Examples include magnetic field sensors, e.g., the simple
fluxgate sensor [1,2], ferroelectric sensors [3], and me-
chanical sensors [4], e.g., acoustic transducers, made with
piezoelectric materials. In many cases, the detection of a
small target signal (dc or low frequency) is based on a spec-
tral technique [1]wherein a known periodic bias signal is
applied to the sensor to saturate it and drive it very rapidly
between its two (locally) stable attractors (corresponding
to the minima of the potential energy function, when the
attractors are fixed points). Often, the amplitude of the bias
signal is taken to be quite large in order to render the re-
sponse largely independent of the noise. The effect of a
target dc signal is, then, to skew the potential, resulting in
the appearance of features at even harmonics of the bias
frequency v [5] in the system response. The spectral am-
plitude at 2v is, then, proportional to the bias frequency
and the square of the target signal amplitude; hence, the
spectral amplitude can be used to yield the target signal.
In practice, a feedback mechanism is frequently utilized
for reading out the asymmetry-producing target signal via
a nulling technique [1].

The above readout scheme has some drawbacks. Chief
among them is the requirement of large onboard power
to provide a high-amplitude, high-frequency bias signal.
The feedback electronics can also be cumbersome and in-
troduce their own noise floor into the measurement, and,
finally, a high-amplitude, high-frequency bias signal of-
ten increases the noise floor in the system. We propose
here a description of the system dynamics which makes
possible the use of a new measurement technique based on
the system output residence times in its steady states. The
residence time statistics in a bistable system were proposed
for the first time in [6] as a quantifier for the stochastic
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resonance [7] phenomenon. Here we propose to use such
statistics in order to gain information on the presence of
small-unknown target signals. We start by stressing that,
without any external target signal, the two residence times
(we will assume a two-state system for the remainder of
this Letter) will be, on average, identical: The presence
of even a small amount of noise leads to a residence times
distribution (RTD) about a mean value, due to uncertain-
ties in the switching time. The presence of an external tar-
get signal usually renders the potential asymmetric with a
concomitant difference in the mean residence times which,
to first order, is proportional to the asymmetry-producing
target signal itself. We propose to monitor the difference
between the mean residence times of the two states of the
system and to use this observable as a quantifier for detect-
ing the presence of the target signal. This procedure has
some advantages compared to the standard procedure: It
can be implemented experimentally without complicated
feedback electronics, with or without the bias signals. In
fact, the difference in residence times is quantifiable even
in the absence of the periodic bias signal, with only noise
driving the sensor between its steady states, although prac-
tical considerations, e.g., observation times that depend on
the relative magnitude of the noise standard deviation and
the barrier height, may limit the applicability of this pro-
cedure in some practical cases. The residence-times based
technique works without the knowledge of the computa-
tionally demanding power spectral amplitude of the sys-
tem output (in most cases a simple averaging procedure on
the system output works just fine) and, finally, it performs
well in the presence of noise.

In realistic scenarios, the nonlinear sensors are operated
in a noisy environment with just a few dynamical quanti-
ties that can be adjusted to improve their performance. In
order to examine the optimal operating condition(s), we
consider the case in which ambient noise characteristics
© 2002 The American Physical Society 230601-1
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(correlation time and standard deviation) and target signal
characteristics cannot be adjusted at will, while the peri-
odic bias amplitude A (and frequency) and barrier height
b can be chosen with a certain freedom. We present calcu-
lations on a simple two-state system (the Schmitt trigger,
ST) that serves as a good prototype for more complex
bistable sensors and permits the computation of the
residence-times statistics, whence some of the ideas out-
lined above can be quantified. Simulation results using a
double well potential system, instead of a Schmitt trigger,
are presented in [8,9]. We start with the simplest model of
a driven ST with static thresholds located at 6b, an applied
controllable sinusoidal bias signal A�t� � A sinvt, and a
dc target signal e (e ø b). We assume the background
noise z �t� to be Gaussian bandlimited (exponentially
correlated) having zero mean, and correlation time t.
The noise z �t� stems from a white-noise driven Ornstein-
Uhlenbeck process: �z � 2lz 1 sF�t�, where l �
t21, and F�t� is white noise having zero mean and unit
intensity s2. Then, z �t� has correlation function �z �t� 3

z �s�� � s
2
z exp�2jt 2 sj�t� with variance s

2
z � s2t�2.

In Fig. 1 we show digitally simulated data from the ST
for the quantity of interest �DT� � j�T1� 2 �T2�j as a
function of A and b, �T1� and �T2� being the mean resi-
dence times in the upper and the lower state of the ST,
respectively. It is interesting to note that �DT� increases
monotonically with b for a chosen A and becomes larger
when A becomes smaller, for a fixed noise intensity. Such
a behavior suggests a novel way to operate nonlinear sen-
sors in a noisy environment. We call NANDS (noise ac-
tivated nonlinear dynamic sensors) the class of bistable
sensors that can be operated as dc or low frequency sig-
nal detectors. For NANDS, the dynamical observable is
the difference between the (mean) residence time in each
stable state, when the switches between the states are ac-
tivated solely by the ambient noise (i.e., A � 0). NANDS
devices have some clear advantages over usual sensors,
e.g., reduced bias amplitude, or even the complete absence
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FIG. 1. �DT � in arbitrary time units (atu) as a function of A and
b for the Schmitt trigger. Other parameter values are sz � 1.5,
t � 1 atu, v � 1 atu21, and e � 0.1.
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of the external periodic bias, and consequent reduction in
power requirements. On the other hand, the performances
of such devices are conditioned by the statistical proper-
ties of the noise. Specifically, in order to obtain a large
enough signal-to-noise ratio on �DT�, it is necessary to
consider the statistical distribution of the residence times
�T1� and �T2�. In the presence of large mean or variance
of the residence time observable (low noise level and/or
large barrier height), it might be necessary to acquire a long
time series before being able to estimate appropriately the
observable �DT�.

In order to reach a quantitative understanding of the
behavior of �DT�, we start by considering a purely
deterministic crossing event (A . b 1 e and sz � 0).
One readily obtains t1 � v21 sin21� b2e

A � and t2 �
v21�sin21�b1e

A � 1 p�, for the times of first crossing of
the upper and lower thresholds, respectively (assuming
that we start at the origin). The residence times in
the two states (assuming instantaneous switches) are
T1 � t2 2 t1 and T2 � t1 1

2p

v 2 t2 whence we obtain
for the difference in residence times DT � T1 2 T2:

DT � 2v21

∑
sin21

µ
b 1 e

A

∂
2 sin21

µ
b 2 e

A

∂∏
. (1)

Defining a “sensitivity” via S�e� �
dDT
de , we obtain

S �
2

vA

("
1 2

µ
b 1 e

A

∂2
#21�2

1

"
1 2

µ
b 2 e

A

∂2
#21�2)

, (2)

which clearly increases with e, saturating at ē � A 2 b.
One may show that other (nonsinusoidal) bias waveforms
lead to enhanced sensitivity. For instance, a waveform
comprising a superposition of a square and a triangular
wave has been studied. The resultant (deterministic) sensi-
tivity is independent of e, and far better than the sinusoidal
bias case [10].

To understand the role of the noise, we studied the nor-
malized RTD by measuring the residence times in both
states of the ST (i.e., we compute the distribution of resi-
dence times regardless of the residence state). In Fig. 2, the
RTD thus obtained for various noise intensities (A � 1.5b
and a dc target signal e � 0.2b) is presented. We note the
following.

1. For small noise (sz ø A 2 b), the RTD presents
two well-separated almost-symmetric peaks centered about
the mean values �T1,2�.

2. As long as the noise stays small (sz , A 2 b), the
mean values �T1,2� are roughly the same as the determin-
istic values (1) computed above (the larger A, the less they
depart from the computed values, see also Fig. 3).

3. In the presence of increasing amounts of noise (sz .

A 2 b), the two peaks of the RTD tend to merge as a
consequence of an increasing number of purely noise ac-
tivated switches between the stable states; simultaneously,
the RTDs develop noise-dependent tails.
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FIG. 2. Residence times distribution for the Schmitt trigger
stable states measured for increasing values of the noise standard
deviation sz . Each RTD (for a fixed value of the noise stan-
dard deviation) is normalized. Time is measured in atu. Other
parameter values are b � 1, A � 1.5, t � 1 atu, v � 1 atu21,
and e � 0.2.

4. For large noise (sz ¿ A 2 b), the switching mecha-
nism is completely dominated by noise. �DT � decreases
and eventually goes to zero when sz ! `.

In Fig. 3 we show in detail the dependence of �DT� on
sz for three different values of the bias amplitude A. It is
interesting to note that the departure from the deterministic
case (zero noise) is, in general, nonmonotonic. We observe
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FIG. 3. �DT � versus sz for three different values of the
amplitude of the bias signal: A � 1.25 (squares), A � 1.5
(circles), A � 2.5 (triangles). Other parameter values are b � 1,
t � 1 atu, v � 1 atu21, and e � 0.1. The straight horizontal
lines indicate the respective deterministic DT values as com-
puted via (1). The dashed curve shows the prediction from (5)
for A � 0. Inset: �DT� versus b for three different values of the
target signal amplitude: e � 0.03 (1), e � 0.1 (3), e � 0.3
(�), with zero bias signal (A � 0) and sz � 4. Continuous
lines represent the estimate obtained from (5). Other parameter
values as in the main figure.
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that a small amount of noise, instead of decreasing �DT�,
makes it rise to a maximum, at values significantly larger
than the predicted one for the purely deterministic switch-
ing. The amplitude of this effect and the position of the
maximum are clearly a function of A. In order to explain
such behavior, we recall the notion of resonant trapping
introduced recently [11]: In a configuration in which the
bias signal amplitude A is taken larger than the threshold b,
the switch event is ordinarily controlled by the bias signal
itself. It can happen, however, that when A�t� approaches
the upper level (lower level) the noise z �t� is smaller than
2�A 2 b� [larger than �A 2 b�]. In such cases the switch
event gets frustrated, unless z �t� recrosses the boundary
2�A 2 b� [�A 2 b�] prior to the sign reversal of A�t�.
Such a failure mechanism was first observed [11] in a
double well system: There a frustrated switch is attrib-
utable to the fact that the escape time out of the unstable
well increases with noise intensity and reaches a maximum
for an optimal value of sz , whence the term resonant trap-
ping. A detailed description of this effect is given in [11]
where dependencies arising from characteristic time scales
in the system (signal period, intrawell relaxation time, and
the noise correlation time) are discussed. For our purposes,
we observe that the positions of the maxima in Fig. 3 are
well described by the condition sz � A 2 b in agreement
with the behavior of the maximum of the trapping proba-
bility, as reported in [11]. The maximum in �DT� is due
to an increase of �T1� (for e . 0) caused by a failure in
the down switch mechanism. The switch is thus postponed
for a time 2p�v and the RTD for T1 develops peaks at
2n11

2
2p

v [10]. It is interesting to observe that failures in
the switch mechanism [both in the up (2 ! 1)] and in
the down (1 ! 2) direction] cooperate to increase �DT�,
thus increasing the detectability (see also [12]) for small
e, i.e., the right amount of noise improves detectability.
A detailed description of the beneficial effects of resonant
trapping to our detection method will be discussed in a
forthcoming paper, where we discuss also the effect of the
shape of the forcing signal and the interpretation of this
effect in terms of noise-enhanced sensitivity due to the
specific shape of the function �DT�

The behavior of �DT� for large noise intensity is al-
most independent of A (Fig. 3); in this regime, the re-
sponse tends to purely noise driven behavior. Using the
above dynamics for the state-point x�t�, for A � 0, we may
write down the standard expression [13] for the mean first
passage time �T2� to make the transition from the start-
ing point (the reflecting boundary) at the lower (shifted)
threshold 2b 1 e to the absorbing barrier located at the
upper threshold b 1 e:

�T2� �
2

s2

Z b1e

2b1e
dx ex2�s2t

Z x

2`
dz e2z2�s2t

� t
p

p
Z u1

u2

eu2

�1 1 erf�u�� du , (3)

where u1 � �b 1 e���s
p

t �, and u2 � �2b 1 e��
�s

p
t �. The reverse mean passage time is easily written
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down as

�T1� � t
p

p
Z u1

u2

eu2

�1 2 erf�u�� du . (4)

Then, we may write �DT� as the difference in these two
expressions. Expanded to first order in e, we obtain

�DT� � 4e
p

pt�s2 exp�b2�2s2
z �erf

√
bp
2s2

z

!
1 O�e2� ,

(5)

This expression is compared with numerically obtained
separations �DT� in the small e limit (typically, this is the
limit in which most experiments operate) in Fig. 3 (inset).

For subthreshold bias signals, the crossing events are
noise controlled and the RTD multimodal [14] (with a
noise-dependent tail) in general. The “stochastic reso-
nance” scenario [15] may be exploited to yield better sig-
nal processing. This situation has received considerable
attention in the literature (see, e.g., [15]); we do not ad-
dress it here.

Experiments with a ring core fluxgate magnetometer are
currently underway at FOI–Stockholm, aimed at demon-
strating these ideas. Preliminary results indicate that the
observable �DT� can, in fact, be readily computed without
recourse to a feedback circuit, and with bias signal ampli-
tudes ranging from somewhat suprathreshold to vanishing,
using the ideas discussed above. In these experiments, the
sensor noise is usually not Gaussian [16] due to incoherent
domain wall dynamics. However, new magnetic materials
as well as sophisticated techniques that allow the construc-
tion of micromagnetic sensors or sensors having at most a
few magnetic domains [17] have led to a significant low-
ering of the non-Gaussian noise so that the main source of
noise is Gaussian correlated, as assumed in this paper. Ad-
ditional experiments involving ferroelectric thin films are
also underway at SSC, San Diego.

The results of this paper show that it is possible to op-
erate a nonlinear dynamic sensor as a “neural” device in
which a crossing or “firing” rate to a threshold is the ob-
servable of interest. The background noise may be con-
structively utilized to switch the sensor between its stable
steady states, with the effects of a small target dc signal
manifested as an inequality in the switch rates to the thresh-
olds. In the new class of NANDS devices, the sensor need
not be biased with large periodic drives or operated with
a feedback loop. Elaborate detection schemes based on a
more extended use of the statistical properties of the RTD
other than the sample mean can be devised in order to im-
prove detection performances. A detailed discussion on
this point will be presented elsewhere [10].
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